ILLEGAL DUMPING MITIGATION STRATEGY CLOSURE REPORT

LOWER NICOLA INDIAN BAND: NICOLA MAMEET IR #1, JOEYASKA IR #2, AND ZOHT IR #4, BRITISH COLUMBIA

PREPARED FOR THE LOWER NICOLA INDIAN BAND (LNIB)

PREPARED BY

GANDALF CONSULTING LTD.

January 2021

PROJECT NO: 6040 LN

EXECUTIVE SUMMARY

Gandalf Consulting Ltd. (Gandalf) was retained by the Lower Nicola Indian Band (LNIB) to assist in the implementation of an Illegal Dumping Mitigation Strategy involving surface waste cleanup at six known illegal dump sites. The project was undertaken with the support of the First Nation Land Management Resource Centre. The locations addressed consisted of

- APEC 1 Lot 9 Residential Dump on Joeyaska IR #2
- APEC 3 Lot 6 Residential Dump on Joeyaska IR #2
- APEC 4 Lot 11 Dump Site on Zoht IR #4
- APEC 5 Four Mile Dump on Mameet IR #1
- APEC 6 Buried Dump 1 Mameet Lake Ranch Road South on Mameet IR #1
- APEC 7 Buried Dump 2 Mameet Lake Ranch Road North on Mameet IR #1

In 2018/2019 Gandalf conducted a Phase 2 Environmental Site Assessment (Phase 2 ESA) that identified soil and groundwater contamination. The results of the Phase 2 ESA are contained in the report titled "Phase II Environmental Site Assessment (ESA) Lower Nicola Indian Band: Nicola Mameet IR NO. 1, Joeyaska IR No. 2, Pipseul IR No. 3, and Zoht IR No. 4, British Columbia", authored by Gandalf Consulting Ltd. and dated May 2019 (Project No. 6050LN). To manage and mitigate risk, Gandalf recommended source (surface and potentially buried garbage) removal and the implementation of dumping mitigation strategies.

Soil contamination was identified at APECs 5 and 6; a limited contaminated soil remediation program comprising the removal of shallow surface contamination from APEC 5 was also proposed.

The LNIB's designated contractor Shulus Forest Enterprises Limited (SFE) carried out the surface waste and contaminated soil removal program between September 21st and November 25th, 2020. Approximately 362.32 tonnes of waste material and 7.81 tonnes of recyclables were removed from the illegal dump sites. Approximately 291.57 tonnes of contaminated soil were removed from APEC 5 and disposed of at the Thompson-Nicola Regional District landfill.

Gandalf conducted pre-cleanup soil sampling to evaluate the risk of contaminant exposure at all APECs as reported in the Phase 2 ESA. As part of the mitigation strategy Gandalf conducted post-cleanup soil sampling at APECs 5 and 6. The results of the closure soil sampling indicate that there is a low risk of contaminant exposure for potential receptors at these APECs.

LNIB is continuing to enforce its mitigation strategy at these sites through a combination of road decommissioning, access gates, sign posting and installation of security cameras.

The goals of the mitigation strategy and cleanup program have been met.

Table of Contents

1		INTRODUCTION					
2		BAG	CKGROUND	1			
3		SCC	OPE OF WORK	2			
4		PRC	DJECT PERSONNEL	2			
5		SITI	E DESCRIPTION	3			
	5.	1	Nicola Mameet IR#1	3			
	5.2	2	Joeyaska IR#2	3			
	5	3	Zoht IR#4	4			
6		REC	GULATORY	4			
7		SUR	RFACE WASTE AND CONTAMINATED SOIL REMOVAL PROGRAM	5			
	7.	1	Site Activities	5			
	7.	2	Disposal Records	5			
	7.	3	APEC 1 – Lot 9 Residential Dump at Joyeaska IR #2	6			
	7.	4	APEC 3 – Lot 6 Residential Dump at Joyeaska IR #2	6			
	7.:	5	APEC 4 – Lot 11 Dump at Zoht IR #4	6			
	7.0	6	APEC 5 – Four Mile Dump at Nicola Mameet IR #1	7			
	7.	7	APEC 6 – Buried Dump 1 Mameet Lake Ranch Road South	7			
	7.	8	APEC 7 – Buried Dump 2 Mameet Lake Ranch Road North	8			
8		QUA	ALITY ASSURANCE AND QUALITY CONTROL (QA/QC)	9			
9		DIS	CUSSION	10			
10	0	DIS	CLAIMER:	11			

Appendices

Appendix I: Figures

Figure 1: APEC Locations on IR #1 Figure 2: APEC Locations on IR #2 Figure 3: APEC Locations on IR #4 Figure 4: APEC 1 – Lot 9 Residential Dump on Joeyaska IR #2 Pre-Remediation Figure 5: APEC 1 – Lot 9 Residential Dump on Joeyaska IR #2 Post-Remediation Figure 6. APEC 3 – Lot 6 Residential Dump on Joeyaska IR #2 Pre-Remediation APEC 3 – Lot 6 Residential Dump on Joeyaska IR #2 Post-Remediation Figure 7: Figure 8: APEC 4 – Lot 11 Dump Site on Zoht IR #4 Pre-Remediation APEC 4 – Lot 11 Dump Site on Zoht IR #4 Post-Remediation Figure 9: Figure 10: APEC 5 – Four Mile Dump on Mameet IR #1 Pre-Remediation Figure 11: APEC 5 – Four Mile Dump on Mameet IR #1 Post-Remediation Figure 12: APEC 6 - Buried Dump 1 Mameet Lake Ranch Road South on Mameet IR #1 Pre-Remediation APEC 6 – Buried Dump 1 Mameet Lake Ranch Road South on Mameet IR #1 Post-Figure 13: Remediation Figure 14: APEC 7 – Buried Dump 2 Mameet Lake Ranch Road North on Mameet IR #1 Pre-Remediation Figure 15: APEC 7 – Buried Dump 2 Mameet Lake Ranch Road North on Mameet IR #1 Post-Remediation

Appendix II: Tables

Table 1: Legacy Dump Waste Removal Summary

Table 2: Soils Results - Four Mile Dump on Mameet IR #1

Table 3: Soil Results -- Buried Dump 1 Mameet Lake Ranch Road South on Mameet IR #1

Table 4: QA/QC Soils Analytical Results

Appendix III: Disposal Records

Appendix IV: Lab Certificates

1 INTRODUCTION

Gandalf Consulting Ltd. (Gandalf) has supported the Lower Nicola Indian Band (LNIB) to address legacy issues associated with illegal dumping on Band lands. The LNIB sought to implement their Illegal Dumping Mitigation Strategy that included surface waste cleanup at six known illegal dump sites and supported by the First Nation Land Management Resource Centre.

2 BACKGROUND

The LNIB has participated in and supported a series of environmental investigations including a Phase 2 Environmental Site Assessment (Phase 2 ESA) conducted by Gandalf in 2018/2019 that evaluated the presence of contaminated soil and groundwater at various Areas of Potential Environmental Concern (APECs) including illegal dumping locations on or adjacent to Band lands. Contaminated soil and groundwater were identified and to manage risk Gandalf recommended source (and potentially buried waste removal) removal and the implementation of dumping mitigation strategies. The results of the Phase 2 ESA are contained in the report titled "Phase II Environmental Site Assessment (ESA) Lower Nicola Indian Band: Nicola Mameet IR NO. 1, Joeyaska IR No. 2, Pipseul IR No. 3, and Zoht IR No. 4, British Columbia", authored by Gandalf Consulting Ltd. and dated May 2019 (Project No. 6050LN).

The following APECs were identified as illegal dump sites:

- APEC 1 Lot 9 Residential Dump on Joeyaska IR #2
- APEC 3 Lot 6 Residential Dump on Joeyaska IR #2
- APEC 4 Lot 11 Dump Site on Zoht IR #4
- APEC 5 Four Mile Dump on Mameet IR #1
- APEC 6 Buried Dump 1 Mameet Lake Ranch Road South on Mameet IR #1
- APEC 7 Buried Dump 2 Mameet Lake Ranch Road North on Mameet IR #1

The locations of the APECs are shown in **Figures 1, 2,** and **3.**

Soil contamination was identified during the Phase 2 ESA at two locations proposed for waste cleanup (IR#1 APEC 5: Four Mile Dump and IR#1 APEC 6: Buried Dump 1 Mamit Lake Ranch Road South). A limited contaminated soil remediation program comprising the removal of shallow surface contamination from the IR#1 APEC 5: Four Mile Dump illegal dump site was also proposed.

In 2020, the LNIB, with their designated contractor Shulus Forest Enterprises Limited (SFE) and the support of the First Nation Land Management Resource Centre, implemented a program to address legacy issues associated with illegal dumping that included the removal of surface waste from the six illegal dump site locations. Additionally, the LNIB undertook the excavation of contaminated surface soils from IR#1 APEC 5: Four Mile Dump.

3 SCOPE OF WORK

Gandalf conducted the following scope of work:

- Prior to beginning waste removal, conduct a Site walkover with LNIB and SFE representatives to confirm the locations of identified contamination and to review the waste removal work.
- Conduct pre-waste removal soil sampling to characterize soils for disposal.
- Support landfill acceptance of waste soil.
- Conduct field reviews during waste removal work and provide support as necessary.
- Following the completion of waste removal activities, attend locations requiring further sampling to complete confirmatory soil sampling.
- Prepare a report documenting the surface waste and contaminated soil removal program including presenting the results of the soil investigations.

To support the LNIB for their ongoing environmental management goals, the soil sampling program was used as a demonstration and training exercise to familiarize LNIB staff with field sampling methods. This training acted as capacity building to enhance the Band's ability to evaluate environmental risks and pollution.

The soil sampling was carried out in general accordance with accepted practices and Sections 58 and 59 of the British Columbia Contaminated Sites Regulation (CSR).

4 PROJECT PERSONNEL

Gandalf's project team consisted of the following personnel:

Senior Reviewer Mr. Bob Symington, M.Sc., P.Geo. Project Engineer Mr. Paul Gardner, M.A.Sc, P.Eng.

Project Coordinator Mr. Xavier Sandoval, B.Sc, A.Sc.T, A.Ag

Mr. Symington was appointed a Standards Approved Professional in 2008 as administered by the Contaminated Sites Approved Professional (CSAP) Society. Mr. Symington was a founding director of the CSAP Society and past chair of the Performance Assessment Committee of CSAP.

Mr. Symington provided senior oversight and technical review relating to contaminated land management and hydrogeology for the project. Mr. Symington had overall responsibility to ensure the contamination investigations met the project objectives. Mr. Symington participated in key project meetings with the Band and provided overall oversight of project quality including technical review of the final report.

Mr. Paul Gardner, P.Eng. (EGBC), is a CSAP Standards Approved Professional with more than 15 years' experience as an environmental scientist and project manager providing solutions

regarding asset management including the investigation and remediation of permitted and uncontrolled landfill or waste disposal sites for First Nations and other clients.

Mr. Gardner acted as Field Engineer for the project. Mr. Gardner prepared the sampling and analysis plan, conducted soil sampling, and provided field training.

Mr. Xavier Sandoval is an Applied Science Technologist and Articling Agrologist with over 5 years' experience as an environmental scientist in the field of contaminated sites and has participated in numerous environmental investigation and remediation projects for a variety of clients.

Mr. Sandoval provided technical and administrative support for the project. Mr. Sandoval conducted closure sampling, documented site conditions, and drafted figures, tables, and the closure report.

5 SITE DESCRIPTION

5.1 Nicola Mameet IR#1

Nicola Mameet IR No. 1 is located along Highway 8 and 97C, approximately 8 km west of Merritt. This reserve is approximately 4,560 hectares (ha) and is used for residential, agricultural, and institutional purposes, and was formerly used for industrial purposes.

The reserve contains an oil and gas pipeline right-of-way, former rail line right-of-way, road networks including Highway 8 (Nicola Highway) and Highway 97C (Mamit Lake Road), residences, sawmills, a fire hall, band administration buildings, schools and daycare, community centers, gas stations, gravel pits, concrete and asphalt plants, motor speedway, fuel storage tanks, and unsanctioned dump sites.

The location of IR #1 and associated APECs is shown in Figure 1 in Appendix I.

5.2 Joeyaska IR#2

Joeyaska IR No. 2 is located approximately 5 km east of Merritt. The reserve is approximately 130 ha, used for residential and agricultural purposes and considered for commercial and light industrial development.

Receptors at Nicola Mamit IR# 2 near APECs include people in residences breathing the air, drinking water, consuming plants including those grown in private gardens or gathered in the wild (e.g., watercress), and consuming animals (agricultural cattle).

The location of IR #2 and associated APECs is shown in Figure 2 in Appendix I.

5.3 Zoht IR#4

Zoht IR#4 is located 0.5 km directly north of the township of Nicola and 9 km northeast of Merritt. The reserve is approximately 200 ha and is used for residential and agricultural purposes with a post-manufacturing mill. Receptors at IR#4 near APECs include people (in industrial sites) breathing the air and drinking water.

The location of IR #4 and associated APECs is shown in Figure 3 in Appendix I.

6 REGULATORY

The reserves are currently considered to be federal lands and the results of the soil sampling were evaluated in comparison to federal guidelines including:

- Canadian Environmental Soil Quality Guidelines for Protection of Environment and Human Health
- Canadian Sediment Quality Guidelines for the Protection of Aquatic Life (updated 2001)
- Guidelines for Canadian Drinking Water Quality (potable water) (Health Canada 2010)
- Federal Interim Groundwater Quality Guidelines (non-potable water) (Revised June 2016)
- Health Canada Guidance for Soil Vapour Intrusion Assessment (Sept. 2010)
- Canada Wide Standards for Petroleum Hydrocarbons in Soil (CWS for PHC) (2008)

Soil analytical results were compared to CCME Canadian Environmental Quality Guidelines (CEQG) in soil. For comparative purposes, the results were also compared to the standards set out in the Province of British Columbia's Contaminated Sites Regulation (CSR) Schedule 3.1.

Residential/Parkland use (RL/PL) guidelines and standards were conservatively considered applicable at the APECs, including undeveloped land, in case of future development. The CSR differentiates between standards for low-density residential (RL_{LD}) and high-density residential (RL_{HD}). RL_{LD} standards were considered more likely applicable.

Since free-ranging cattle was observed at or near some APECs, CSR Agricultural (AL) standards for the protection of livestock ingesting soil and fodder (Livestock Ingestion) and the protection of groundwater used for livestock watering (Livestock Watering) were also considered at these locations.

Gandalf conceptually evaluated the associated potential exposure risks if guideline values were exceeded.

7 SURFACE WASTE AND CONTAMINATED SOIL REMOVAL PROGRAM

7.1 Site Activities

The overall program was initiated Sept 9th, 2020 and completed on Nov 25th, 2020 and consisted broadly of the following activities.

- On September 9th,2020 a planning conference call was conducted between LNIB, SFE and Gandalf to broadly outline the program schedule.
- On September 16th, 2020 Gandalf conducted a Site walkover with LNIB and SFE representatives to review the proposed work program. Gandalf also collected pre-waste removal soil samples from IR#1 APEC 5: Four Mile Dump.
- Site works by SFE began on September 21, 2020 with the removal of waste material from APECs 6 and 7, and were completed on November 25, 2020, with the removal of contaminated soil from APEC 5.
- On October 1st, 2020 Gandalf conducted a Site walkover with LNIB and SFE representatives to review works completed. On October 16th, 2020 Gandalf conducted additional surface sampling at the buried dump 1 Mamit Lake Ranch road south (IR#1 APEC 6).
- On December 3rd, 2020, Gandalf conducted additional surface soil sampling at the Four Mile Dump (IR#1 APEC 5).

7.2 Disposal Records

A total of 7.81 tonnes of recyclable materials (mostly scrap metal and clean fill material) and 362.3 tonnes of waste material (mostly household garbage) were removed from the dump sites. Approximately 208 m³ (291.7 cubic metres) of contaminated soil was removed from IR#1 APEC 5 and transported to the Thompson-Nicola Regional District Landfill and replaced with approximately 200 m³ of clean fill. The dates, types, and volumes of materials removed from each APEC are summarised in **Table 1 in Appendix II.** The load summary for the contaminated soil removed from APEC 5 is appended to this report in **Appendix III**.

7.3 APEC 1 - Lot 9 Residential Dump at Joeyaska IR #2

During the Phase 2 ESA Gandalf completed 2 test pits and collected 2 soil samples from each. All soil samples had reported concentrations less than the applicable guidelines and standards for petroleum hydrocarbons and volatile substances. Elevated concentrations of chromium and nickel above the CCME guideline but below the CSR background levels were identified and are presented on **Figure 4** in **Appendix I** along with pre-remedial photos.

Elevated copper concentrations were found in 3 of 4 samples analyzed; however, after performing statistical analysis, Gandalf did not consider the elevated soil results for copper to be indicative of anthropogenic contamination, and therefore concluded that no contamination is likely present associated with the APEC.

A total of 27.09 tonnes of surface waste was removed, including recyclables. Recyclables included scrap metals (transported offsite by Tas Trucking Ltd., truck #107) and five tires without rims. Waste included household garbage.

Following waste removal, 2 truckloads of rip rap were brought in to restore the area. Post remedial drone and ground photos are shown in **Figure 5** in **Appendix I**.

7.4 APEC 3 - Lot 6 Residential Dump at Joeyaska IR #2

During the Phase 2 ESA Gandalf completed 2 test pits with 2 soil samples at each. All soil samples had reported concentrations less than the applicable guidelines or standards for metals, petroleum hydrocarbons, and volatile substances. Soil sample results and pre-removal pictures are presented in **Figure 6** in **Appendix I**.

A total of 50.31 tonnes of waste and 2.25 tonnes of recyclables was removed, including 2 cars sent to Reliable Towing. Recyclables included metal (clean fill), 15 tires with rims and 29 tires without rims. Waste included household garbage.

Post remedial drone photos are presented in Figure 7 in Appendix I.

7.5 APEC 4 – Lot 11 Dump at Zoht IR #4

During the Phase 2 ESA Gandalf completed 4 test pits with 2 soil samples at each. All soil samples had reported concentrations less than the applicable guidelines or standards for metals, petroleum hydrocarbons, and volatile substances. Soil sample results and pre-removal pictures are presented in **Figure 8 of Appendix I**.

A total of 27.77 tonnes of waste and 0.16 tonnes of recyclables were removed. Recyclables included metals (clean fill). Waste included household garbage. Following waste removal, the disturbed ground was graded and seeded with native grass species.

Post remedial drone photos are presented in **Figure 9** in **Appendix I.**

7.6 APEC 5 - Four Mile Dump at Nicola Mameet IR #1

During the Phase 2 ESA Gandalf completed 4 test pits and two boreholes with 2 soil samples analyzed from each. All soil samples had reported concentrations less than the applicable guidelines or standards for petroleum hydrocarbons, volatile substances, and glycols. Soil sample results and pre-removal pictures are presented in **Figure 10** in **Appendix I**

Five of 12 samples analyzed had copper concentrations greater than the federal guideline; 2 of these had results less than the regional CSR background level. Elevated concentrations of nickel were also found in one of the soil samples.

On September 16th, 2020 Gandalf conducted a Site walkover with LNIB and SFE representatives to review the proposed work program. Gandalf also collected pre-waste removal soil samples from IR#1 APEC 5: Four Mile Dump. The soil sampling results are presented in **Table 2** of **Appendix 2** and on **Figure 11** of **Appendix 1** and were located to assist in the delineation of the soils to be removed. Sample SS-2 failed for copper but was removed during the remedial activities.

Approximately 291.57 tonnes (208 m³) of contaminated soil were removed by SFE and transported to the Thompson-Nicola Regional District landfill site (the load records are presented in **Appendix III**). The Site was restored with clean fill.

Gandalf visited the site and conducted closure sampling on December 3, 2020; one closure sample had an iron concentration exceeding CSR standards for the protection of human health. However, this exceedance is likely related to the local geology (i.e., estimated regional background levels as per BC ENV Protocol 4) and the nearby volcanogenic iron formation (Iron Mountain). Elevated concentrations of iron were found in all samples, and Gandalf concludes that iron present in the closure soil samples is not of anthropogenic origin. The results of the closure sampling of surficial soils at the site are presented in **Table 2** of **Appendix II**.

Closure soil sample results and post-removal photos are presented in **Figure11** in **Appendix I.**

7.7 APEC 6 - Buried Dump 1 Mameet Lake Ranch Road South

Gandalf completed 4 test pits during the Phase 2 ESA, with two soil samples analyzed from each. Two of the samples had copper and zinc concentrations above the CSR regional background level and applicable guidelines or standards and one sample had elevated lead concentrations. Additionally, one sample had polycyclic aromatic hydrocarbons (PAH) exceedances above federal guidelines. Soil sample results and pre-removal pictures are presented in **Figure 12** in **Appendix I**

While the elevated soil results were considered to be indicative of anthropogenic contamination, the contamination was found in deep (>1m) soils. Because of its depth and geotechnical constraints at this site, only surface soil and waste were removed, and the site was restored with a layer of clean fill.

Approximately 98.87 tonnes of waste and 2.19 tonnes of recyclables were removed. Recyclables included metals (clean fill) and 16 tires with rims. Waste included household garbage, dirty electronics, concrete, and asphalt.

Gandalf conducted shallow soil sampling on October 16th, 2020. Two closure samples analyzed had vanadium concentrations slightly exceeding the CSR standards for the protection of drinking water but lower than the CCME guideline. No anthropogenic wide area sources of vanadium were identified, and exceedances are more likely related to the local geology (i.e., estimated regional background, as per BC ENV Protocol 4). Gandalf does not consider Vanadium to be of anthropogenic origin and elevated concentrations are suspected regional background and not associated with the APEC. The closure soil sample results are presented in **Table 3** in **Appendix II**.

One closure sample analyzed had zinc concentration exceeding the CSR standards for the protection of livestock ingesting soil and fodder (200 mg/kg) but lower than the CCME guideline (250 mg/kg). No anthropogenic sources of zinc were identified, and exceedances are more likely related to the local geology (i.e., silver-lead-zinc deposits in the vicinity of Merritt, related to the Nicola Group rocks). Gandalf does not consider Zinc to be of anthropogenic origin and elevated concentrations are suspected regional background and not associated with the APEC.

Closure soil sample results and post-removal photos and drone photos are presented in **Figure 13** in **Appendix I.**

7.8 APEC 7 - Buried Dump 2 Mameet Lake Ranch Road North

Gandalf completed 4 test pits with two soil samples analyzed from each during the Phase 2 ESA. All soil samples had reported concentrations of hydrocarbons, volatile substances, and glycols less than the applicable guidelines or standards. Elevated Vanadium concentrations were found in one deep (>1m) sample; however, this result was considered to be anomalous and not indicative of anthropogenic contamination. Soil sample results and pre-removal photos are presented in **Figure 14** in **Appendix I**

Approximately 158.19 tonnes of waste and 3.21 tonnes of recyclables were removed. Recyclables included metals (clean fill and appliances). Waste included household garbage, dirty electronics, soil, concrete, and asphalt.

Post remedial drone and ground-level photos are shown in Figure 15 in Appendix I

8 QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)

As part of the QA/QC program, proper sample collection, identification, storage, transport, documentation, and analysis protocols were followed.

A field duplicate sample was collected and analysed for the purpose of calculating relative percent difference (RPD). The RPD is calculated to compare the differences between a sample and its duplicate, thus quantifying the reproducibility or precision of the data. The RPD is calculated by taking the absolute value of the difference between the sample and the duplicate, dividing it by the average of the sample and duplicate, and then multiplying by 100 to obtain a percentage:

BC ENV guidelines recommend that further review is conducted on RPD values greater than 20% in water and 30% in soil. However, if the concentration of the analyte is less than five times the method detection limit, or if the analyte is influenced by matrix variability and heterogeneity (such as metals in soil), then a RPD value greater than 35% may be reasonable. If the RPD is greater than 50%, it is generally necessary to determine the cause and how it affects the findings of the investigation. RPD values for the soil field duplicate sample 4M7 from APEC 5 (Four Mile Dump) are all below 25% and in most cases below 10%. RPD values are presented in **Table 4**.

The laboratory used duplicate/RPD analysis, reference materials, control, surrogate and matrix spikes, and method blanks as part of its QA/QC program. The laboratory QA/QC results are included in the laboratory certificates of analysis in **Appendix IV** and were reviewed by Gandalf to ensure they were within acceptable ranges. No issues were noted in the lab QA/QC program.

Based on the results of the field and laboratory QA/QC programs, the quality of the sample collection and laboratory analyses for all samples are deemed to be acceptable and the results of this investigation are considered to be valid.

9 DISCUSSION

Historic waste management practices on Band lands included the use of informal legacy dump locations that were not designed or engineered, and waste was still present on the surface. Surface waste at legacy dump sites functioned as a 'sign-post' that illegal dumping was tolerated at these locations.

Illegal dumping is a priority at the LNIB, and they sought to implement a mitigation strategy to address issues associated with poor waste disposal practices including public education, waste diversion and recycling, and illegal dumping on Band lands.

Consequently, the LNIB has successfully implemented an Illegal Dumping Mitigation Strategy that included surface waste cleanup, contaminated soil removal, and site restoration at six known illegal dump sites.

Shulus Forest Enterprises undertook a surface waste and contaminated soil removal and site restoration program following Gandalf's proposed recommendations.

Gandalf conducted pre-cleanup soil sampling to evaluate the risk of contaminant exposure at all APECs as reported in the Phase 2 ESA. As part of the mitigation strategy Gandalf conducted post-cleanup soil sampling at APECs 5 and 6. The results of the closure soil sampling indicate that there is a low risk of contaminant exposure for potential receptors at these APECs.

LNIB is continuing to enforce its mitigation strategy at these sites and has undertaken a combination of road decommissioning, access gates, sign posting and installation of security cameras.

The goals of the mitigation strategy and cleanup program have been met.

10 DISCLAIMER:

This Illegal Dumping Mitigation Strategy Closure Report (Closure Report) has been prepared for the Lower Nicola Indian Band ("the Client"). It is intended to provide the Client with an understanding of the potential hazards that the properties may pose to human health, or to the general environment due to chemical contamination. It describes what Gandalf Consulting Ltd. believes are reasonable concerns about how the property could potentially become involved in various environmental problems resulting from hazardous waste and hazardous materials. Gandalf Consulting Ltd. has neither created nor contributed to the creation or existence of any hazardous, radioactive, toxic, irritant, pollutant, or otherwise dangerous substance, or condition at the Site.

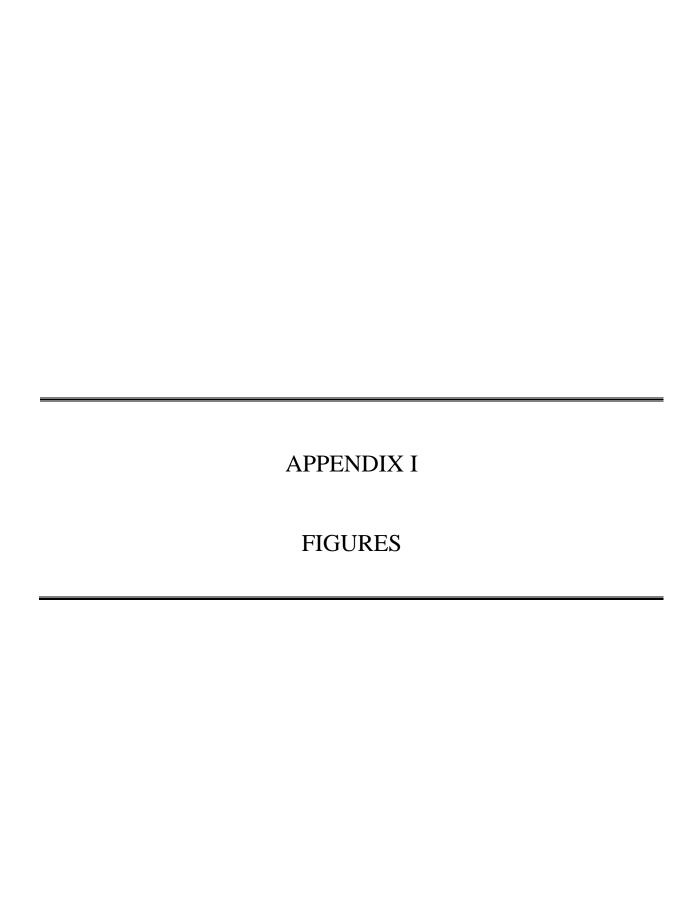
The Closure Report was prepared in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practising under similar conditions, subject to the time limits and financial and physical constraints applicable to the services. The Closure Report was based on information collected during our investigation, our present understanding of the Site conditions, and our professional judgement in light of such information available at the time of the review. The Closure Report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change. While the Closure Report can be used as a guide by Client, it must be understood that it is neither a rejection nor an endorsement of the property.

The Closure Report was prepared by Gandalf Consulting Ltd. for the account of the Client. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Gandalf Consulting Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Closure Report.

LIMIT OF LIABILITY:

The liability of Gandalf Consulting Ltd. to the owner, the Client and to all third parties shall be limited to injury or loss caused by the negligent acts, errors, or omissions of Gandalf Consulting Ltd. The total aggregate liability of Gandalf Consulting Ltd. related to this agreement shall not exceed the lesser of the actual damages incurred, the total fee of Gandalf Consulting Ltd. for the services rendered on this project, or the remainder of any professional errors and omissions insurance carried by Gandalf Consulting Ltd.

The Client has, by contract, agreed to defend, indemnify and hold harmless Gandalf Consulting Ltd. and its affiliates, officers, directors, employees and agents, from any and all liabilities, in excess of the limits of Gandalf Consulting Ltd.'s entire liability set out above, incurred by Gandalf Consulting Ltd. or any other party, in connection with the services hereunder, or arising from or in any way connected to uninsurable obligations including those arising from the presence, discharge, dispersal, release, escape or effect of radiation, nuclear reaction of radioactive, toxic, explosive or hazardous substances, or any other pollutants including solid, liquid, gaseous, thermal irritants or contaminants. Such indemnity shall include the costs of the time spent and expenses incurred by Gandalf Consulting Ltd. and its affiliates in connection with the defence of the claims.


PROTECTION AGAINST ERRORS OF OTHERS:

In preparing the Closure Report, Gandalf Consulting Ltd. has relied in good faith on information provided by the persons and agencies noted in the report(s). We accept no responsibility for any deficiency, misstatements or inaccuracies contained in the report as a result of omissions, misinterpretations or fraudulent acts of the persons or agencies interviewed. Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Gandalf Consulting Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

REPORT CREDITS

R.M. (Bob) Symington, M.Sc., P.Geo.

APECs \triangle

APEC 1: Rocky Pines Car Crushing

APEC 5: Mamit Lake Road Four Mile Dump

APEC 6: Buried Dump 1 Mamit Lake Ranch **Road South**

APEC 7: Buried Dump 2 Mamit Lake Ranch Road North

APEC 8: Mamit Lake Road Target Shooting Area

APEC 11: Lot 146 Sawmill

APEC 13: Lot 105 Lot 72-1 Abandoned House

APEC 16: Lot 208 AST (213E Hwy 8)

APEC 20: BC Plan 215 Nicola River Dump

APEC 24: Lot 17, 18, 86, and South of Lots 3, 4,

and 5

APEC 28: Band Fire Hall Burn Pile

APEC 32: Former Shulus School AST

APEC 33: Soil Contamination Charlotte Joe

Residence

Offsite APEC 34: CP Rail Right of Way

APECs labeled in green have been addressed

PREPARED BY: Gandalf Consulting Ltd. PO Box 48806 Vancouver, BC

INDIAN BAND IR#: 1

LOWER NICOLA

APEC #: N/A FIGURE #: 1

APEC LOCATIONS LAT/LONG: 50°9'5.53"N, 120°51'11.31"W ON IR #1 DRAWN BY: GM DATE DRAWN: JAN-2019

PROJECT NUMBER: 6040LN

SOURCE: Google Earth, Columbia Phase I 2011 & Phase I Update 2015, Lower Nicola Indian Band Online Map

REVISED BY: XS DATE REVISED: DEC-2020

APEC 1: Lot 9 Residential Dump APEC 3: Lot 6 Residential Dump

APECs labeled in green have been addressed

APECs \triangle

APEC 1: Post Mill Plan 59794

APEC 4: Lot 11 Dump Site Offsite APEC 5: Dump #1

APECs labeled in green have been addressed

PREP ARED BY: Gandalf Consulting Ltd. PO Box 48806	LOWER NICOLA INDIAN BAND
Vancouver, BC	IR#: 4
PROJECT NUMBER: 6040LN	APEC #: N/A
SOURCE: Google Earth, Columbia Phase I 2011 &	FIGURE #: 3
Phase I Update 2015, Lower Nicola Indian Band Online Map	
LAT/LONG: 50°10'50.27"N, 120°39'55.90"W	APEC LOCATIONS
DRAWN BY: GM DATE DRAWN: JAN-2019	ON IR #4
REVISED BY: XS DATE REVISED: DEC-2020	

TP2 18-Jul-2018	CCME	CSR
0.3 m	pH >< Metals > (Cu 63.6, Ni 49.1) PHC < BTEX < PAH < VOC < Glycel Nitrates	pH - Metals < PHC < BTEX < PAH < VOC < Glycol Nitrates
1.5 m	pH > Metals < PHC < BTEX < PAH < VOC < Glycol Nitrates	pH - Metals < PHC < BTEX < PAH < VOC < Glycol Nitrates

<u>Chromium (Cr)</u> CCME guideline: 64 mg/kg CSR background: 70 kg/kg

Copper (Cu) CCME guideline: 63 mg/kg CSR background: 75 kg/kg

Nickel (Ni) CCME guideline: 45 mg/kg CSR background: 85 kg/kg

<u>Analysis</u>

Metals: Al, Sb, As, Ba, Be, Bi, Bo, Cd, Cr, Co, Cu, Fe, Pb, Li, Mn, Hg, Mo, Ni, Se, Ag, Sr, Tl,

PHC: F1 (nC6-nC12), F2 (>nC10-nC16), F3 (>nC16-nC34), F4 (>nC34-nC50)

BTEX: benzene, toluene, ethylbenzene, total xylenes

TP1 18-Jul-2018

0.3 m

2.3 m

CCME

pH ><

Metals > (Cr 67, Cu 70.6, Ni 71.0)

BTEX <

PAH <

VOC <

Glycol <

Metals > (Cu 76.7) PHC < BTEX <

VOC <

Glycol <

CSR

pH -

BTEX <

PAH <

VOC <

Glycol <

Nitrates pH -

PHC < BTEX <

PAH <

VOC <

Glycol <

PAH: acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, $benzo(b) fluoran thene, \ benzo(g,h,i) per ylene, \ benzo(j) fluoran thene, \ benzo(b+j) fluoran thene, \ benzo($ benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, phenanthrene, pyrene, quinoline

VOC: 1,1,1,2-tetrachloroethane, 1,1,1-trichloroethane, 1,1,2-tetrachloroethane, 1,1,2-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethylene, 1,2,4-trimethylbenzene, 1,2dibromoethane, 1,2-dichlorobenzene, 1,2-dichloroethane, 1,2-dichloropropane, 1,3dichlorobenzene, 1,4-dichlorobenzene, 2-butanone (MEK), 4-methyl-2-pentanone (MIBK), bromodichloromethane, bromoform, bromomethane, carbon tetrachloride, chlorobenzene, chloroethane, chloroform, chloromethane, cis-1,2-dichloroethylene, cis-1,3dichloropropylene, dibromochloromethane, dichloromethane, tetrachloroethylene (PERC), trans-1,2-dichloroethylene, trans-1,3-dichloropropylene, trichloroethylene (TCE), trichlorofluoromethane, vinyl chloride

Glycol: propylene glycol, monoethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol

Nitrates: nitrates, soluble

Parameter Not analysed

Test pit

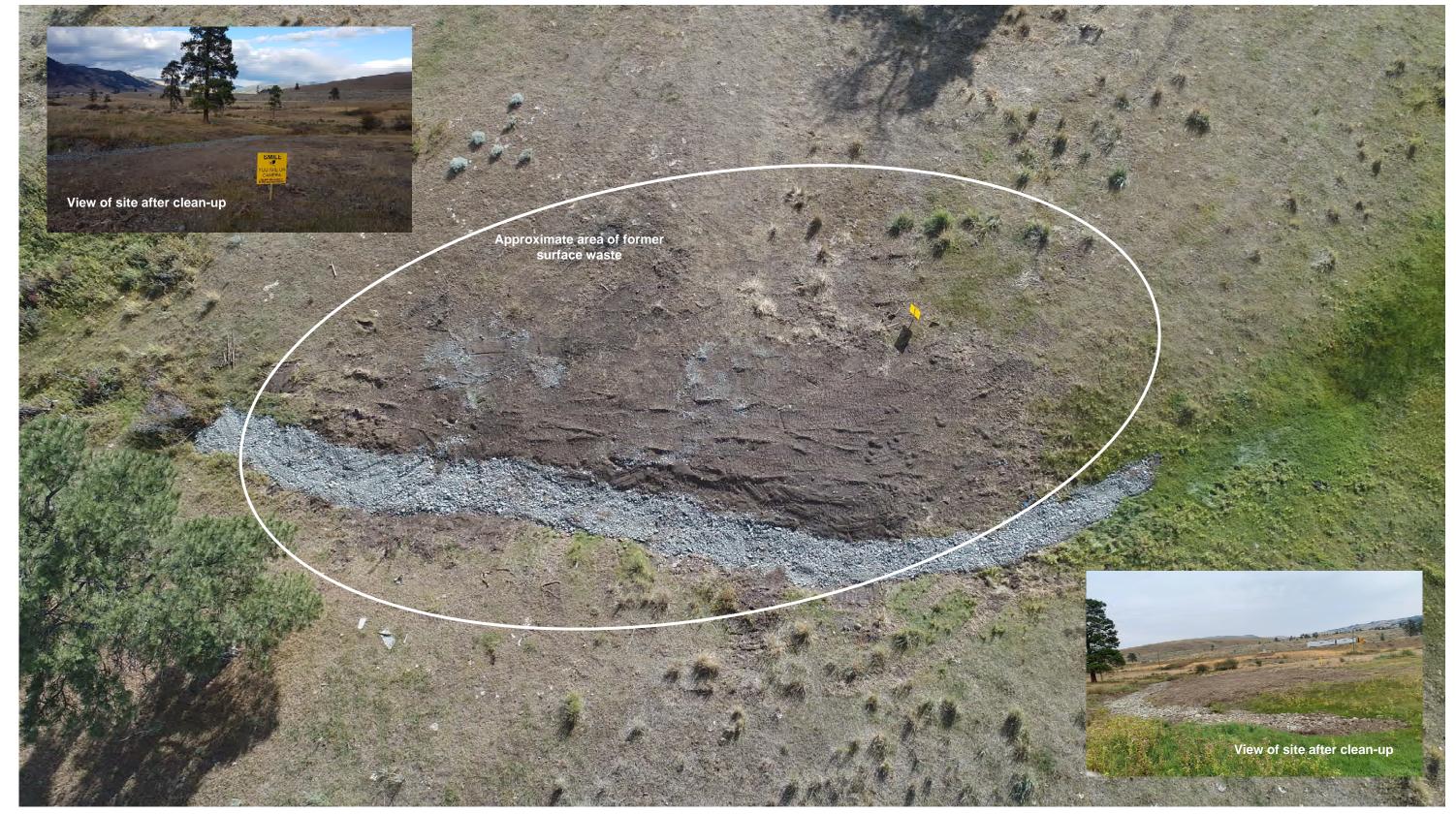
Exceedance(s) in soil of CCME guidelines other

Monitoring well Borehole

standards but not CCME guidelines Soil pH outside of CCME guideline range

Exceedance(s) in soil of CSR

Locations approximate; not surveyed


No exceedance(s) in soil

Land use: residential (nearby) with livestock. Standards applied: CCME RL or RL/PL, CSR RL $_{\rm LD}$ and AL livestock

PREPARED BY: Gandalf Consulting Ltd. PO Box 48806	LOWER NICOLA INDIAN BAND
Vancouver, BC	IR#: 2
PROJECT NUMBER: 6040LN	APEC #: 1
SOURCE: Google Earth, Columbia Stage 1 2011	FIGURE #: 4
Ocorroc. Google Earth, Columbia Glage 1 2011	
LAT/LONG: 50°5'52.33"N, 120°45'1.43"W	JOEYASKA LOT 9
	DECIDENTIAL DILIMO

DRAWN BY: GM DATE DRAWN: Aug-2018 REVISED BY: XS DATE REVISED: Dec-2020

RESIDENTIAL DUMP PRE-REMEDIATION

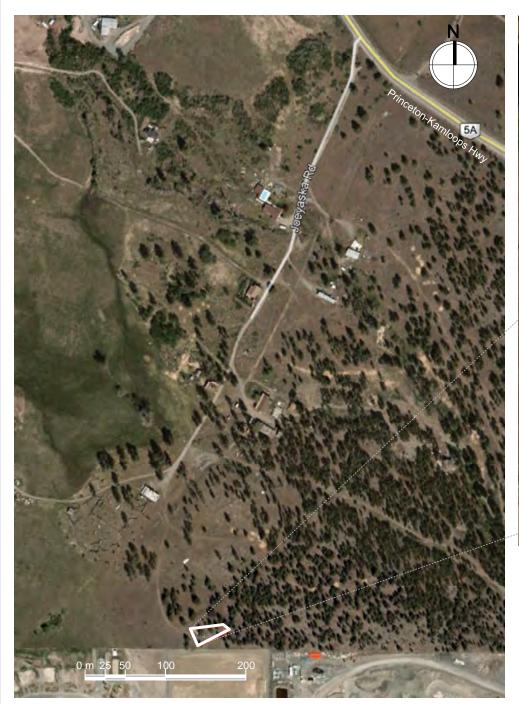
Aerial drone view of site after clean-up

PREPARED BY: Gandalf Consulting Ltd. PO Box 48806

Vancouver, BC
PROJECT NUMBER: 6040LN

SOURCE: Google Earth, Columbia Stage 1 2011

DRAWN BY: GM DATE DRAWN: Aug-2018


REVISED BY: XS DATE REVISED: Dec-2020

LAT/LONG: 50°5'52.33"N, 120°45'1.43"W

JOEYASKA LOT 9
RESIDENTIAL DUMP
POST-REMEDIATION

LOWER NICOLA INDIAN BAND

IR#: 2 APEC #: 1 FIGURE #: 5

Metals: Al, Sb, As, Ba, Be, Bi, Bo, Cd, Cr, Co, Cu, Fe, Pb, Li, Mn, Hg, Mo, Ni, Se, Ag, Sr, Tl,

PHC: F1 (nC6-nC12), F2 (>nC10-nC16), F3 (>nC16-nC34), F4 (>nC34-nC50)

BTEX: benzene, toluene, ethylbenzene, total xylenes

PAH: acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(j)fluoranthene, benzo(b+j)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, phenanthrene, pyrene, quinoline

VOC: 1,1,1,2-tetrachloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethylene, 1,2,4-trimethylbenzene, 1,2dibromoethane, 1,2-dichlorobenzene, 1,2-dichloroethane, 1,2-dichloropropane, 1,3dichlorobenzene, 1,4-dichlorobenzene, 2-butanone (MEK), 4-methyl-2-pentanone (MIBK), bromodichloromethane, bromoform, bromomethane, carbon tetrachloride, chlorobenzene, chloroethane, chloroform, chloromethane, cis-1,2-dichloroethylene, cis-1,3dichloropropylene, dibromochloromethane, dis-1,2-usinoroethylene (PERC), trans-1,2-dichloroethylene, trans-1,3-dichloropropylene, trichloroethylene (TCE), trichlorofluoromethane, vinyl chloride

Glycol: propylene glycol, monoethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol

Parameter Not analysed

Test pit

Monitoring well

Borehole

Locations approximate; not surveyed

Exceedance(s) in soil of CCME guidelines other than pH

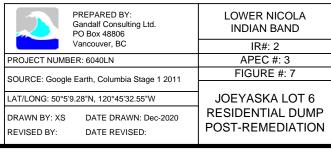
Exceedance(s) in soil of CSR standards but not CCME guidelines

Soil pH outside of CCME guideline range

No exceedance(s) in soil

TP1 18-Jul-2018	CCME	CSR
0.1 m	pH >< Metals < PHC < BTEX < PAH < VOC < Glycol Nitrates	pH - Metals < PHC < BTEX < PAH < VOC < Glycol Nitrates
2.0 m	pH > Metals < PHC < BTEX < PAH < VOC < Glycol Nitrates	pH - Metals < PHC < BTEX < PAH < VOC < Glycol Nitrates

TP2 18-Jul-2018	CCME	CSR
	pH ><	pH -
	Metals <	Metals <
	PHC <	PHC <
0.3 m	BTEX <	BTEX <
0.5 111	PAH <	PAH <
	VOC <	VOC <
	Glycol	Glycol
	Nitrates	Nitrates
	pH >	pH -
	Metals <	Metals <
	PHC <	PHC <
2.9 m	BTEX <	BTEX <
2.9 111	PAH <	PAH <
	VOC <	VOC <
	Glycol	Glycol
	Nitrates	Nitrates




Land use: residential (nearby) with livestock. Standards applied: CCME RL or RL/PL, CSR RL_{LD} and AL livestock

,	
PREPARED BY: Gandalf Consulting Ltd. PO Box 48806	LOWER NICOLA INDIAN BAND
Vancouver, BC	IR#: 2
PROJECT NUMBER: 6040LN	APEC #: 3
SOURCE: Google Earth, Columbia Stage 1 2011	FIGURE #: 6
Occitor. Coogle Earth, Columbia Clage 1 2011	
LAT/LONG: 50°5'9.28"N, 120°45'32.55"W	JOEYASKA LOT 6
DRAWN BY: GM DATE DRAWN: Aug-2018	RESIDENTIAL DUMP
REVISED BY: XS DATE REVISED: Dec-2020	PRE-REMEDIATION

Aerial drone view after clean-up

TP3 25-Jul-2018

0.3 m

2.7 m

CCME

⊳H¤

PHC <

BTEX <

PAH <

VOC <

Glycol Nitrates

pH > Metals <

BTEX <

PAH <

VOC <

Glycol

CSR

pH -Metals <

PHC <

BTEX <

PAH <

VOC <

Glycol Nitrates

pH -Metals <

BTEX <

PAH <

VOC <

Glycol

TP1 25-Jul-2018

0.4 m

2.5 m

CCME

Metals <

PHC <

BTEX <

PAH < VOC <

Glycol Nitrates

pH >< Metals <

PHC <

BTEX <

PAH < VOC <

Glycol

CSR

pH-

Metals <

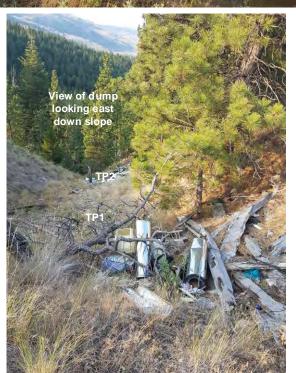
PHC <

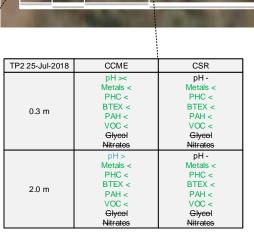
BTEX <

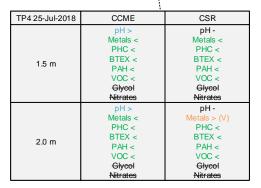
PAH < VOC <

Glycol

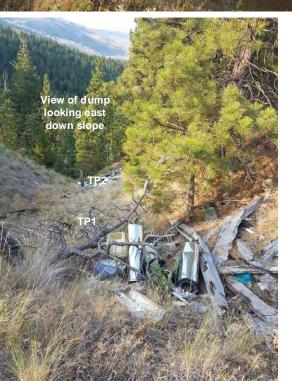
pH-


PHC <


BTEX <


PAH < VOC <

Glycol



Metals: Al, Sb, As, Ba, Be, Bi, Bo, Cd, Cr, Co, Cu, Fe, Pb, Li, Mn, Hg, Mo, Ni, Se, Ag, Sr, Tl Sn. W. U. V. Zn. Zr

PHC: F1 (nC6-nC12), F2 (>nC10-nC16), F3 (>nC16-nC34), F4 (>nC34-nC50)

BTEX: benzene, toluene, ethylbenzene, total xylenes

PAH: acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(j)fluoranthene, benzo(b+j)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, phenanthrene, pyrene, quinoline

VOC: 1,1,1,2-tetrachloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, 1,1,2trichloroethane, 1,1-dichloroethane, 1,1-dichloroethylene, 1,2,4-trimethylbenzene, 1,2dibromoethane, 1,2-dichlorobenzene, 1,2-dichloroethane, 1,2-dichloropropane, 1,3dichlorobenzene, 1,4-dichlorobenzene, 2-butanone (MEK), 4-methyl-2-pentanone (MIBK), bromodichloromethane, bromoform, bromomethane, carbon tetrachloride, chlorobenzene, chloroethane, chloroform, chloromethane, cis-1,2-dichloroethylene, cis-1,3dichloropropylene, dibromochloromethane, dichloromethane, tetrachloroethylene (PERC), trans-1,2-dichloroethylene, trans-1,3-dichloropropylene, trichloroethylene (TCE),

 $\label{eq:Glycol} Glycol: propylene \ glycol, monoethylene \ glycol, \ diethylene \ glycol, \ triethylene \ glycol, \ tetraethylene \ glycol$

Nitrates: nitrates, soluble

 \oplus

Parameter Not analysed

Test pit

Borehole

Locations approximate;

CCME guidelines other than pH

Monitoring well

DRAWN BY: GM DATE DRAWN: Aug-2018

REVISED BY: XS DATE REVISED: Dec-2020

Exceedance(s) in soil of CSR standards but not CCME guidelines

Exceedance(s) in soil of

Soil pH outside of CCME guideline range

REMEDIATION

not surveyed No exceedance(s) in soil

Land use: vacant, potential future residential, livestock. Standards applied: CCME RL or RL/PL, CSR RL_{LD} and AL livestock

PREPARED BY: Gandalf Consulting Ltd. PO Box 48806	LOWER NICOLA INDIAN BAND	
Vancouver, BC	IR#: 4	
PROJECT NUMBER: 6040LN	APEC #: 4	
SOURCE: Google Earth, Columbia Stage 1 2011	FIGURE #: 8	
Coorton Coogle Later, Columbia Gago 12011		
LAT/LONG: 50°11'17.44"N, 120°39'50.63"W	ZOHT LOT 11	
DRAWN BY: GM DATE DRAWN: Aug-2018	DUMP SITE PRE-	

Aerial drone view of site after clean-up

PREPARED BY: Gandalf Consulting Ltd. PO Box 48806 Vancouver, BC

LOWER NICOLA INDIAN BAND IR#: 4 APEC #: 4 FIGURE #: 9

PROJECT NUMBER: 6040LN

SOURCE: Google Earth, Columbia Stage 1 2011

LAT/LONG: 50°11'17.44"N, 120°39'50.63"W

REVISED BY:

DRAWN BY: XS DATE DRAWN: Dec-2020 DATE REVISED:

ZOHT LOT 11 DUMP SITE POST-REMEDIATION

MW-U5-A

		Nitrates	Nitrates
MW-U5-A 8-Nov-2018		FCSAP, CCME, Health Canada, CSR	
Metals > (Mn 418, Zn 11) PHC < BTEX < PAH < Anions > (Cl 149, NO ₂ 0.46, SO ₄ 2.213, F 0.22		HC < TEX < AH <	

CCME

PHC <

BTEX <

VOC <

Glycol <

PHC <

BTEX <

PAH <

VOC <

CSR

PHC <

BTEX <

VOC <

Glycol <

PHC <

BTFX <

PAH <

VOC <

ea of buried


MW5-B 16-Jul-2018

3.0-3.7 m

TP2 16-Jul-2018	CCME	CSR
	pH ><	pH -
	Metals <	Metals <
	PHC <	PHC <
Soil	BTEX <	BTEX <
0.3 m	PAH <	PAH <
	VOC <	VOC <
	Glycol <	Glycol <
	Nitrates	Nitrates
	pH ><	pH -
	Metals > (Cu 71.3)	Metals <
	PHC <	PHC <
Soil	BTEX <	BTEX <
2.3 m	PAH <	PAH <
	VOC <	VOC <
	Glycol <	Glycol <
	Nitrates	Nitrates

	Miratos	Hitates
MW18-5-A 16-Jul-2018	ССМЕ	CSR
Soil 0-0.9 m	pH >< Metals > (Cu 67.6 PHC < BTEX < PAH < VOC < Glycol < Nitrates	PHC < BTEX < PAH < VOC < Glycol < Nitrates
Soil 4.0-5.2 m	pH > Metals < PHC < BTEX < PAH < VOC < Glycol < Nitrates	pH - Metals < PHC < BTEX < PAH < VOC < Glycol < Nitrates

MW18-5-A 8-Nov-2018	FCSAP, CCME, Health Canada, CSR
	Metals > (Mn 262)
Groundwater	PHC <
	BTEX <
	PAH <
	Anions > (Cl ⁻ 150, SO ₄ ²⁻ 170, F ⁻ 0.16)

TP4 16-Jul-2018	CCME	CSR
	pH ><	pH -
	Metals > (Cu 88.3)	Metals <
	PHC <	PHC <
0.3 m	BTEX <	BTEX <
0.3 111	PAH <	PAH <
	VOC <	VOC <
	Glycol <	Glycol <
	Nitrates	Nitrates
•	pH ><	pH -
	Metals <	Metals <
	PHC <	PHC <
2.7 m	BTEX <	BTEX <
2.7 111	PAH <	PAH <
	VOC <	VOC <
	Glycol <	Glycol <
	Nitrates	Nitrates

Refilled test pit

	TP3 16-Jul-2018	CCME	CSR
•••	0.3 m	pH >< Metals > (Cu 102, Ni 48.3) PHC < BTEX < PAH < VOC < Glycol < Nitrates	pH - Metals < PHC < BTEX < PAH < VOC < Glycol < Nitrates
	2.9 m	pH >< Metals < PHC < BTEX < PAH < VOC < Glycol < Nitrates	pH - Metals < PHC < BTEX < PAH < VOC < Glycol < Nitrates

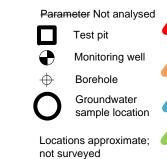
TP1 16-Jul-2018	CCME	CSR
	pH ><	pH -
	Metals > (Cu 83.1)	Metals <
	PHC <	PHC <
0.3 m	BTEX <	BTEX <
0.3 111	PAH <	PAH <
	VOC <	VOC <
	Glycol <	Glycol <
	Nitrates	Nitrates
	pH ><	pH -
1.7 m	Metals <	Metals <
	PHC <	PHC <
	BTEX <	BTEX <
	PAH <	PAH <
	VOC <	VOC <
	Glycol <	Glycol <
	Nitrates	Nitrates

Analysis {in soil only} [in groundwater only]:

Metals: Al, Sb, As, Ba, Be, Bo, Cd, Cr, Co, Cu, Fe, Pb, Li, Mn, Hg, Mo, Ni, Se, Ag, Sr, Tl, Sn, W, U, V, Zn, (Bi, Zr), [Ca, K, Na, Ti]

PHC: F1 (nC6-nC12), F2 (>nC10-nC16), F3 (>nC16-nC34), F4 (>nC34-nC50), [F1 minus BTEX/VPHw]

BTEX: benzene, toluene, ethylbenzene, total xylenes

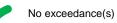

PAH: acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h.i)perylene, benzo(j)fluoranthene, benzo(b+j)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, phenanthrene, pyrene, quinoline, [acridine]

VOC: {1,1,1,2-tetrachloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethane, 1,2-dichloroethane, 1,2-dichloroethane, 1,2-dichloroethane, 1,2-dichloroethane, 1,2-dichloroethane, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 2-butanone (MEK), 4-methyl-2-pentanone (MIBK), bromodichloromethane, bromoform, bromomethane, carbon tetrachloride, chlorobenzene, chloroethane, chloroform, chloromethane, cis-1,2-dichloroethylene, cis-1,3-dichloropropylene, dibromochloromethane, dichloromethane, tetrachloroethylene (PERC), trans-1,2-dichloroethylene, trans-1,3-dichloropropylene, trichlorofluoromethane, vinyl chloride}

Glycol: {propylene glycol, monoethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol}

Nitrates: {nitrates, soluble}

Anions: [bromide, chloride, fluoride, nitrate as nitrogen, nitrite as nitrogen, sulphate]


guidelines other than pH

Exceedance(s) of CSR standards
but not CCME guidelines

Exceedance(s) of CCME

Soil pH outside of CCME guideline range

Groundwater parameter(s) exceed aesthetic objective only

Groundwater Standards

Manganese (Mn)
Health Canada Aesthetic Objective: 50 µg/L

Zinc (Zn)
CCME CEQG AW (FW): 7 μg/L

Chloride (Cl') FCSAP FIGWQG (FW): 120 mg/L CCME CEQG AW (FW): 120 mg/L

Fluoride (F')
FCSAP FIGWQG (FW): 0.12 mg/L
CCME CEQG AW (FW): 0.12 mg/L

Nitrite as Nitrogen (NO₂) FCSAP FIGWQG (FW): 0.06 mg/L CCME CEQG AW (FW): 0.06 mg/L

Sulphate (SO₄²) FCSAP FIGWQG (FW): 100 mg/L

Soil Standards

Copper (Cu)
CCME guideline: 63 mg/kg
CSR background: 75 kg/kg

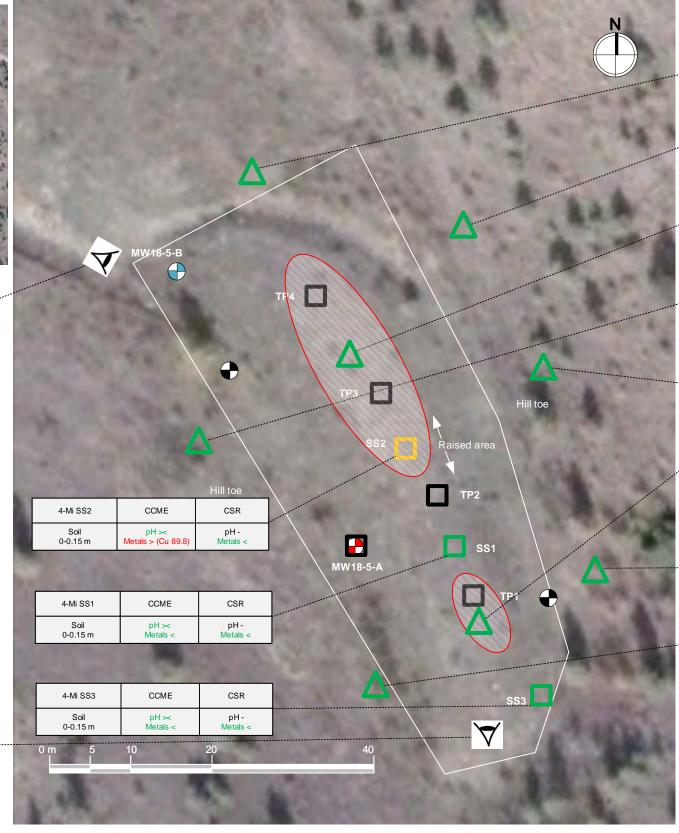
Nickel (Ni)

CCME guideline: 45 mg/kg CSR background: 85 kg/kg

	PREPARED BY: Gandalf Consulting Ltd. PO Box 48806	LOWER NICOLA INDIAN BAND
V	/ancouver, BC	IR#: 1
PROJECT NUMBE	R: 6040LN	APEC #: 5
SOURCE: Google B	Earth, Columbia Stage 1 2011	FIGURE #: 10
LAT/LONG: 50°10'25.06"N, 120°50'55.43"W		MAMIT LAKE ROAD
DRAWN BY: GM	DATE DRAWN: Aug-2018 DATE REVISED: Dec-2020	FOUR MILE DUMP
KE VISED BY: AS	DATE REVISED: Dec-2020	PRE-REMEDIATION

Land use: potential residential with livestock. Standards applied: CCME RL or RL/PL, CSR RL_{LD} and AL livestock; AW (FW), DW

PREPARED BY:
Goodelf Consulting Ltd.


LOWER NICOLA

Looking southeast from road post-remediation

Shallow Soil Sample

Test pit

Monitoring well

Approximate Area for Removal of Shallow Soil Contamination Locations approximate; not surveyed

Shallow soil contamination was present over two areas along mound.

Approximately the top 0.75 m removed and surface replacement with clean imported soil.

Objective was the removal of shallow soil contamination (metals > CCME and CSR regional background)

4WT 3-Dec-2020	CCIVIE	CSK
Soil 0.3 m	Metals <	Metals <

4M1 3-Dec-2020	CCME	CSR
Soil 0.3 m	Metals <	Metals <

4M1 3-Dec-2020	CCME	CSR
 Soil 0.3 m	Metals <	Metals <

4M1 3-Dec-2020	CCME	CSR
Soil 0.3 m	Metals <	Metals <

4M1 3-Dec-2020	CCME	CSR
 Soil 0.3 m	Metals <	Metals <

4M1 3-Dec-2020	CCME	CSR
 Soil 0.3 m	Metals <	Metals <

	4M1 3-Dec-2020	CCME	CSR
•••	Soil 0.3 m	Metals <	Metals <

4M1 3-Dec-2020	CCME	CSR
- Soil 0.3 m	Metals <	Metals <

Soil Standards

Copper (Cu) CCME guideline: 63 mg/kg CSR background: 75 kg/kg

Nickel (Ni) CCME guideline: 45 mg/kg CSR background: 85 kg/kg

Land use: potential residential with livestock. Standards applied: CCME RL or RL/PL, CSR $\rm RL_{LD}$ and AL livestock; AW (FW), DW

G	PREPARED BY: Gandalf Consulting Ltd. PO Box 48806	LOWER NICOLA INDIAN BAND
V	ancouver, BC	IR#: 1
PROJECT NUMBE	R: 6040LN	APEC #: 5
SOURCE: Google Earth, Columbia Stage 1 2011		FIGURE #: 11
LAT/LONG: 50°10'	25.06"N, 120°50'55.43"W	MAMIT LAKE ROAD
DRAWN BY: GM	DATE DRAWN: Aug-2018	FOUR MILE DUMP
REVISED BY: XS	DATE REVISED: Dec-2020	POST-REMEDIATION

Metals: Al, Sb, As, Ba, Be, Bo, Cd, Cr, Co, Cu, Fe, Pb, Li, Mn, Hg, Mo, Ni, Se, Ag, Sr, Tl, Sn, W, U, V, Zn, (Bi, Zr), [Ca, K, Na, Ti]

PHC: F1 (nC6-nC12), F2 (>nC10-nC16), F3 (>nC16-nC34), F4 (>nC34-nC50), [F1 minus

BTEX: benzene, toluene, ethylbenzene, total xylenes

PAH: acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(j)fluoranthene, benzo(b+j)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, phenanthrene, pyrene, quinoline, [acridine]

VOC: {1,1,1,2-tetrachloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, 1,1,2trichloroethane, 1,1-dichloroethane, 1,1-dichloroethylene, 1,2,4-trimethylbenzene, 1,2dibromoethane, 1,2-dichlorobenzene, 1,2-dichloroethane, 1,2-dichloropropane, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 2-butanone (MEK), 4-methyl-2-pentanone (MIBK), bromodichloromethane, bromoform, bromomethane, carbon tetrachloride, chlorobenzene, chloroethane, chloroform, chloromethane, cis-1,2-dichloroethylene, cis-1,3dichloropropylene, dibromochloromethane, dichloromethane, tetrachloroethylene (PERC), trans-1,2-dichloroethylene, trans-1,3-dichloropropylene, trichloroethylene (TCE),

Glycol: {propylene glycol, monoethylene glycol, diethylene glycol, triethylene glycol,

Nitrates: {nitrates, soluble}

Anions: [bromide, chloride, fluoride, nitrate as nitrogen, nitrite as nitrogen, sulphate]

Parameter Not analysed Test pit Monitoring well \oplus Borehole

Exceedance(s) of CCME guidelines other than pH

Exceedance(s) of CSR standards but not CCME guidelines

Groundwater sample location

Locations approximate;

Soil pH outside of CCME guideline range

> Groundwater parameter(s) exceed aesthetic objective only

No exceedance(s)

Soil Standards:

Copper (Cu) CCME guideline: 63 mg/kg CSR background: 75 kg/kg

Lead (Pb)

CCME guideline: 140 mg/kg CSR background: 15 kg/kg

Zinc (Zn)

CCME guideline: 250 mg/kg CSR background: 100 kg/kg

Index of Additive Cancer Risk (IACR) CCME guideline: 1.0

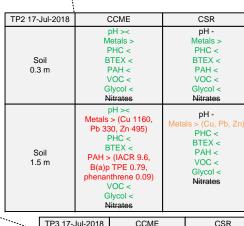
Benzo[a]pyrene Total Potency Equivalent (B(a)P TPE) CCME guideline: 5.3 or 0.6

Phenanthrene CCME guideline: 0.046 mg/kg

Groundwater Standards

Manganese (Mn) Health Canada Aesthetic Objective: 50 μg/L

CCME CEQG AW (FW): 7 µg/L


Fluoride (F⁻) FCSAP FIGWQG (FW): 0.12 mg/L CCME CEQG AW (FW): 0.12 mg/L

<u>Fluoranthene</u> CSAP FIGWQG (FW): 0.04 µg/L CCME CEQG AW (FW): 0.04 µg/L

CSAP FIGWQG (FW): 0.025 µg/L CCME CEQG AW (FW): 0.025 µg/L not surveyed

Land use: potential residential with livestock. Standards applied: CCME RL or RL/PL, CSR RL $_{\rm LD}$ and AL livestock; AW (FW), DW

G	REPARED BY: Candalf Consulting Ltd. O Box 48806	LOWER NICOLA INDIAN BAND
V	ancouver, BC	IR#: 1
PROJECT NUMBER	R: 6040LN	APEC #: 6
SOURCE: Google E	Earth, Columbia Stage 1 2011	FIGURE #: 12
LAT/LONG: 50°9'2	0.94"N, 120°51'46.11"W	BURIED DUMP 1
DRAWN BY: GM	DATE DRAWN: Aug-2018	MAMIT LAKE RANCH
REVISED BY: XS	DATE REVISED: Dec-2020	ROAD SOUTH PRE-
REVISED BY: X5	DATE REVISED: Dec-2020	REMEDIATION

	TP1 17-Jul-2018	CC
	Soil 0.3 m	ph Me Ph BT PA VC Gly Nit
, Zn)	Soil 2.3 m	ph Me Ph BT PA VC Gly Nit

Glycol <

CCME	CSR	TP4 17-Jul-2018	CCME	CSR
pH >< Metals < PHC < BTEX < PAH < VOC < Glycol < Nitrates	pH - Metals < PHC < BTEX < PAH < VOC < Glycol < Nitrates	Soil 0.2 m	pH >< Metals < PHC < BTEX < PAH < VOC < Glycol < Nitrates	pH - Metals > (V) PHC < BTEX < PAH < VOC < Glycol < Nitrates
pH >< Metals < PHC < BTEX < PAH < VOC < Glycol < Nitrates	pH - Metals > (V) PHC < BTEX < PAH < VOC < Glycol < Nitrates	Soil 1.0 m	pH >< Metals > (Cu 141, Zn 311) PHC < BTEX < PAH < VOC < Glycol < Nitrates	pH - Metals > (Zn) PHC < BTEX < PAH < VOC < Glycol < Nitrates

	****	11 3 17-341-2010	CONIL	COIN
MW18-6-A 7-Nov-2018	FCSAP, CCME, Health Canada, CSR	pH >< Metals < PHC <		pH - Metals - PHC <
Groundwater	Metals > (Mn 206, Zn 17) PHC < BTEX < PAH > (fluoranthene 0.08, pyrene 0.08) Anions > (F 0.25)	Soil 0.1 m	BTEX < PAH < VOC < Glycol < Nitrates	BTEX < PAH < VOC < Glycol < Nitrates
		Soil 2.2 m	pH > Metals < PHC < BTEX < PAH <	pH - Metals > PHC < BTEX < PAH <

Aerial drone view of site after clean-up

SS2 16-Oct- 2020	CCME	CSR
Soil 0.15 m	Metals <	Metals < *

Shallow Soil Sample

Test pit

Monitoring well

SS3 16-Oct- 2020	CCME	CSR
Soil 0.15 m	Metals <	Metals <

Copper (Cu) CCME guideline: 63 mg/kg CSR background: 75 kg/kg

Lead (Pb)

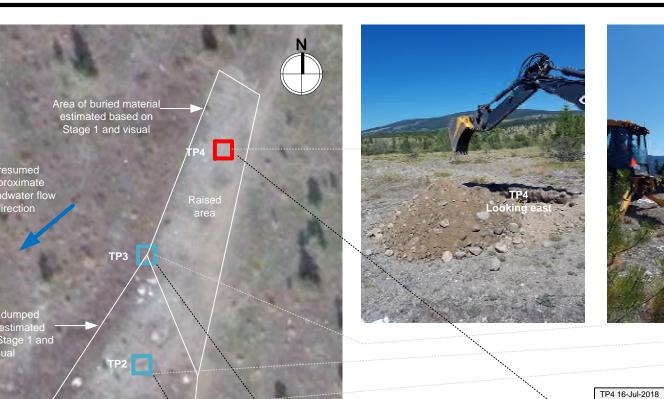
CCME guideline: 140 mg/kg CSR background: 15 kg/kg

Zinc (Zn)

CCME guideline: 250 mg/kg CSR background: 100 kg/kg

Vanadium (V)

CCME guideline: 130 mg/kg CSR background: 85 mg/kg



Land use: potential residential with livestock. Standards applied: CCMF RI or RI/PL CSR RI p and Al livestock: AW (FW) DW

CCME RL	or RL/PL, CSR RL _{LD} and AL	. livestock; AW (FW), DW
	PREPARED BY: Gandalf Consulting Ltd. PO Box 48806	LOWER NICOLA INDIAN BAND
	Vancouver, BC	IR#: 1
PROJECT NUME	ER: 6040LN	APEC #: 6
SOURCE: Google Earth, Columbia Stage 1 2011		FIGURE #: 13
LAT/LONG: 50°9	'20.94"N, 120°51'46.11"W	BURIED DUMP 1
DRAWN BY: XS REVISED BY:	DATE DRAWN: Dec-2020 DATE REVISED:	MAMIT LAKE RANCH ROAD SOUTH POST- REMEDIATION

Soil Standards:

^{*} Vanadium and Zinc are not considered to be of anthropogenic origin. Elevated concentrations are suspected regional background and not associated with the APECs.

TP3 16-Jul-2018

0.5 m

2.2 m

TP2 16-Jul-2018

0.7 m

2.5 m

CCME

Metals < PHC <

BTEX <

VOC <

Glycol <

PHC < BTEX <

PAH <

VOC <

Glycol <

CCME

Metals < PHC <

BTEX <

PAH <

VOC <

Glycol <

Nitrates

PHC <

BTEX <

PAH < VOC <

Glycol <

CSR

Metals < PHC <

BTEX <

PAH <

VOC <

Glycol <

Nitrates

pH -Metals <

PHC < BTEX <

PAH <

VOC <

Glycol <

CSR

pH -

Metals <

BTEX <

PAH < VOC <

Glycol < Nitrates

pH -

PHC < BTEX <

VOC <

Glycol <

CCME

. Metals <

BTEX <

PAH <

VOC <

Glycol <

Nitrates

pH >< etals > (V 147)

BTEX <

PAH <

VOC <

Glycol <

0.7 m

2.5 m

- Ha

Metals <

BTFX <

PAH <

VOC <

Glycol <

pH -

BTEX <

PAH <

VOC <

Glycol <

Metals: Al, Sb, As, Ba, Be, Bi, Bo, Cd, Cr, Co, Cu, Fe, Pb, Li, Mn, Hg, Mo, Ni, Se, Ag, Sr, Tl,

PHC: F1 (nC6-nC12), F2 (>nC10-nC16), F3 (>nC16-nC34), F4 (>nC34-nC50)

BTEX: benzene, toluene, ethylbenzene, total xylenes

PAH: acenaphthene, acenaphthylene, anthracene, benza(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(j)fluoranthene, benzo(b+j)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, $indeno (1,2,3\text{-}cd) pyrene, \ 1\text{-}methylnaphthalene, \ 2\text{-}methylnaphthalene, \ naphthalene, \ naphthalene$ phenanthrene, pyrene, quinoline

VOC: 1,1,1,2-tetrachloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethane, 1,2-dichloroethane, 1,2-dichloropropane, 1,3-dichloropropane, 1,3-dichloropropane, 1,3-dichloropropane, 1,3dichlorobenzene, 1,4-dichlorobenzene, 2-butanone (MEK), 4-methyl-2-pentanone (MIBK), bromodichloromethane, bromoform, bromomethane, carbon tetrachloride, chlorobenzene, chloroethane, chloroform, chloromethane, cis-1,2-dichloroethylene, cis-1,3dichloropropylene, dibromochloromethane, dichloromethane, tetrachloroethylene (PERC), trans-1,2-dichloroethylene, trans-1,3-dichloropropylene, trichloroethylene (TCE), trichlorofluoromethane, vinyl chloride

Glycol: propylene glycol, monoethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol

Nitrates: nitrates, soluble

Parameter Not analysed

Borehole

Locations approximate;

CCME guidelines other than pH

Exceedance(s) in soil of

Test pit

not surveyed

 \oplus

Monitoring well

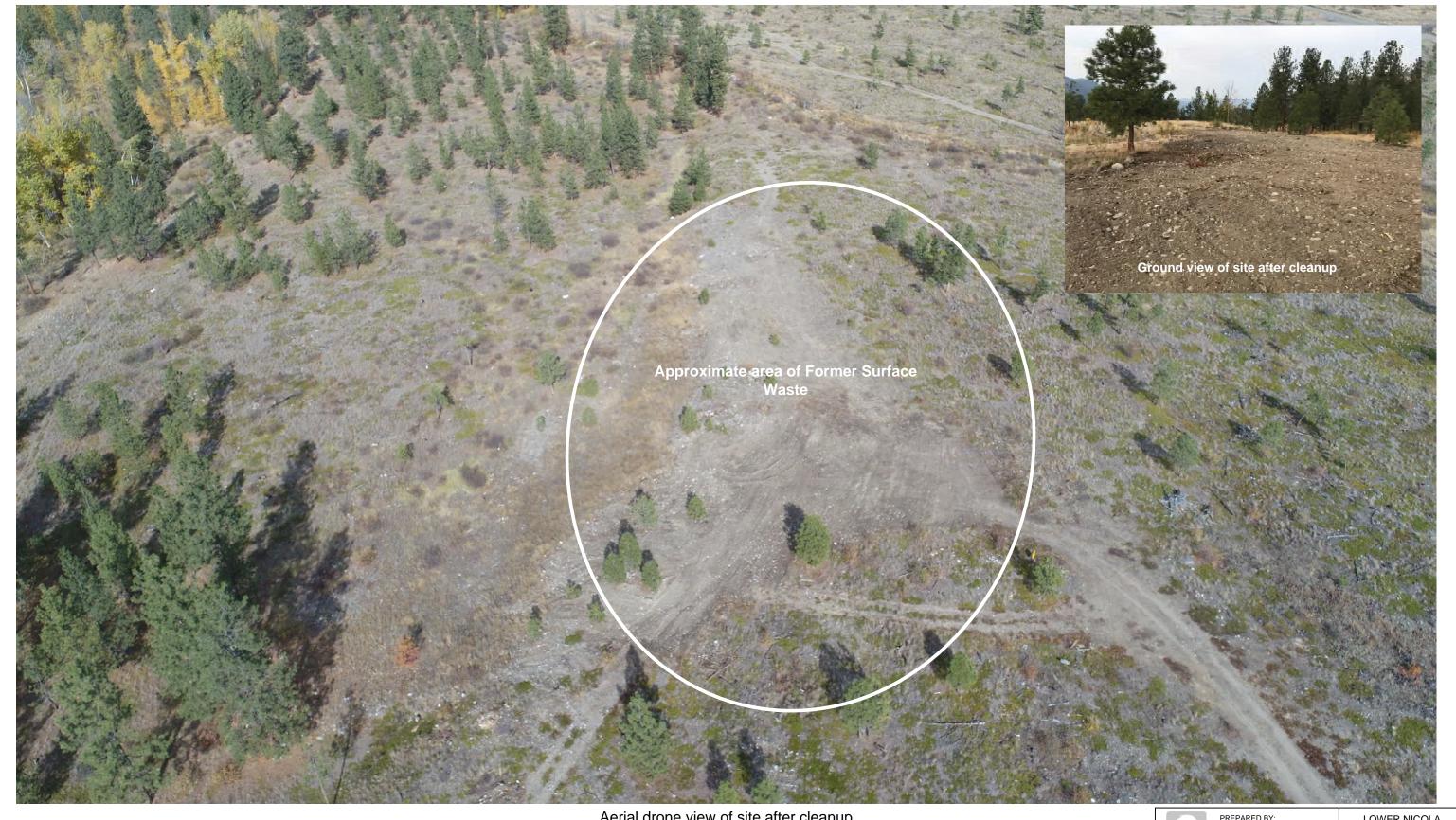
Exceedance(s) in soil of CSR standards but not CCME guidelines

Soil pH outside of CCME guideline range

No exceedance(s) in soil

Vanadium (V) CCME guideline: 130 mg/kg

CSR background: 85 mg/kg



View of Surface Waste

TP1 16-Jul-2018	CCME	CSR
	pH ><	pH -
	Metals <	Metals <
	PHC <	PHC <
0.7 m	BTEX <	BTEX <
0.7 111	PAH <	PAH <
	VOC <	VOC <
	Glycol <	Glycol <
	Nitrates	Nitrates
	pH >	pH -
	Metals <	Metals > (V)
	PHC <	PHC <
2.0 m	BTEX <	BTEX <
2.0 III	PAH <	PAH <
	VOC <	VOC <
	Glycol <	Glycol <
	Nitratos	Nitratos

Land use: potential residential with livestock. Standards applied: CCME RL or RL/PL, CSR RL_{LD} and AL livestock

PREPARED BY: Gandalf Consulting Ltd. PO Box 48806	LOWER NICOLA INDIAN BAND
Vancouver, BC	IR#: 1
PROJECT NUMBER: 6040LN	APEC #: 7
SOURCE: Google Earth, Columbia Stage 1 2011	FIGURE #: 14
LAT/LONG: 50°9'43.82"N, 120°51'40.53"W	BURIED DUMP 2
DRAWN BY: GM DATE DRAWN: Aug-2018 REVISED BY: XS DATE REVISED: Dec-2020	MAMIT LAKE RANCH ROAD NORTH PRE- REMEDIATION

Aerial drone view of site after cleanup

	PREPARED BY: Gandalf Consulting Ltd. PO Box 48806	LOWER NICOLA INDIAN BAND
\	/ancouver, BC	IR#: 1
ROJECT NUMBE	R: 6040LN	APEC #: 7
OURCE: Google Earth, Columbia Stage 1 2011		FIGURE #: 15
AT/LONG: 50°9'43.82"N, 120°51'40.53"W		BURIED DUMP 2
RAWN BY: XS	DATE DRAWN: Dec-2020	MAMIT LAKE RANCH
		ROAD NORTH POST-
EVISED BY:	DATE REVISED:	REMEDIATION

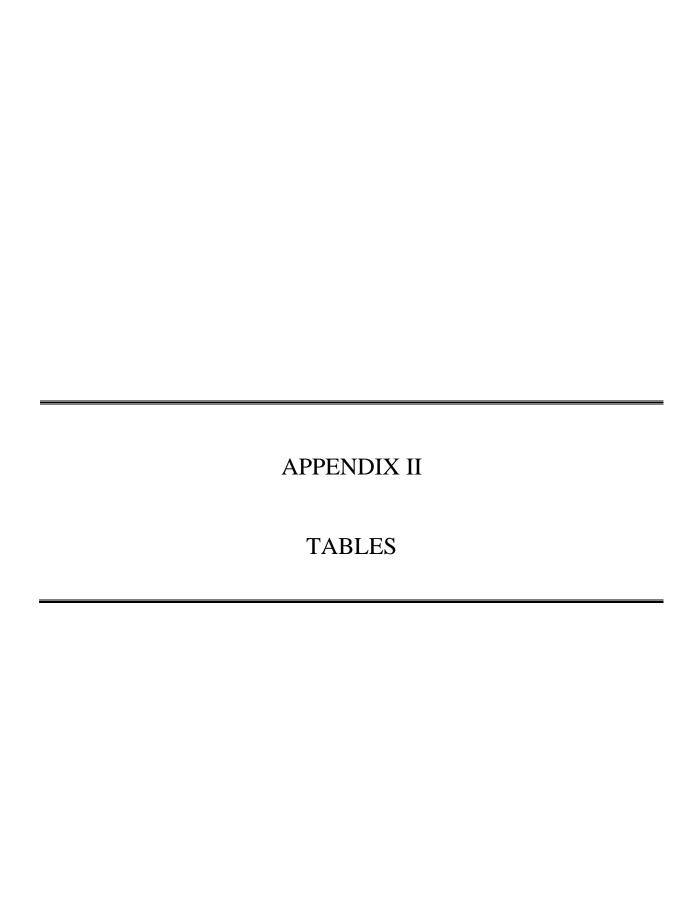


Table 1 Legacy Dump Waste Removal Summary Lower Nicola Indian Band Reserves #1, 2, & 4

RESERVE LOCATION	SITE DESCRIPTION	LATITUDE	LONGITUDE	DATE STARTED	DATE FINISHED	AMOUNT RECYCLABLES (t)	AMOUNT WASTE (t)	NOTE
IR No. 1 Nicola Mamit	APEC 7: Buried Dump 2 Mamit Lake Ranch Road North	50.162172	-120.861259	21-Sep-20	24-Sep-20	2.44	118.38	Recyclables included metals (clean fill and appliances). Waste included household garbage, dirty electronics, soil (clean fill), concrete/asphalt
IR No. 1 Nicola Mamit	APEC 6: Buried Dump 1 Mamit Lake Ranch Road South	50.156003	-120.862767	24-Sep-20	25-Sep-20	2.19	98.87	Recyclables included metals (clean fill) and 16 tires with rims. Waste included household garbage, dirty electronics, soil (clean fill), concrete/asphalt
IR No. 1 Nicola Mamit	APEC 6: Buried Dump 1 Mamit Lake Ranch Road South	50.156003	-120.862767	28-Sep-20	28-Sep-20	0.77	39.9	Recyclables included metals (scrap and freezers). Waste included
IR No. 1 Nicola Mamit	APEC 7: Buried Dump 2 Mamit Lake Ranch Road North	50.162172	-120.861259	28-Sep-20	28-Sep-20	0.77	39.9	household garbage and 2 mattresses.
IR No. 2 Joeyaska	APEC 3: Lot 6 Residential Dump	50.174119	-120.666852	28-Sep-20	29-Sep-20	2.25	50.31	cars sent to Reliable Towing. Recyclables included metal (clean fill), 15 tires with rims, 29 tires without rims; Waste included household garbage
IR No. 2 Joeyaska	APEC 1: Lot 9 Residential Dump	50.097871	-120.750397	30-Sep-20	30-Sep-20		27.09	Recyclables included scrap metal (Tas Trucking Ltd, truck #107), 5 tires without rims. Waste included household garbage. Following waste removal 2 truck loads of rip rap were brought in to restore area.
IR No. 4 Zoht	APEC 4: Lot 11 Dump	50.188403	-120.663151	04-Oct-20	05-Oct-20	0.16	27.77	Recyclables inlcuded metals (clean fill). Waste included household garbage. Following waste removal the disturbed ground was restored with 5 bags of grass seed purchased.
IR No. 1 Nicola Mamit	APEC 5: Four Mile Dump	50.173616	-120.848711	23-Nov-20	25-Nov-20	0	0	Approximately 291.57 tonnes (208 m3) of contaminated soil removed. Limited surface waste removed. Site restored with clean fill.
					Total	7.81	362.32	

Table 2 Soil Metal Results -- Mamit Lake Road Four Mile Dump Lower Nicola Indian Band Reserves #1 APEC 5

Reserve #	1						T				T	1		ı		1			
APEC #	1															5			
APEC Name															N.	Mamit Lake Road F	our Mile Dump		
Applied Standards												CCME RL/PL & CSR RL _{LD} + livestock							
<u> </u>														004	1		T	4140	4140
Sample Location														SS1	SS2	SS3	4M1	4M2	4M3
Client Sample ID														4-mi-SS1	4-mi-SS2	4-mi-SS3	4M1	4M2	4M3
Date Sampled														16-Sep-2020	16-Sep-2020	16-Sep-2020	3-Dec-20	3-Dec-20	3-Dec-20
Depth (m)														0.15	0.15	0.15	0.3	0.3	0.3
Lab sample ID														VA20B5391-001	VA20B5391-003	VA20B5391-005	VA20C2524-001	VA20C2524-002	VA20C2524-003
Parameter	CAS#	Detection Limit CCME CEQG CSR Sched. 3.1 Part 1 Matrix Numerical Standards (RL)				andards (RL)	CSR Sched.			d. 3.1 Part 1 Matrix Il Standards (AL) CSR Protocol 4		Units							
			RL/PL	HH-Soil Intake	E-Toxicity	HH-DW	E-AW Fresh	3.1 Part 2 GHH (RL)	3.1 Part 3 GEH (RL)	E-Livestock I	E-Livestock W	Background							
Physical Tests				mano				1			1				1				
pH (1:2 soil:water)	-	0.05	6 to 8	NS	NS	NS	NS	NS	NS	NS	NS	NS	рН	7.39	8.37	7.23	6.7	9.02	7.16
													•						
Metals (Soil)																			
Aluminum (AI)	7429-90-5	10	NG	NS	NS	NS	NS	40000	NS	NS	NS	30000	mg/kg	19400	27200	17300	19100	30200	12400
Antimony (Sb)	7440-36-0	0.1	20	NS	NS	NS	NS	250	20	NS	NS	4	mg/kg	0.34	0.6	0.3	0.28	0.43	0.28
Arsenic (As)	7440-38-2	0.1	12	20	25	10	10	NS	NS	25	10	15	mg/kg	3.8	6.58	2.54	2.7	2.36	4.24
Barium (Ba)	7440-39-3	0.5	500	8500	700	350	3500	NS	NS	400	NS	200	mg/kg	134	213	173	176	239	56.8
Beryllium (Be)	7440-41-7	0.1	4	85 NC	150	1* NS	1* NS	NS	NS NS	NS NS	8.5*	0.5	mg/kg	0.47	0.6	0.44	0.48	0.75	0.3 <0.20
Bismuth (Bi) Boron (Bo)	7440-69-9 7440-42-8	0.5 0.5	NG NG	NS NS	NS NS	NS NS	NS NS	NS 8500	NS NS	NS NS	NS NS	NS 1	mg/kg	<0.20 <5.0	<0.20 5.2	<0.20 7	<0.20 5.9	<0.20 7.9	<0.20 <5.0
Cadmium (Cd)	7440-42-6	0.01	10	20	30	1*	1*	NS	NS	10	4.5*	0.4	mg/kg mg/kg	0.17	0.211	0.244	0.218	0.281	0.082
Chromium (Cr)	7440-47-3	1	64	100	200	60	60	NS	NS	150	60	70	mg/kg	29.4	43.9	25	29.9	43.6	22.6
Cobalt (Co)	7440-48-4	0.1	50	25	45	25	25	NS	NS	250	150	20	mg/kg	11.5	19.2	12.0	12.8	18.1	11.2
Copper (Cu)	7440-50-8	0.2	63	3500	150*	250*	75*	NS	NS	150	75*	75	mg/kg	47.3	89.8	41.5	47	78.5	27.2
Iron (Fe)	7439-89-6	10	NG	NS	NS	NS	NS	35000	NS	NS	NS	30000	mg/kg	29000	38700	24800	27400	36200	29000
Lead (Pb)	7439-92-1	0.1	140	120	550	120*	200*	NS	NS	350	150*	15	mg/kg	4.43	5.64	7.36	4.92	8.52	2.65
Lithium (Li)	7439-93-2	0.5	NG	NS	NS	NS	NS	30	NS	NS	NS	NS	mg/kg	8	14.0	6	6.3	10.1	7.2
Manganese (Mn)	7439-96-5	1	NG	6000	2000	2000	NS	NS	NS	NS	NS	1000	mg/kg	5730	13900	4520	740	905	511
Mercury (Hg)	7439-97-6	0.01	6.6	10	40	NS	NS	NS	NS	0.6	NS	0.075	mg/kg	<0.05	0.066	<0.05	<0.0500	<0.0500	<0.0500
Molybdenum (Mo)	7439-98-7	0.2	10	200	80	15	650	NS	NS	NS	3.5	2	mg/kg	0.74	1.24	1.09	1.01	1.11	0.61
Nickel (Ni)	7440-02-0	0.5	45	450	150	70*	90*	NS	NS	250	70*	85	mg/kg	21.2	42.4	20.8	22.5	37.7	20.2
Selenium (Se)	7782-49-2	0.1	1	200	1.5	1	1	NS	NS	2	1	4	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Silver (Ag)	7440-22-4	0.5	20	NS	NS	NS	NS	200	20	NS	NS	1	mg/kg	<0.10	0.14	<0.10	<0.10	0.16	<0.10
Strontium (Sr)	7440-24-6	1	NG	NS	NS	NS	NS	9500 NC	NS	NS	NS	250	mg/kg	55.3	114	54.8	57.9	70.2	57.1
Thallium (TI)	7440-28-0 7440-31-5	0.1	50	NS NS	NS	NS	NS	NS 25000	9	NS NS	NS	NS 4	mg/kg	0.087	0.108	0.088	0.098	0.156 <2.0	<0.050
Tin (Sn) Tungsten (W)	7440-31-5	0.2	NG	NS NS	NS NS	NS NS	NS NS	25000 15	50 NS	NS NS	NS NS	4 NS	mg/kg	<2.0 <0.50	<2.0 <0.50	<2.0 <0.50	<2.0 <0.50	<2.0 <0.50	<2.0 <0.50
Uranium (U)	7440-33-7	0.05	23	100	500	30	150	NS NS	NS NS	35	300	NS NS	mg/kg mg/kg	0.678	0.892	0.511	<0.50 0.6	0.988	0.354
Vanadium (V)	7440-61-1	1	130	200	150	100	NS NS	NS	NS	NS NS	350	85	mg/kg	84.8	103	68	71.4	71.1	72.5
Zinc (Zn)	7440-62-2	1	250	10000	450	200*	150*	NS	NS	200	150*	100	mg/kg	56.9	75.8	74	76.8	101	48.9
Zirconium (Zr)	7440-67-7	0.1	NG	NS	NS NS	NS	NS	NS	NS	NS	NS NS	NS	mg/kg	9.3	11.7	8.4	8	21.3	6.8

CCME = Canadian Council of Ministers of the Environment

CEQG = Canadian Environmental Quality Guidelines

CSR = BC Contaminated Sites Regulation

AL = Agricultural Land Use

RL = Residential Land Use

RL_{LD} = Residential Land Use (Low Density)

PL = Park Land Use

NG = No Guideline

* pH-Dependent Standard (Lowest Shown)

HH = Site-specific factor for the protection of human health

E = Site-specific factor for the protection of the environment

HH-Soil Intake = Intake of contaminated soil

HH-DW = Groundwater used for drinking water

E-Toxicity = Toxicity to soil invertebrates and plants

E-AW Fresh = Groundwater flow to water used by aquatic life

E-Livestock I = Livestock ingesting soil and fodder E-Livestock W = Groundwater used for livestockwatering

NS = No Standard

Protocol 4: CSR Protocol 4 Table 1 value: Regional estimates for background concentrations in soil for inorganic substances, Thompson/Nicola/Okanagan

	-
100	Exceeds CCME CEQG
100	Exceeds CSR RL _{LD} Matrix Standard(s)
100	Exceeds CSR RL _{LD} Generic Standard(s)
100	Exceeds CSR AL Livestock Standard(s)

Table 2 Soil Metal Results -- Mamit Lake Road Four Mile Dump Lower Nicola Indian Band Reserves #1 APEC 5

D			1				1		1		1	1		1			4		
Reserve # APEC #																	<u>1</u>		
APEC # APEC Name																Mamit Lako Poa	d Four Mile Dum	2	
Applied Standards																	SR RL _{LD} + livesto		
''															1		1		Т
Sample Location														4M4	4M5	4M6	4M7	4M7	4M8
Client Sample ID														4M4	4M5	4M6	4M7	4MX	4M8
Date Sampled														3-Dec-20	3-Dec-20	3-Dec-20	3-Dec-20	3-Dec-20	3-Dec-20
Depth (m)														0.3	0.3	0.3	0.3	0.3	0.3
Lab sample ID														VA20C2524-004	VA20C2524-005	VA20C2524-006	VA20C2524-007	VA20C2524-009	VA20C2524-008
Parameter	CAS#	Detection Limit	CCME CEQG	CSR Sche	d. 3.1 Part 1 Matr	ix Numerical St	andards (RL)	CSR Sched.	CSR Sched.		3.1 Part 1 Matrix		Units						
i didilicici	0/10 #	Detection Limit	COME CEGO		a. o. i i ait i mati	ix reamondar or	I I I I I I I I I I I I I I I I I I I			Numerical S	Standards (AL)	CSR Protocol 4	Office						
			RL/PL	HH-Soil Intake	E-Toxicity	HH-DW	E-AW Fresh	(RL)	(RL)	E-Livestock I	E-Livestock W	Background							
Physical Tests																			
pH (1:2 soil:water)	-	0.05	6 to 8	NS	NS	NS	NS	NS	NS	NS	NS	NS	рН	7.35	7.05	7.36	8.99	8.97	7.14
Metals (Soil)																			
Aluminum (AI)	7429-90-5	10	NG	NS	NS	NS	NS	40000	NS	NS	NS	30000	mg/kg	15200	15000	21000	13400	13100	25200
Antimony (Sb)	7440-36-0	0.1	20	NS	NS	NS	NS	250	20	NS	NS	4	mg/kg	0.32	0.32	0.38	0.28	0.29	0.43
Arsenic (As)	7440-38-2	0.1	12	20	25	10	10	NS	NS	25	10	15	mg/kg	4.28	3.14	3.49	4.87	4.12	3.19
Barium (Ba)	7440-39-3	0.5	500	8500	700	350	3500	NS	NS	400	NS	200	mg/kg	98.9	150	179	52.6	64.7	221
Beryllium (Be)	7440-41-7	0.1	4	85	150	1*	1*	NS	NS	NS	8.5*	0.5	mg/kg	0.49	0.46	0.54	0.33	0.33	0.63
Bismuth (Bi)	7440-69-9	0.5	NG	NS	NS	NS	NS	NS	NS	NS	NS	NS	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	7440-42-8		NG	NS	NS	NS	NS	8500	NS	NS	NS	1	mg/kg	<5.0	<5.0	5.9	<5.0	<5.0	6.3
` '	7440-43-9	0.01	10	20	30	1*	1*	NS	NS	10	4.5*	0.4	mg/kg	0.092	0.15	0.192	0.10	0.087	0.454
(- /	7440-47-3	1	64	100	200	60	60	NS	NS	150	60	70	mg/kg	25.8	25.3	33.7	22.1	21.7	42.6
. ,	7440-48-4	0.1	50	25	45	25	25	NS	NS	250	150	20	mg/kg	8.79	10.8	14.3	10.9	10.8	21
11 \ /	7440-50-8	0.2	63	3500	150*	250*	75*	NS	NS	150	75*	75	mg/kg	54.4	52.1	57.3	28.8	27.6	81.1
` '	7439-89-6		NG	NS	NS	NS	NS	35000	NS	NS	NS	30000	mg/kg	30100	26900	32600	29400	27500	32400
\ /	7439-92-1	0.1	140	120	550	120*	200*	NS	NS	350	150*	15	mg/kg	3.9	4.46	4.86	2.51	2.65	6.81
()	7439-93-2	0.5	NG	NS	NS	NS	NS	30	NS	NS	NS	NS	mg/kg	6.7	5.7	8	7.5	7.5	9.7
	7439-96-5		NG	6000	2000	2000	NS	NS	NS	NS	NS	1000	mg/kg	381	597	865	627	500	1040
, (0,	7439-97-6	0.01	6.6	10	40	NS	NS	NS	NS	0.6	NS -	0.075	mg/kg	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
, ,	7439-98-7	0.2	10	200	80	15	650	NS	NS	NS	3.5	2	mg/kg	0.44	0.71	0.72	0.51	0.47	0.52
()	7440-02-0	0.5	45	450	150	70*	90*	NS	NS	250	70*	85	mg/kg	15.9	18.1	26.7	17.9	19.2	38.9
\ /	7782-49-2	0.1	1	200	1.5	1	1	NS 200	NS 20	2 NS	1 NS	1	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7440-22-4 7440-24-6	0.5	20	NS	NS	NS NS	NS NS	200 9500	20 NS	NS NS	NS NS	250	mg/kg	0.12 41.5	<0.10 71.6	<0.10 60.3	<0.10	<0.10 64.4	0.16 80.5
` '	7440-24-6	0.1	NG 1	NS NS	NS NS	NS NS	NS NS	9500 NS	9	NS NS	NS NS	NS NS	mg/kg	0.077	0.081	0.103	62.1 <0.050	<0.050	0.132
` '	7440-28-0		50	NS	NS NS	NS	NS NS	25000	50	NS NS	NS NS	4	mg/kg mg/kg	<2.0	<2.0	<2.0	<0.050	<0.050	<2.0
` '	7440-31-5	0.2	NG	NS	NS NS	NS	NS NS	15	NS NS	NS NS	NS NS	NS NS	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
0 (0.909
` '																			83.1
. ,		ł																	82.8
. ,		· · · · · · · · · · · · · · · · · · ·											0 0			1			16.2
Uranium (U) Vanadium (V) Zinc (Zn)	7440-61-1 7440-62-2 7440-66-6 7440-67-7	0.2	23 130 250 NG	100 200 10000 NS	500 150 450 NS	30 100 200* NS	150 NS 150* NS	NS NS NS NS	NS NS NS NS	35 NS 200 NS	300 350 150* NS	NS 85 100 NS	mg/kg mg/kg mg/kg mg/kg	0.51 80.8 46.1 8	0.62 76.7 53.6 7.6	0.669 90.2 65.5 9	0.4 78.4 45.9 6.4		0.392 75.7 45.1 7.2

CCME = Canadian Council of Ministers of the Environment

CEQG = Canadian Environmental Quality Guidelines

CSR = BC Contaminated Sites Regulation

AL = Agricultural Land Use

RL = Residential Land Use

RL_{LD} = Residential Land Use (Low Density)

PL = Park Land Use

NG = No Guideline

* pH-Dependent Standard (Lowest Shown)

HH = Site-specific factor for the protection of human health

E = Site-specific factor for the protection of the environment

HH-Soil Intake = Intake of contaminated soil

HH-DW = Groundwater used for drinking water

E-Toxicity = Toxicity to soil invertebrates and plants

E-AW Fresh = Groundwater flow to water used by aquatic life

E-Livestock I = Livestock ingesting soil and fodder E-Livestock W = Groundwater used for livestockwatering

NS = No Standard

Protocol 4: CSR Protocol 4 Table 1 value: Regional estimates for background concentrations in soil for inorganic substances, Thompson/Nicola/Okanagan

100	Exceeds CCME CEQG
100	Exceeds CSR RL _{LD} Matrix Standard(s)
100	Exceeds CSR RL _{LD} Generic Standard(s)
<u>100</u>	Exceeds CSR AL Livestock Standard(s)

Table 3 Soil Metal Results -- Buried Dump 1 Mamit Lake Ranch Road South Lower Nicola Indian Band Reserves #1 APEC 6

Reserve #															1	
APEC #															6	
APEC Name														Buried Dump	1 Mamit Lake Rand	ch Road South
Applied Standards															L/PL & CSR RL _{LD} +	
Sample Location														Test Pit 4	Test Pit 2	South of Test Pit 1
Client Sample ID														AEC 6 SS1	AEC 6 SS2	AEC 6 SS3
Date Sampled														16-Oct-20	16-Oct-20	16-Oct-20
Depth (m)														0.15	0.15	0.15
Lab Sample ID														VA20B8430-001	VA20B8430-002	VA20B8430-003
Parameter	CAS#	Detection Limit	CCME CEQG	CSR Sched.	3.1 Part 1 M (R	atrix Numerio L)	cal Standards	CSR Sched. 3.1	CSR Sched. 3.1		3.1 Part 1 Matrix Standards (AL)	CSR Protocol	Units			
			RL/PL	HH-Soil Intake	E-Toxicity	HH-DW	E-AW Fresh	Part 2 GHH (RL)	Part 3 GEH (RL)	E-Livestock	E-Livestock W	4 Background				
Physical Tests								, ,	· /							
pH (1:2 soil:water)	-	0.05	6 to 8	NS	NS	NS	NS	NS	NS	NS	NS	NS	рН	7.16	7.20	7.75
Metals (Soil)	7400 00 5	40	NIO.	NIO.	014	014	NIC	40000	NO	NIC	NO	20000	/1	0050	44000	40000
Aluminum (Al)	7429-90-5 7440-36-0	10 0.1	NG 20	NS NS	NS NS	NS NS	NS NS	40000 250	NS 20	NS NS	NS NS	30000 4	mg/kg mg/kg	9850 0.51	11300 0.58	12300 5.81
Antimony (Sb) Arsenic (As)	7440-36-0	0.1	12	20	25	10	10	NS NS	NS NS	25	10	15	mg/kg	3.51	3.95	12.3
Barium (Ba)	7440-30-2	0.1	500	8500	700	350	3500	NS	NS	400	NS	200	mg/kg	64.4	99.6	95.7
Beryllium (Be)	7440-41-7	0.1	4	85	150	1*	1*	NS	NS	NS	8.5*	0.5	mg/kg	0.27	0.37	0.3
Bismuth (Bi)	7440-69-9	0.5	NG	NS	NS	NS	NS	NS	NS	NS	NS	NS	mg/kg	<0.20	<0.20	<0.20
Boron (Bo)	7440-42-8	0.5	NG	NS	NS	NS	NS	8500	NS	NS	NS		mg/kg	<5.0	6.1	12.8
Cadmium (Cd)	7440-43-9	0.01	10	20	30	1*	1*	NS	NS	10	4.5*	0.4	mg/kg	0.157	0.224	0.522
Chromium (Cr)	7440-47-3	1	64	100	200	60	60	NS	NS	150	60	70	mg/kg	22.9	30.4	25.4
Cobalt (Co)	7440-48-4	0.1	50	25	45	25	25	NS	NS	250	150		mg/kg	8.52	9.85	9.35
Copper (Cu)	7440-50-8	0.2	63	3500	150*	250*	75*	NS	NS	150	75*	75	mg/kg	60.6	48.7	66.6
Iron (Fe)	7439-89-6	10	NG	NS	NS	NS	NS	35000	NS	NS	NS	30000	mg/kg	30600	34400	26600
Lead (Pb)	7439-92-1	0.1	140	120	550	120*	200*	NS	NS	350	150*	15	mg/kg	26.7	8.26	26.6
Lithium (Li)	7439-93-2	0.5	NG	NS	NS	NS	NS	30	NS	NS	NS	NS	mg/kg	5.6	5.9	6.3
Manganese (Mn)	7439-96-5	1	NG	6000	2000	2000	NS	NS	NS	NS	NS		mg/kg	377	530	530
Mercury (Hg)	7439-97-6	0.01	6.6	10	40	NS	NS	NS	NS	0.6	NS	0.075	mg/kg	<0.0500	<0.0500	<0.0500
Molybdenum (Mo)	7439-98-7 7440-02-0	0.2 0.5	10 45	200 450	80 150	15 70*	650 90*	NS NS	NS NS	NS 250	3.5 70*	2 85	mg/kg	0.6 14.8	0.71 15.8	1.6 15.9
Nickel (Ni) Selenium (Se)	7782-49-2	0.5	45 1	200	1.5	1	1	NS NS	NS	250	1		mg/kg mg/kg	<0.20	<0.20	<0.20
Silver (Ag)	7440-22-4	0.1	20	NS	NS NS	NS	NS	200	20	NS	NS	1	mg/kg	<0.10	<0.20	0.12
Strontium (Sr)	7440-24-6	1	NG	NS	NS	NS	NS	9500	NS	NS	NS		mg/kg	36.3	48.4	59.8
Thallium (TI)	7440-28-0	0.1	1	NS	NS	NS	NS	NS	9	NS	NS	NS	mg/kg	<0.05	<0.050	0.051
Tin (Sn)	7440-31-5	0.2	50	NS	NS	NS	NS	25000	50	NS	NS	4	mg/kg	<2.0	<2.0	3.8
Tungsten (W)	7440-33-7	0.05	NG	NS	NS	NS	NS	15	NS	NS	NS	NS	mg/kg	<0.50	<0.50	<0.50
Uranium (U)	7440-61-1	0.2	23	100	500	30	150	NS	NS	35	300	NS	mg/kg	0.63	0.667	0.472
Vanadium (V)	7440-62-2	1	130	200	150	100	NS	NS	NS	NS	350		mg/kg	107	117	76.1
Zinc (Zn)	7440-66-6	1	250	10000	450	200*	150*	NS	NS	200	150*	100	mg/kg	59.2	77.2	<u>232</u>
Zirconium (Zr)	7440-67-7	0.1	NG	NS	NS	NS	NS	NS	NS	NS	NS	NS	mg/kg	3.7	4.8	4.0

CCME = Canadian Council of Ministers of the Environment CEQG = Canadian Environmental Quality Guidelines

CSR = BC Contaminated Sites Regulation

CSIX = DC Contaminated Sites IXe

AL = Agricultural Land Use

RL = Residential Land Use RL_{LD} = Residential Land Use (Low Density)

PL = Park Land Use

NG = No Guideline

* pH-Dependent Standard (Lowest Shown)

HH = Site-specific factor for the protection of human health

E = Site-specific factor for the protection of the environment

HH-Soil Intake = Intake of contaminated soil HH-DW = Groundwater used for drinking water

E-Toxicity = Toxicity to soil invertebrates and plants

E-AW Fresh = Groundwater flow to water used by aquatic life

E-Livestock I = Livestock ingesting soil and fodder E-Livestock W = Groundwater used for livestockwatering

NS = No Standard

Protocol 4: CSR Protocol 4 Table 1 value: Regional estimates for background concentrations in soil for inorganic substances, Thompson/Nicola/Okanagan

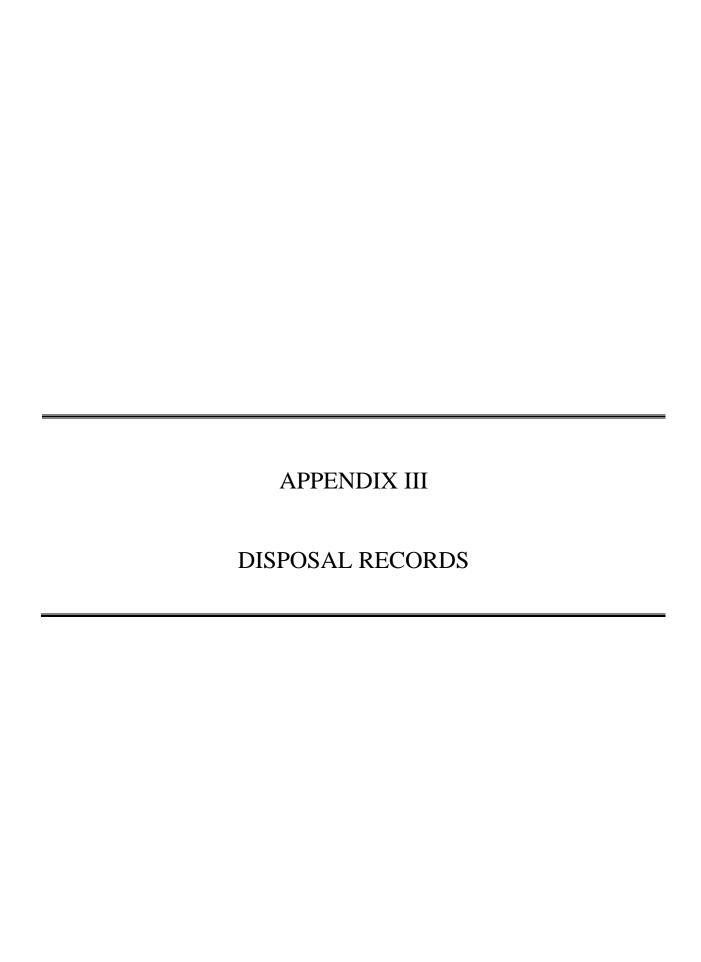

	Exceeds CCME CEQG
100	Exceeds CSR RL _{LD} Matrix Standard(s)
100	Exceeds CSR RL _{LD} Generic Standard(s)
<u>100</u>	Exceeds CSR AL Livestock Standard(s)
	-

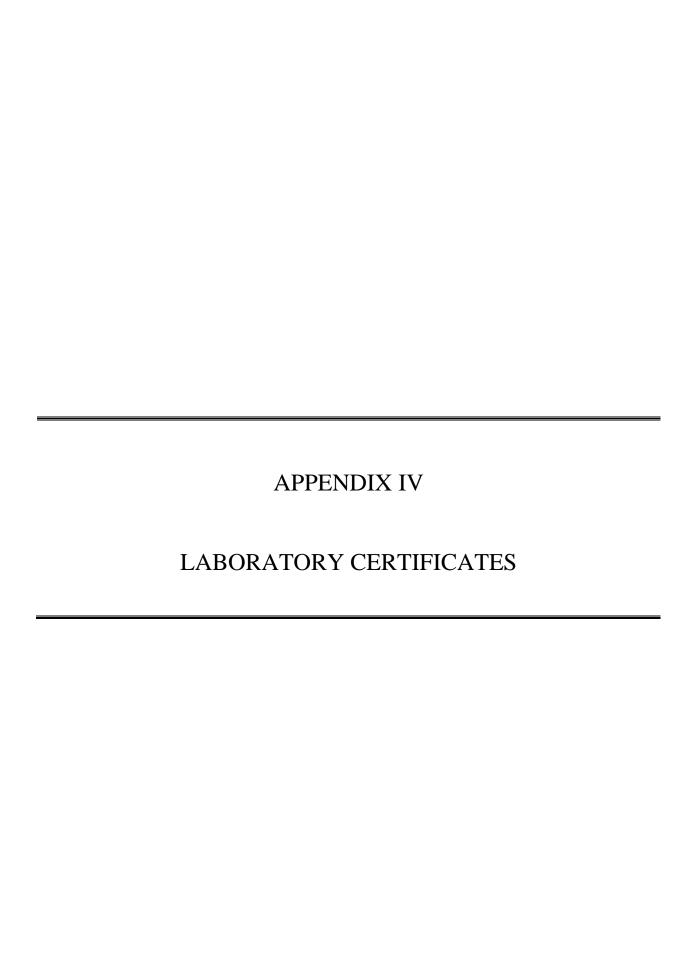
Table 4 Lower Nicola Indian Band

Relative Percent Differences

December 3, 2020 Soil Samples

Sample Location	4M7	4M7	
Sample ID	4M7	4MX	
Date Sampled	2020-12-03	2020-12-03	
Depth (m)	0.3	0.3	
ALS Sample ID	VA20C2524-007	VA20C2524-009	
Analyte	Soil	Soil	%RPD
Aluminum (Al)	13400	13100	2%
Antimony (Sb)	0.28	0.29	4%
Arsenic (As)	4.87	4.12	17%
Barium (Ba)	52.6	64.7	21%
Beryllium (Be)	0.33	0.33	0%
Bismuth (Bi)	<0.20	<0.20	na
Boron (Bo)	<5.0	<5.0	na
Cadmium (Cd)	0.101	0.087	15%
Chromium (Cr)	22.1	21.7	2%
Cobalt (Co)	10.9	10.8	1%
Copper (Cu)	28.80	27.60	4%
Iron (Fe)	29400	27500	7%
Lead (Pb)	2.51	2.65	5%
Lithium (Li)	7.50	7.50	0%
Manganese (Mn)	627.00	500.00	23%
Mercury (Hg)	<0.0500	<0.0500	na
Molybdenum (Mo)	0.51	0.47	8%
Nickel (Ni)	17.9	19.2	7%
Selenium (Se)	<0.20	<0.20	na
Silver (Ag)	<0.10	<0.10	na
Strontium (Sr)	62.1	64.4	4%
Thallium (TI)	<0.050	<0.050	na
Tin (Sn)	<2.0	<2.0	na
Tungsten (W)	<0.50	<0.50	na
Uranium (U)	0.384	0.392	2%
Vanadium (V)	78.4	75.7	4%
Zinc (Zn)	45.9	45.1	2%
Zirconium (Zr)	6.4	7.2	12%

11:36:01AM


TNRD Custom

)20-11-01 12:00:00AM through 2020-11-30 11:59:59PM

<u>Site</u>	<u>Date</u>	Ticket # Proc	<u>duct</u>	License No.		Price	<u>Vol.</u>	Total Cost PriceBy	<u>Cust</u>	<u>Hauler</u>	Truck	<u>I/O</u>	Time Out
LN	11/18/20	160600 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	09:37AM
LN	11/18/20	160609 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	10:39AM
LN	11/18/20	160613 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	11:34AM
LN	11/18/20	160616-1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	12:37PM
LN	11/18/20	160624 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	01:42PM
LN	11/18/20	160631 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	02:48PM
LN	11/18/20	160640 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	03:39PM
LN	11/19/20	160645 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	08:27AM
LN	11/19/20	160651 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	09:22AM
LN	11/19/20	160659 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	10:14AM
LN	11/19/20	160666 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	11:06AM
LN	11/19/20	160674 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	12:02PM
LN	11/19/20	160685 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	12:57PM
LN	11/19/20	160695 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	01:49PM
LN	11/19/20	160700 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	02:38PM
LN	11/19/20	160712 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	03:36PM
LN	11/20/20	160718 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	08:06AM
LN	11/20/20	160720 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	08:56AM
LN	11/20/20	160730 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	09:45AM
LN	11/20/20	160739 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	10:44AM
LN	11/20/20	160747 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	11:22AM
LN	11/20/20	160756 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	12:04PM
LN	11/20/20	160761 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	12:41PM
LN	11/20/20	160771 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	01:35PM
LN	11/20/20	160778 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	02:24PM
LN	11/20/20	160791 - 1 31		CG 1231		\$0.00	0.00	\$0.00 t	SHULUS01	SHULUS01	999	In	03:12PM
LN	11/29/20	161505 - 1 01				\$80.00	0.00	\$34.40 t	SHULUS01	SHULUS01	NN 2394	In	03:39PM
Total	:	27	596.90	305.33	291.57		0.00	\$34.40					

Start Date: 2020-11-01 - - - End Date: 2020-11-30 11:59:59 PM

Voided Tickets Excluded Hauler Code = SHULUS01

CERTIFICATE OF ANALYSIS

Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Contact : Paul Gardner

Address : 500 - 1190 Melville St. P.O. Box 48806

Vancouver BC Canada V6E 3W1

Telephone : 604 633 2750

Project : 6040 LN

C-O-C number : 17-760473

Sampler : ---Site : ---Quote number : ----

No. of samples received : 6
No. of samples analysed : 3

. C

Page : 1 of 4

Laboratory : Vancouver - Environmental

Account Manager : Edward Ngai

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : +1 604 253 4188

Date Samples Received : 16-Sep-2020 16:30

Date Analysis Commenced : 19-Sep-2020

Issue Date : 22-Sep-2020 15:35

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Brieanna Allen Department Manager - Organics Organics, Burnaby, British Columbia
Robin Weeks Team Leader - Metals Metals, Burnaby, British Columbia
Shaneel Dayal Analyst Metals, Burnaby, British Columbia

Page : 2 of 4

Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
mg/kg	milligrams per kilogram
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in reports identified as "Preliminary Report" are considered authorized for use.

Page Work Order : 3 of 4 : VA20B5391

: Gandalf Consulting Ltd. : 6040 LN Client

Project

Analytical Results

Sub-Matrix: Soil			CI	lient sample ID	4-mi-SS1	4-mi-SS2	4-mi-SS3	
(Matrix: Soil/Solid)								
			Client samnli	ing date / time	16-Sep-2020	16-Sep-2020	16-Sep-2020	
Analyte	CAS Number	Method	LOR	Unit	VA20B5391-001	VA20B5391-003	VA20B5391-005	
Analyte	CAS Number	Wicthou	Zon	O m	Result	Result	Result	
Physical Tests					rtoduk	rtodati	rtoduk	
pH (1:2 soil:water)		E108	0.10	pH units	7.39	8.37	7.23	
Metals								
aluminum	7429-90-5	E440	50	mg/kg	19400	27200	17300	
antimony	7440-36-0		0.10	mg/kg	0.34	0.60	0.30	
arsenic	7440-38-2		0.10	mg/kg	3.80	6.58	2.54	
barium	7440-39-3		0.50	mg/kg	134	213	173	
beryllium	7440-41-7		0.10	mg/kg	0.47	0.60	0.44	
bismuth	7440-69-9		0.20	mg/kg	<0.20	<0.20	<0.20	
boron	7440-42-8		5.0	mg/kg	<5.0	5.2	7.0	
cadmium	7440-43-9		0.020	mg/kg	0.170	0.211	0.244	
calcium	7440-70-2	E440	50	mg/kg	6360	18600	7290	
chromium	7440-47-3	E440	0.50	mg/kg	29.4	43.9	25.0	
cobalt	7440-48-4	E440	0.10	mg/kg	11.5	19.2	12.0	
copper	7440-50-8	E440	0.50	mg/kg	47.3	89.8	41.5	
iron	7439-89-6	E440	50	mg/kg	29000	38700	24800	
lead	7439-92-1	E440	0.50	mg/kg	4.43	5.64	7.36	
lithium	7439-93-2	E440	2.0	mg/kg	8.0	14.0	6.0	
magnesium	7439-95-4	E440	20	mg/kg	5730	13900	4520	
manganese	7439-96-5	E440	1.0	mg/kg	656	834	864	
mercury	7439-97-6	E510	0.0500	mg/kg	<0.0500	0.0660	<0.0500	
molybdenum	7439-98-7	E440	0.10	mg/kg	0.74	1.24	1.09	
nickel	7440-02-0	E440	0.50	mg/kg	21.2	42.4	20.8	
phosphorus	7723-14-0	E440	50	mg/kg	456	839	456	
potassium	7440-09-7		100	mg/kg	2780	2080	4030	
selenium	7782-49-2	E440	0.20	mg/kg	<0.20	<0.20	<0.20	
silver	7440-22-4	E440	0.10	mg/kg	<0.10	0.14	<0.10	
sodium	7440-23-5	E440	50	mg/kg	354	794	212	
strontium	7440-24-6		0.50	mg/kg	55.3	114	54.8	
sulfur	7704-34-9	E440	1000	mg/kg	<1000	<1000	<1000	
thallium	7440-28-0		0.050	mg/kg	0.087	0.108	0.088	
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	<2.0	

Page : 4 of 4 Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Analytical Results

Sub-Matrix: Soil			CI	lient sample ID	4-mi-SS1	4-mi-SS2	4-mi-SS3	
(Matrix: Soil/Solid)								
			Client sampli	ing date / time	16-Sep-2020	16-Sep-2020	16-Sep-2020	
Analyte	CAS Number	Method	LOR	Unit	VA20B5391-001	VA20B5391-003	VA20B5391-005	
					Result	Result	Result	
Metals								
titanium	7440-32-6	E440	1.0	mg/kg	978	1300	889	
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<0.50	
uranium	7440-61-1	E440	0.050	mg/kg	0.678	0.892	0.511	
vanadium	7440-62-2	E440	0.20	mg/kg	84.8	103	68.0	
zinc	7440-66-6	E440	2.0	mg/kg	56.9	75.8	74.0	
zirconium	7440-67-7	E440	1.0	mg/kg	9.3	11.7	8.4	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Contact : Paul Gardner

Address : 500 - 1190 Melville St. P.O. Box 48806

Vancouver BC Canada V6E 3W1

Telephone : 604 633 2750 Project : 6040 LN

PO : ----

C-O-C number : 17-760473

Sampler : ---Site : ---Quote number : ---No. of samples received : 6
No. of samples analysed : 3

Page : 1 of 6

Laboratory : Vancouver - Environmental

Account Manager : Edward Ngai

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone : +1 604 253 4188

Date Samples Received : 16-Sep-2020 16:30

Issue Date : 22-Sep-2020 15:35

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

RIGHT SOLUTIONS | RIGHT PARTNER

Page : 3 of 6
Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 15:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 15:00 is used for calculation purposes.

Matrix: Soil/Solid Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

iatrix. Soii/Soiiu						aldation. • =	Holding time exce			riolaling
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
etals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
4-mi-SS1	E510	16-Sep-2020	19-Sep-2020	28	2 days	✓	22-Sep-2020	25 days	2 days	✓
				days						
etals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
4-mi-SS2	E510	16-Sep-2020	19-Sep-2020	28	2 days	✓	22-Sep-2020	25 days	2 days	✓
				days						
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
4-mi-SS3	E510	16-Sep-2020	19-Sep-2020	28	2 days	✓	22-Sep-2020	25 days	2 days	✓
				days						
letals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
4-mi-SS1	E440	16-Sep-2020	19-Sep-2020	180	2 days	✓	21-Sep-2020	177	2 days	1
				days			i i	days		
etals : Metals in Soil/Solid by CRC ICPMS				-						
Glass soil jar/Teflon lined cap										
4-mi-SS2	E440	16-Sep-2020	19-Sep-2020	180	2 days	✓	21-Sep-2020	177	2 days	✓
		·		days			i i	days		
letals : Metals in Soil/Solid by CRC ICPMS				,				,		
Glass soil jar/Teflon lined cap										
4-mi-SS3	E440	16-Sep-2020	19-Sep-2020	180	2 days	✓	21-Sep-2020	177	2 days	1
				days				days		
hysical Tests : pH by Meter (1:2 Soil:Water Extraction)				, 3				1,-		
Glass soil jar/Teflon lined cap										
4-mi-SS1	E108	16-Sep-2020	19-Sep-2020	30	2 days	✓	19-Sep-2020	27 days	0 days	1
1 III 301	2.00	10 000 2020	.5 Cop 2020	days		•	.0 000 2020	_, days	Jaays	•
				uays						

Page : 4 of 6 Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Matrix: Soil/Solid Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

madizi comcond						diddion.	Tiolaing time oxoc	, ,	******	riolaling riiii
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	Holding Times Eval		Analysis Date Holdir		g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap 4-mi-SS2	E108	16-Sep-2020	19-Sep-2020	30 days	2 days	✓	19-Sep-2020	27 days	0 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap 4-mi-SS3	E108	16-Sep-2020	19-Sep-2020	30 days	2 days	✓	19-Sep-2020	27 days	0 days	√

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 5 of 6 Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid Evaluation: **x** = QC frequency outside specification; ✓ = QC frequency within specification. Quality Control Sample Type Count Frequency (%) Method QC Lot # QC Regular Actual Expected Evaluation Analytical Methods Laboratory Duplicates (DUP) Mercury in Soil/Solid by CVAAS 88113 3 33.3 5.0 E510 Metals in Soil/Solid by CRC ICPMS 3 E440 88114 33.3 5.0 pH by Meter (1:2 Soil:Water Extraction) 88112 1 5 20.0 5.0 E108 1 Laboratory Control Samples (LCS) Mercury in Soil/Solid by CVAAS 3 88113 2 66.6 10.0 E510 Metals in Soil/Solid by CRC ICPMS 3 88114 2 66.6 10.0 E440 pH by Meter (1:2 Soil:Water Extraction) 88112 1 5 20.0 5.0 E108 Method Blanks (MB) Mercury in Soil/Solid by CVAAS 88113 3 33.3 1 5.0 E510 Metals in Soil/Solid by CRC ICPMS 88114 3 33.3 5.0 E440

Page : 6 of 6 Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter (1:2 Soil:Water Extraction)	E108 Vancouver - Environmental	Soil/Solid	BC Lab Manual	pH is determined by potentiometric measurement with a pH electrode at ambient laboratory temperature (normally $20\pm5^{\circ}\text{C}$), and is carried out in accordance with procedures described in the BC Lab Manual (prescriptive method). The procedure involves mixing the dried (at <60 °C) and sieved (10mesh/2mm) sample with ultra pure water at a 1:2 ratio of sediment to water. The pH is then measured by a standard pH probe.
Metals in Soil/Solid by CRC ICPMS	E440 Vancouver - Environmental	Soil/Solid	EPA 6020B (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI. This method is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.
Mercury in Soil/Solid by CVAAS	E510 Vancouver - Environmental	Soil/Solid	EPA 200.2/1631 Appendix (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCl, followed by CVAAS analysis.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil:Water for pH	EP108 Vancouver - Environmental	Soil/Solid	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water.
Digestion for Metals and Mercury	EP440 Vancouver - Environmental	Soil/Solid	EPA 200.2 (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI. This method is intended to liberate metals that may be environmentally available.

QUALITY CONTROL REPORT

Laboratory

Work Order :VA20B5391 Page : 1 of 10

Client : Gandalf Consulting Ltd.

> · Paul Gardner **Account Manager** : Edward Ngai

Address :500 - 1190 Melville St. P.O. Box 48806 :8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

: Vancouver - Environmental

Telephone :+1 604 253 4188

Date Samples Received :16-Sep-2020 16:30

Date Analysis Commenced : 19-Sep-2020 : 22-Sep-2020 15:35 Issue Date

Project :6040 LN

C-O-C number : 17-760473

Sampler Site Quote number No. of samples received : 6 No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

:604 633 2750

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Vancouver BC Canada V6E 3W1

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Contact

Address

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Brieanna Allen	Department Manager - Organics	Organics, Burnaby, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Shaneel Dayal	Analyst	Metals, Burnaby, British Columbia

Page : 2 of 10 Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Page : 3 of 10 Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

ALS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

ub-Matrix: Soil/Solid							Labora	ntory Duplicate (D	or) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	C Lot: 88112)										
VA20B5391-001	4-mi-SS1	pH (1:2 soil:water)		E108	0.10	pH units	7.39	7.57	2.41%	5%	
Metals (QC Lot: 88	113)										
VA20B5391-001	4-mi-SS1	mercury	7439-97-6	E510	0.0500	mg/kg	<0.0500	<0.0500	0	Diff <2x LOR	
Metals (QC Lot: 88	114)										
/A20B5391-001	4-mi-SS1	aluminum	7429-90-5	E440	50	mg/kg	19400	19200	1.48%	40%	
		antimony	7440-36-0	E440	0.10	mg/kg	0.34	0.36	0.02	Diff <2x LOR	
		arsenic	7440-38-2	E440	0.10	mg/kg	3.80	3.70	2.62%	30%	
		barium	7440-39-3	E440	0.50	mg/kg	134	145	7.48%	40%	
		beryllium	7440-41-7	E440	0.10	mg/kg	0.47	0.47	0.004	Diff <2x LOR	
		bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR	
		boron	7440-42-8	E440	5.0	mg/kg	<5.0	<5.0	0	Diff <2x LOR	
		cadmium	7440-43-9	E440	0.020	mg/kg	0.170	0.161	5.21%	30%	
		calcium	7440-70-2	E440	50	mg/kg	6360	6260	1.60%	30%	
		chromium	7440-47-3	E440	0.50	mg/kg	29.4	29.0	1.22%	30%	
		cobalt	7440-48-4	E440	0.10	mg/kg	11.5	11.0	5.02%	30%	
		copper	7440-50-8	E440	0.50	mg/kg	47.3	46.8	1.19%	30%	
		iron	7439-89-6	E440	50	mg/kg	29000	27700	4.49%	30%	
		lead	7439-92-1	E440	0.50	mg/kg	4.43	4.56	2.94%	40%	
		lithium	7439-93-2	E440	2.0	mg/kg	8.0	7.5	0.5	Diff <2x LOR	
		magnesium	7439-95-4	E440	20	mg/kg	5730	5550	3.18%	30%	
		manganese	7439-96-5	E440	1.0	mg/kg	656	638	2.87%	30%	
		molybdenum	7439-98-7	E440	0.10	mg/kg	0.74	0.76	2.48%	40%	
		nickel	7440-02-0	E440	0.50	mg/kg	21.2	21.4	0.798%	30%	
		phosphorus	7723-14-0	E440	50	mg/kg	456	435	4.51%	30%	
		potassium	7440-09-7	E440	100	mg/kg	2780	2770	0.396%	40%	
		selenium	7782-49-2	E440	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR	
		silver	7440-22-4	E440	0.10	mg/kg	<0.10	<0.10	0	Diff <2x LOR	
		sodium	7440-23-5	E440	50	mg/kg	354	356	0.324%	40%	
		strontium	7440-24-6	E440	0.50	mg/kg	55.3	57.6	4.12%	40%	
		sulfur	7704-34-9	E440	1000	mg/kg	<1000	<1000	0	Diff <2x LOR	
		thallium	7440-28-0	E440	0.050	mg/kg	0.087	0.097	0.010	Diff <2x LOR	
		tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	0	Diff <2x LOR	

Page : 4 of 10 Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Sub-Matrix: Soil/Solid							Labora	tory Duplicate (Dl	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Metals (QC Lot: 881	14) - continued										
VA20B5391-001	4-mi-SS1	titanium	7440-32-6	E440	1.0	mg/kg	978	954	2.48%	40%	
		tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		uranium	7440-61-1	E440	0.050	mg/kg	0.678	0.664	1.98%	30%	
		vanadium	7440-62-2	E440	0.20	mg/kg	84.8	80.4	5.26%	30%	
		zinc	7440-66-6	E440	2.0	mg/kg	56.9	56.2	1.15%	30%	
		zirconium	7440-67-7	E440	1.0	mg/kg	9.3	9.7	4.59%	30%	

Page : 5 of 10 Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

ALS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Metals (QCLot: 88113)						
mercury	7439-97-6 E	510	0.005	mg/kg	<0.0050	
Metals (QCLot: 88114)						
aluminum	7429-90-5 E	E440	50	mg/kg	<50	
antimony	7440-36-0 E	E440	0.1	mg/kg	<0.10	
arsenic	7440-38-2 E	E440	0.1	mg/kg	<0.10	
parium	7440-39-3 E	E440	0.5	mg/kg	<0.50	
peryllium	7440-41-7 E	E440	0.1	mg/kg	<0.10	
pismuth	7440-69-9 E	E440	0.2	mg/kg	<0.20	
oron	7440-42-8 E	E440	5	mg/kg	<5.0	
admium	7440-43-9 E	E440	0.02	mg/kg	<0.020	
alcium	7440-70-2 E	E440	50	mg/kg	<50	
hromium	7440-47-3 E	E440	0.5	mg/kg	<0.50	
cobalt	7440-48-4 E	E440	0.1	mg/kg	<0.10	
opper	7440-50-8 E	E440	0.5	mg/kg	<0.50	
ron	7439-89-6 E	E440	50	mg/kg	<50	
ead	7439-92-1 E	E440	0.5	mg/kg	<0.50	
ithium	7439-93-2 E	E440	2	mg/kg	<2.0	
nagnesium	7439-95-4 E	E440	20	mg/kg	<20	
nanganese	7439-96-5 E	E440	1	mg/kg	<1.0	
nolybdenum	7439-98-7 E	E440	0.1	mg/kg	<0.10	
nickel	7440-02-0 E	E440	0.5	mg/kg	<0.50	
phosphorus	7723-14-0 E	E440	50	mg/kg	<50	
ootassium	7440-09-7 E	E440	100	mg/kg	<100	
selenium	7782-49-2 E	E440	0.2	mg/kg	<0.20	
silver	7440-22-4 E	E440	0.1	mg/kg	<0.10	
odium	7440-23-5 E	E440	50	mg/kg	<50	
trontium	7440-24-6 E	E440	0.5	mg/kg	<0.50	
ulfur	7704-34-9 E	E440	1000	mg/kg	<1000	
nallium	7440-28-0 E	E440	0.05	mg/kg	<0.050	
n	7440-31-5 E	E440	2	mg/kg	<2.0	
tanium	7440-32-6 E	E440	1	mg/kg	<1.0	
ungsten	7440-33-7 E	E440	0.5	mg/kg	<0.50	
ranium	7440-61-1 E	E440	0.05	mg/kg	<0.050	

Page : 6 of 10 Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Sub-Matrix: Soil/Solid

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Metals (QCLot: 88114) - continued					
vanadium	7440-62-2 E440	0.2	mg/kg	<0.20	
zinc	7440-66-6 E440	2	mg/kg	<2.0	
zirconium	7440-67-7 E440	1	mg/kg	<1.0	

Page : 7 of 10
Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid					Laboratory Co.	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 88112)								
pH (1:2 soil:water)	E108		pH units	6 pH units	100	95.0	105	
Metals (QCLot: 88113)								
mercury	7439-97-6 E510	0.005	mg/kg	0.1 mg/kg	104	80.0	120	
Metals (QCLot: 88114)								
aluminum	7429-90-5 E440	50	mg/kg	200 mg/kg	104	80.0	120	
antimony	7440-36-0 E440	0.1	mg/kg	100 mg/kg	105	80.0	120	
arsenic	7440-38-2 E440	0.1	mg/kg	100 mg/kg	102	80.0	120	
barium	7440-39-3 E440	0.5	mg/kg	25 mg/kg	102	80.0	120	
beryllium	7440-41-7 E440	0.1	mg/kg	10 mg/kg	97.8	80.0	120	
bismuth	7440-69-9 E440	0.2	mg/kg	100 mg/kg	95.6	80.0	120	
boron	7440-42-8 E440	5	mg/kg	100 mg/kg	96.7	80.0	120	
cadmium	7440-43-9 E440	0.02	mg/kg	10 mg/kg	106	80.0	120	
calcium	7440-70-2 E440	50	mg/kg	5000 mg/kg	101	80.0	120	
chromium	7440-47-3 E440	0.5	mg/kg	25 mg/kg	103	80.0	120	
cobalt	7440-48-4 E440	0.1	mg/kg	25 mg/kg	102	80.0	120	
copper	7440-50-8 E440	0.5	mg/kg	25 mg/kg	100	80.0	120	
iron	7439-89-6 E440	50	mg/kg	100 mg/kg	103	80.0	120	
lead	7439-92-1 E440	0.5	mg/kg	50 mg/kg	100	80.0	120	
lithium	7439-93-2 E440	2	mg/kg	25 mg/kg	96.8	80.0	120	
magnesium	7439-95-4 E440	20	mg/kg	5000 mg/kg	105	80.0	120	
manganese	7439-96-5 E440	1	mg/kg	25 mg/kg	104	80.0	120	
molybdenum	7439-98-7 E440	0.1	mg/kg	25 mg/kg	109	80.0	120	
nickel	7440-02-0 E440	0.5	mg/kg	50 mg/kg	100	80.0	120	
phosphorus	7723-14-0 E440	50	mg/kg	1000 mg/kg	105	80.0	120	
potassium	7440-09-7 E440	100	mg/kg	5000 mg/kg	101	80.0	120	
selenium	7782-49-2 E440	0.2	mg/kg	100 mg/kg	101	80.0	120	
silver	7440-22-4 E440	0.1	mg/kg	10 mg/kg	103	80.0	120	
sodium	7440-23-5 E440	50	mg/kg	5000 mg/kg	104	80.0	120	
strontium	7440-24-6 E440	0.5	mg/kg	25 mg/kg	103	80.0	120	
sulfur	7704-34-9 E440	1000	mg/kg	5000 mg/kg	89.9	80.0	120	
thallium	7440-28-0 E440	0.05	mg/kg	100 mg/kg	96.2	80.0	120	
tin	7440-31-5 E440	2	mg/kg	50 mg/kg	107	80.0	120	
titanium	7440-32-6 E440	1	mg/kg	25 mg/kg	98.3	80.0	120	

Page : 8 of 10 Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Sub-Matrix: Soil/Solid						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Metals (QCLot: 88114) - continued									
tungsten	7440-33-7	E440	0.5	mg/kg	10 mg/kg	106	80.0	120	
uranium	7440-61-1	E440	0.05	mg/kg	0.5 mg/kg	106	80.0	120	
vanadium	7440-62-2	E440	0.2	mg/kg	50 mg/kg	106	80.0	120	
zinc	7440-66-6	E440	2	mg/kg	50 mg/kg	99.0	80.0	120	
zirconium	7440-67-7	E440	1	mg/kg	10 mg/kg	92.7	80.0	120	

Page : 9 of 10 Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix: Soil/S	Solid					Referen	nce Material (RM) Re	port	
					RM Target	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Metals (QCLot	t: 88113)								
QC-88113-003	SCP SS-2	mercury	7439-97-6	E510	0.059 mg/kg	109	70.0	130	
Metals (QCLot	t: 88114)								
QC-88114-003	SCP SS-2	aluminum	7429-90-5	E440	9817 mg/kg	108	70.0	130	
QC-88114-003	SCP SS-2	antimony	7440-36-0	E440	3.99 mg/kg	102	70.0	130	
QC-88114-003	SCP SS-2	arsenic	7440-38-2	E440	3.73 mg/kg	101	70.0	130	
QC-88114-003	SCP SS-2	barium	7440-39-3	E440	105 mg/kg	99.8	70.0	130	
QC-88114-003	SCP SS-2	beryllium	7440-41-7	E440	0.349 mg/kg	100.0	70.0	130	
QC-88114-003	SCP SS-2	boron	7440-42-8	E440	8.5 mg/kg	111	40.0	160	
QC-88114-003	SCP SS-2	cadmium	7440-43-9	E440	0.91 mg/kg	103	70.0	130	
QC-88114-003	SCP SS-2	calcium	7440-70-2	E440	31082 mg/kg	93.0	70.0	130	
QC-88114-003	SCP SS-2	chromium	7440-47-3	E440	101 mg/kg	108	70.0	130	
QC-88114-003	SCP SS-2	cobalt	7440-48-4	E440	6.9 mg/kg	104	70.0	130	
QC-88114-003	SCP SS-2	copper	7440-50-8	E440	123 mg/kg	100	70.0	130	
QC-88114-003	SCP SS-2	iron	7439-89-6	E440	23558 mg/kg	99.9	70.0	130	
QC-88114-003	SCP SS-2	lead	7439-92-1	E440	267 mg/kg	93.7	70.0	130	
QC-88114-003	SCP SS-2	lithium	7439-93-2	E440	9.5 mg/kg	97.0	70.0	130	
QC-88114-003	SCP SS-2	magnesium	7439-95-4	E440	5509 mg/kg	100	70.0	130	
QC-88114-003	SCP SS-2	manganese	7439-96-5	E440	269 mg/kg	105	70.0	130	
QC-88114-003	SCP SS-2	molybdenum	7439-98-7	E440	1.03 mg/kg	108	70.0	130	
QC-88114-003	SCP SS-2	nickel	7440-02-0	E440	26.7 mg/kg	99.4	70.0	130	
QC-88114-003	SCP SS-2	phosphorus	7723-14-0	E440	752 mg/kg	95.0	70.0	130	
QC-88114-003	SCP SS-2	potassium	7440-09-7	E440	1587 mg/kg	111	70.0	130	
QC-88114-003	SCP SS-2	sodium	7440-23-5	E440	797 mg/kg	105	70.0	130	
QC-88114-003	SCP SS-2	strontium	7440-24-6	E440	86.1 mg/kg	98.2	70.0	130	
QC-88114-003	SCP SS-2	thallium	7440-28-0	E440	0.0786 mg/kg	103	40.0	160	
QC-88114-003	SCP SS-2	tin	7440-31-5	E440	10.6 mg/kg	93.7	70.0	130	
QC-88114-003	SCP SS-2	titanium	7440-32-6	E440	839 mg/kg	113	70.0	130	
QC-88114-003	SCP SS-2	uranium	7440-61-1	E440	0.52 mg/kg	103	70.0	130	
QC-88114-003	SCP SS-2	vanadium	7440-62-2	E440	32.7 mg/kg	107	70.0	130	

Page : 10 of 10 Work Order : VA20B5391

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Sub-Matrix: Soil/Sol	lid					Refere	nce Material (RM) Re	port	
					RM Target	Recovery (%)	Recovery L	imits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Metals (QCLot: 8	88114) - continued								
QC-88114-003	SCP SS-2	zinc	7440-66-6	E440	297 mg/kg	95.4	70.0	130	
QC-88114-003	SCP SS-2	zirconium	7440-67-7	E440	5.73 mg/kg	89.0	70.0	130	

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

Affix ALS barcode label here

(lab use only)

10		,
		è
	84.	÷
	COC Number:	
	17	
	7	
-	٠.	
	_	ĵ
)
	6 U4)
_	4	_
		ı
)
	a)

JUNE 2018 FF					ПСОРУ	LOW - CLIENT COPY	ΥE	WHITE - LABORATORY COPY	MHI		ORMATION	S AND SAMPLING INF	REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	REFER TO BACK F
\$ <u>5</u>	(South 9)	Jak	Date:	رع م	Received by:	Time:	**	Date:	''3e	Received by:	Time:	Date:		Released by:
		RECEPTION (lab use only)	FINAL SHIPMENT F			*	b use only)	INITIAL SHIPMENT RECEPTION (lab use only)	INITIAL SHIPMEN	j		SHIPMENT RELEASE (client use)	SHIPMENT REI	
		7						i					S NO	1 YES
	FINAL COOLER TEMPERATURES °C	FINAL COO	IRES °C	INITIAL COOLER TEMPERATURES °C	INITIAL CO	3							Are samples for human consumption/ use?	Are samples for hu
		4	,		==:	Cooling						•	S NO	_ K
	N	řes	Custody seal intact	Ice Cubes (Q	tce Packs	*					stem?	Are samples taken from a Regulated DW System?	Are samples taken
	No	Yes	S#F Observations	do		Frozen	Wn list below	sing on the grop-go	etranic GOC only)	elec	ejectronic COC only)	(client use)	Drinking Water (DW) Samples (client use)	Drinking
-	only)	ECEIVED (lab use	SAMPLE CONDITION AS RECEIVED (lab use only)	SAMPLE		L	liet bolow	Fing on the draw de	add on report by clici	Specify Criteria to	Special instructions /			
						4								ig a
•														
														*
														ŝ.
-														÷
			 - -		1									ė.
-						_								ž.
					_	1	50 iC		3000 K	,		ながら	· (W. 17	ş k
					×		んのう		20 - OF 16			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4-12	* * * * * * * * * * * * * * * * * * * *
							2017		20.08.15			257	1-Mi	8
-							2016		20.09.10			757	. W.	200
_					\ 	-	2017		91-LO-02				2,3	#E
1	+	+					7010					35		Ţ
4		7			7	<u> </u>	2)		ر م			\ <u>\</u>	,	
	C A		104 253 4188	Telephone: + 1 604 253 4188	•		Sample Type	Time (hh:mm)	Date (dd-mmm-yy)	:	and/or Coordinates ppear on the report)	Sample Identification and/or Coordinates (This description will appear on the report)	Sa (1	ALS Sample # (lab use only)
МР	MP		***		lei	/BEF		Sampler:		ALS Contact:)! '%	ALS Lab Work Order# (lab use only):	ALS Lab Worl
					l-a	_				Location:				LSD:
					בעו	-				Requisitioner:				PO/AFE:
					5			Routing Code:		Major/Minor Code:			210	100 # gol
4			VAZUBSSYI	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		AC		PO#		AFE/Cost Center			Quote #:	ALS Account # / Quote #:
			er Reference	Work Ord		IT/	ë	d Fields (client us	Oil and Gas Required Fields (client use)	0		Project Information		
			•	Vancouver		ΝI		0000		Email 2	-			Contact:
		- -	Environmental Division	≓nvironme	_	IE		S LECTED	加为	Email 1 or Fax				Company:
			_			RS	FAX	EMAIL MAIL	M	Select Invoice Distribution:	NO	on X YES [Copy of Invoice with Report	
		and Preserved (F/P) below	Indicate Filtered (\digamma), Preserved (P) or Filtered and Preserved (F / P) below	dicate Filtered (F), P	'n	;		stribution	Invoice Distribution		NO] sav X	Same as Report To	Invoice To
		equest	Analysis Request				1 1 -	(Email 3				Postal Code:
		ou will be contacted.	or tests that can not be performed according to the service level selected, you will be contacted.	formed according to t	hat can not be per	or tests ti	ながる	SE DIS	(Z)	Email 2		T.	Vancou	City/Province:
	dd-mmm-yy hh:mm	dd-mmı	TATs:	Date and Time Required for all E&P TATs:	ate and Time Re	D	704-	<i>(ODAR)</i>	Scrone	Email 1 or Fax		4	Meltalle	Street:
	apply)]	(Laboratory opening fees may apply)]		61	2 day [P2-50%]	(Busi	FAX A) MAIL	oct Distribution: MEMAIL MAIL FAX	Select Distribution:	report	below will appear on the final report	/ address	
ъ-	Same Day, Weekend or Statutory holiday [E2 -200%	eekend or Statutor	Same Day, W	<u>•</u> •	3 day [P3-25%]	RIORII ness I	box checked	provide details below if	its to Criteria on Report -	Compare Resu		CEEC	559 1-09	Phone:
		day [E - 100%]	1 Business day		4 day [P4-20%]	Jaya)	N	of Sav	Quality Control (QC) Report with Report	Quality Control (C		Close .	(201) (Say	Contact:
	harges apply	- business days - no surc	Standard TAT if received by 3 pm - business days - no surcharges apply	Standard	Regular [R]		EDD (DIGITAL)	N POF N EXCEL 1 EL		Select Report Format:	がしまり	LCUOD C	Sandolf	Company:
ply)	Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply)	confirm all E&P TATs	Contact your AM to	e Level Below -	Select Service			Distribution	Report Format / Distribution		r on the final report	Contact and company name below will appear on the final report	Contact and compa	Report To
							F	-	!			om mo	www.alsglobal.com	

CERTIFICATE OF ANALYSIS

Work Order : VA20B8430

Client : Gandalf Consulting Ltd.

Contact : Bob Symington

Address : 500 - 1190 Melville St. P.O. Box 48806

Vancouver BC Canada V6E 3W1

Telephone : 604 633 2750

Project : ----

C-O-C number : 17-864036

 Sampler
 : ---

 Site
 : ---

 Quote number
 : ---

 No. of samples received
 : 3

 No. of samples analysed
 : 3

Page : 1 of 4

Laboratory : Vancouver - Environmental

Account Manager : Edward Ngai

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : +1 604 253 4188

Date Samples Received : 17-Oct-2020 18:10

Date Analysis Commenced : 21-Oct-2020

Issue Date : 28-Oct-2020 17:38

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Brieanna Allen	Department Manager - Organics	Organics, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Ophelia Chiu	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia

Page : 2 of 4

Work Order : VA20B8430

Client : Gandalf Consulting Ltd.

Project : ---

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

mg/kg milligr	ams per kilogram
pH units pH ur	its

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in reports identified as "Preliminary Report" are considered authorized for use.

Page : 3 of 4 Work Order : VA20B8430

Client : Gandalf Consulting Ltd.

Project : ---

Analytical Results

Sub-Matrix: Soil			CI	ient sample ID	AEC 6 SS1	AEC 6 SS2	AEC 6 SS3	
(Matrix: Soil/Solid)								
			Client samnli	ng date / time	16-Oct-2020	16-Oct-2020	16-Oct-2020	
Analyte	CAS Number	Method	LOR	Unit	VA20B8430-001	VA20B8430-002	VA20B8430-003	
Analyte	CAS Number	Wicthou	2011	-	Result	Result	Result	
Physical Tests					rtoduk	result	rtoduk	
pH (1:2 soil:water)		E108	0.10	pH units	7.16	7.20	7.75	
Metals								
aluminum	7429-90-5	E440	50	mg/kg	9850	11300	12300	
antimony	7440-36-0		0.10	mg/kg	0.51	0.58	5.81	
arsenic	7440-38-2		0.10	mg/kg	3.51	3.95	12.3	
barium	7440-39-3		0.50	mg/kg	64.4	99.6	95.7	
beryllium	7440-41-7		0.10	mg/kg	0.27	0.37	0.30	
bismuth	7440-69-9		0.20	mg/kg	<0.20	<0.20	<0.20	
boron	7440-42-8		5.0	mg/kg	<5.0	6.1	12.8	
cadmium	7440-43-9		0.020	mg/kg	0.157	0.224	0.522	
calcium	7440-70-2		50	mg/kg	6960	8110	13900	
chromium	7440-47-3		0.50	mg/kg	22.9	30.4	25.4	
cobalt	7440-48-4		0.10	mg/kg	8.52	9.85	9.35	
copper	7440-50-8		0.50	mg/kg	60.6	48.7	66.6	
iron	7439-89-6		50	mg/kg	30600	34400	26600	
lead	7439-92-1	E440	0.50	mg/kg	26.7	8.26	26.6	
lithium	7439-93-2		2.0	mg/kg	5.6	5.9	6.3	
magnesium	7439-95-4		20	mg/kg	5590	5780	6110	
manganese	7439-96-5		1.0	mg/kg	377	530	530	
mercury	7439-97-6	E510	0.0500	mg/kg	<0.0500	<0.0500	<0.0500	
molybdenum	7439-98-7	E440	0.10	mg/kg	0.60	0.71	1.60	
nickel	7440-02-0		0.50	mg/kg	14.8	15.8	15.9	
phosphorus	7723-14-0	E440	50	mg/kg	612	697	828	
potassium	7440-09-7	E440	100	mg/kg	810	1240	1530	
selenium	7782-49-2	E440	0.20	mg/kg	<0.20	<0.20	<0.20	
silver	7440-22-4		0.10	mg/kg	<0.10	<0.10	0.12	
sodium	7440-23-5	E440	50	mg/kg	195	248	377	
strontium	7440-24-6	E440	0.50	mg/kg	36.3	48.4	59.8	
sulfur	7704-34-9	E440	1000	mg/kg	<1000	<1000	1300	
thallium	7440-28-0		0.050	mg/kg	<0.050	<0.050	0.051	
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	3.8	

Page : 4 of 4 Work Order : VA20B8430

Client : Gandalf Consulting Ltd.

Project : ----

ALS

Analytical Results

Sub-Matrix: Soil			CI	ient sample ID	AEC 6 SS1	AEC 6 SS2	AEC 6 SS3	
(Matrix: Soil/Solid)								
			Client sampli	ng date / time	16-Oct-2020	16-Oct-2020	16-Oct-2020	
Analyte	CAS Number	Method	LOR	Unit	VA20B8430-001	VA20B8430-002	VA20B8430-003	
					Result	Result	Result	
Metals								
titanium	7440-32-6	E440	1.0	mg/kg	820	854	848	
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<0.50	
uranium	7440-61-1	E440	0.050	mg/kg	0.630	0.667	0.472	
vanadium	7440-62-2	E440	0.20	mg/kg	107	117	76.1	
zinc	7440-66-6	E440	2.0	mg/kg	59.2	77.2	232	
zirconium	7440-67-7	E440	1.0	mg/kg	3.7	4.8	4.0	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : VA20B8430

Client : Gandalf Consulting Ltd. Laboratory : Vancouver - Environmental

Contact : Bob Symington Account Manager : Edward Ngai

500 - 1190 Melville St. P.O. Box 48806 Address : 8081 Lougheed Highway

Vancouver BC Canada V6E 3W1 Burnaby, British Columbia Canada V5A 1W9

Page

: 1 of 7

 Telephone
 : 604 633 2750
 Telephone
 : +1 604 253 4188

 Project
 : --- Date Samples Received
 : 17-Oct-2020 18:10

PO : ---- Issue Date : 28-Oct-2020 17:38

C-O-C number : 17-864036

Sampler : ---Site : ---Quote number : ---No. of samples received : 3
No. of samples analysed : 3

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

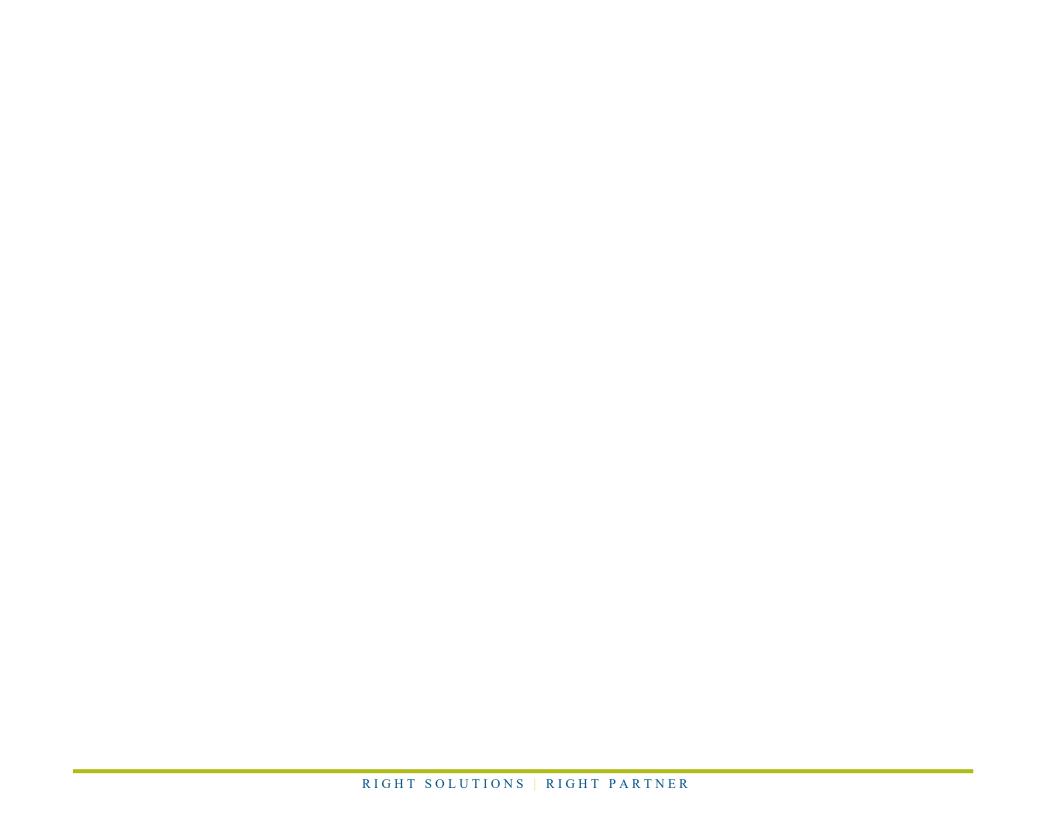
RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Duplicate outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 7

: VA20B8430 Work Order

Client : Gandalf Consulting Ltd.

Project

Outliers: Quality Control Samples
Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Soil/Solid

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Duplicate (DUP) RPDs								
Metals	VA20B8430-001	AEC 6 SS1	cadmium	7440-43-9	E440	42.4 % DUP-H	30%	Duplicate RPD does not meet the DQO for this test.
Metals	VA20B8430-001	AEC 6 SS1	copper	7440-50-8	E440	30.1 % DUP-H	30%	Duplicate RPD does not meet the DQO for this test.
Metals	VA20B8430-001	AEC 6 SS1	lead	7439-92-1	E440	85.6 % DUP-H	40%	Duplicate RPD does not meet the DQO for this test.

Result Qualifiers

Qualifier	Description

Duplicate results outside ALS DQO, due to sample heterogeneity. DUP-H

Page : 4 of 7
Work Order : VA20B8430

Client : Gandalf Consulting Ltd.

Project : ---

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 15:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 15:00 is used for calculation purposes.

latrix: Soil/Solid Evaluation: ▼ = Holding time exceedance ; ✓ = Within Holding Time

Matrix: Soil/Solid					EV	aluation: 🗴 =	Holding time exce	edance; v	= Within	Holding I
Analyte Group	Method	Sampling Date	Ext	traction / Pre	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap AEC 6 SS1	E510	16-Oct-2020	21-Oct-2020	28 days	4 days	✓	23-Oct-2020	23 days	2 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap AEC 6 SS2	E510	16-Oct-2020	21-Oct-2020	28 days	4 days	✓	23-Oct-2020	23 days	2 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap AEC 6 SS3	E510	16-Oct-2020	21-Oct-2020	28 days	4 days	✓	23-Oct-2020	23 days	2 days	✓
letals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap AEC 6 SS1	E440	16-Oct-2020	21-Oct-2020	180 days	4 days	✓	23-Oct-2020	175 days	2 days	✓
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap AEC 6 SS2	E440	16-Oct-2020	21-Oct-2020	180 days	4 days	✓	23-Oct-2020	175 days	2 days	✓
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap AEC 6 SS3	E440	16-Oct-2020	21-Oct-2020	180 days	4 days	✓	23-Oct-2020	175 days	2 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap AEC 6 SS1	E108	16-Oct-2020	21-Oct-2020	30 days	4 days	✓	21-Oct-2020	25 days	0 days	✓

 Page
 : 5 of 7

 Work Order
 : VA20B8430

Client : Gandalf Consulting Ltd.

Project : ---

Matrix: Soil/Solid Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap AEC 6 SS2	E108	16-Oct-2020	21-Oct-2020	30 days	4 days	✓	21-Oct-2020	25 days	0 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap AEC 6 SS3	E108	16-Oct-2020	21-Oct-2020	30 days	4 days	✓	21-Oct-2020	25 days	0 days	~

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 6 of 7
Work Order : VA20B8430

Client : Gandalf Consulting Ltd.

Project : --

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid Evaluation: **x** = QC frequency outside specification; ✓ = QC frequency within specification. Quality Control Sample Type Count Frequency (%) Method QC Lot # QC Regular Actual Expected Evaluation Analytical Methods Laboratory Duplicates (DUP) Mercury in Soil/Solid by CVAAS 105362 13 7.6 5.0 E510 Metals in Soil/Solid by CRC ICPMS 7.6 E440 105363 1 13 5.0 pH by Meter (1:2 Soil:Water Extraction) 1 13 7.6 5.0 E108 105364 1 Laboratory Control Samples (LCS) Mercury in Soil/Solid by CVAAS 105362 2 13 15.3 10.0 E510 Metals in Soil/Solid by CRC ICPMS 105363 2 13 15.3 10.0 E440 pH by Meter (1:2 Soil:Water Extraction) 105364 1 13 7.6 5.0 E108 Method Blanks (MB) Mercury in Soil/Solid by CVAAS 105362 13 1 7.6 5.0 E510 Metals in Soil/Solid by CRC ICPMS 105363 13 7.6 5.0 E440

Page : 7 of 7
Work Order : VA20B8430

Client : Gandalf Consulting Ltd.

Project : ---

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter (1:2 Soil:Water Extraction)	E108 Vancouver - Environmental	Soil/Solid	BC Lab Manual	pH is determined by potentiometric measurement with a pH electrode at ambient laboratory temperature (normally $20\pm5^{\circ}\text{C}$), and is carried out in accordance with procedures described in the BC Lab Manual (prescriptive method). The procedure involves mixing the dried (at <60 °C) and sieved (10mesh/2mm) sample with ultra pure water at a 1:2 ratio of sediment to water. The pH is then measured by a standard pH probe.
Metals in Soil/Solid by CRC ICPMS	E440 Vancouver - Environmental	Soil/Solid	EPA 6020B (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI. This method is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.
Mercury in Soil/Solid by CVAAS	E510 Vancouver - Environmental	Soil/Solid	EPA 200.2/1631 Appendix (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCl, followed by CVAAS analysis.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil:Water for pH	EP108 Vancouver - Environmental	Soil/Solid	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water.
Digestion for Metals and Mercury	EP440 Vancouver - Environmental	Soil/Solid	EPA 200.2 (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI. This method is intended to liberate metals that may be environmentally available.

QUALITY CONTROL REPORT

Work Order : VA20B8430 Page

Client : Gandalf Consulting Ltd. Laboratory : Vancouver - Environmental

Contact : Bob Symington Account Manager : Edward Ngai

Address : 500 - 1190 Melville St. P.O. Box 48806 Address : 8081 Lougheed Highway

Vancouver BC Canada V6E 3W1 Burnaby, British Columbia Canada V5A 1W9

: 1 of 10

 Telephone
 : 604 633 2750
 Telephone
 : +1 604 253 4188

 Project
 :-- Date Samples Received
 : 17-Oct-2020 18:10

PO :--- Date Analysis Commenced : 21-Oct-2020

Quote number :--
No. of samples received : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

: 3

- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

No. of samples analysed

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Brieanna Allen	Department Manager - Organics	Organics, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia
Ophelia Chiu	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia

Page : 2 of 10 Work Order : VA20B8430

Client : Gandalf Consulting Ltd.

Project : --

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 3 of 10

 Work Order
 : VA20B8430

Client : Gandalf Consulting Ltd.

Project : ---

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Client sample ID	A 1.4	p-Matrix: Soil/Solid boratory sample ID				Laboratory Duplicate (DUP) Report								
	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie				
Lot: 105364)														
AEC 6 SS1	pH (1:2 soil:water)		E108	0.10	pH units	7.16	7.09	0.982%	5%					
362)														
AEC 6 SS1	mercury	7439-97-6	E510	0.0500	mg/kg	<0.0500	<0.0500	0	Diff <2x LOR					
363)														
AEC 6 SS1	aluminum	7429-90-5	E440	50	mg/kg	9850	11400	14.1%	40%					
	antimony	7440-36-0	E440	0.10	mg/kg	0.51	0.40	0.11	Diff <2x LOR					
	arsenic	7440-38-2	E440	0.10	mg/kg	3.51	3.69	5.04%	30%					
	barium	7440-39-3	E440	0.50	mg/kg	64.4	78.6	19.8%	40%					
	beryllium	7440-41-7	E440	0.10	mg/kg	0.27	0.29	0.02	Diff <2x LOR					
	bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR					
	boron	7440-42-8	E440	5.0	mg/kg	<5.0	5.2	0.2	Diff <2x LOR					
	cadmium	7440-43-9	E440	0.020	mg/kg	0.157	0.242	42.4%	30%	DUP-				
	calcium	7440-70-2	E440	50	mg/kg	6960	7720	10.4%	30%					
	chromium	7440-47-3	E440	0.50	mg/kg	22.9	29.4	24.8%	30%					
	cobalt	7440-48-4	E440	0.10	mg/kg	8.52	9.56	11.5%	30%					
	copper	7440-50-8	E440	0.50	mg/kg	60.6	44.7	30.1%	30%	DUP-				
	iron	7439-89-6	E440	50	mg/kg	30600	35900	15.9%	30%					
	lead	7439-92-1	E440	0.50	mg/kg	26.7	10.7	85.6%	40%	DUP-				
	lithium	7439-93-2	E440	2.0	mg/kg	5.6	7.0	1.3	Diff <2x LOR					
	magnesium	7439-95-4	E440	20	mg/kg	5590	6060	8.00%	30%					
	manganese	7439-96-5	E440	1.0	mg/kg	377	445	16.5%	30%					
	molybdenum	7439-98-7	E440	0.10	mg/kg	0.60	0.69	14.8%	40%					
	nickel	7440-02-0	E440	0.50	mg/kg	14.8	14.5	1.85%	30%					
	phosphorus	7723-14-0	E440	50	mg/kg	612	624	2.00%	30%					
	' '		E440	100		810	920	12.5%	40%					
	i i		E440			<0.20	<0.20		Diff <2x LOR					
			E440			<0.10								
	AEC 6 SS1 362) AEC 6 SS1 363)	AEC 6 SS1 pH (1:2 soil:water) 362) AEC 6 SS1 mercury 363) AEC 6 SS1 aluminum	AEC 6 SS1 pH (1:2 soil:water) 362) AEC 6 SS1 mercury 7439-97-6 363) AEC 6 SS1 aluminum 7429-90-5 antimony 7440-36-0 arsenic 7440-38-2 barium 7440-43-3 beryllium 7440-41-7 bismuth 7440-69-9 boron 7440-42-8 cadmium 7440-70-2 chromium 7440-70-2 chromium 7440-50-8 iron 7439-89-6 lead 7439-92-1 lithium 7439-93-2 magnesium 7439-95-4 manganese 7439-96-5 molybdenum 7439-98-7 nickel 7440-02-0 phosphorus 7723-14-0 potassium 7440-09-7 selenium 7782-49-2 silver 7440-22-4 sodium 7440-23-5 strontium 7440-24-6 suffur 7704-34-9 thallium 7440-28-0	AEC 6 SS1	AEC 6 SS1 pH (1:2 soil:water)	AEC 6 SS1 pH (1:2 soll-water) — E108 0.10 pH units 362) AEC 6 SS1 mercury 7439-97-6 E510 0.0500 mg/kg 363) 363) AEC 6 SS1 aluminum 7429-90-5 E440 50 mg/kg antimony 7440-36-0 E440 0.10 mg/kg arsenic 7440-38-2 E440 0.10 mg/kg barium 7440-39-3 E440 0.50 mg/kg beryllum 7440-49-7 E440 0.10 mg/kg boron 7440-49-8 E440 0.20 mg/kg cadmium 7440-42-8 E440 5.0 mg/kg calcium 7440-43-9 E440 0.00 mg/kg chromium 7440-43-9 E440 0.50 mg/kg cobalt 7440-48-4 E440 0.50 mg/kg iron 7439-98-6 E440 0.50 mg/kg iron<	AEC 6 SS1	AEC 6 SS1	AEC 6 SS1	## AEG 6 SS1				

Page : 4 of 10 Work Order : VA20B8430

Client : Gandalf Consulting Ltd.

Project : ---

Sub-Matrix: Soil/Solid					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Metals (QC Lot: 105	363) - continued										
VA20B8430-001	AEC 6 SS1	titanium	7440-32-6	E440	1.0	mg/kg	820	901	9.35%	40%	
		tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		uranium	7440-61-1	E440	0.050	mg/kg	0.630	0.554	13.0%	30%	
		vanadium	7440-62-2	E440	0.20	mg/kg	107	126	16.1%	30%	
		zinc	7440-66-6	E440	2.0	mg/kg	59.2	67.4	12.9%	30%	
		zirconium	7440-67-7	E440	1.0	mg/kg	3.7	4.5	0.8	Diff <2x LOR	

Qualifiers

Qualifier Description

DUP-H Duplicate results outside ALS DQO, due to sample heterogeneity.

Page : 5 of 10 Work Order : VA20B8430

Client : Gandalf Consulting Ltd.

Project : ---

ALS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Metals (QCLot: 105362)						
mercury	7439-97-6	E510	0.005	mg/kg	<0.0050	
Metals (QCLot: 105363)						
aluminum	7429-90-5	E440	50	mg/kg	<50	
antimony	7440-36-0	E440	0.1	mg/kg	<0.10	
arsenic	7440-38-2	E440	0.1	mg/kg	<0.10	
parium	7440-39-3	E440	0.5	mg/kg	<0.50	
peryllium	7440-41-7	E440	0.1	mg/kg	<0.10	
pismuth	7440-69-9	E440	0.2	mg/kg	<0.20	
poron	7440-42-8	E440	5	mg/kg	<5.0	
admium	7440-43-9	E440	0.02	mg/kg	<0.020	
calcium	7440-70-2	E440	50	mg/kg	<50	
chromium	7440-47-3	E440	0.5	mg/kg	<0.50	
cobalt	7440-48-4	E440	0.1	mg/kg	<0.10	
opper	7440-50-8	E440	0.5	mg/kg	<0.50	
ron	7439-89-6	E440	50	mg/kg	<50	
ead	7439-92-1	E440	0.5	mg/kg	<0.50	
thium	7439-93-2	E440	2	mg/kg	<2.0	
nagnesium	7439-95-4	E440	20	mg/kg	<20	
nanganese	7439-96-5	E440	1	mg/kg	<1.0	
nolybdenum	7439-98-7	E440	0.1	mg/kg	<0.10	
ickel	7440-02-0	E440	0.5	mg/kg	<0.50	
phosphorus	7723-14-0	E440	50	mg/kg	<50	
ootassium	7440-09-7	E440	100	mg/kg	<100	
elenium	7782-49-2	E440	0.2	mg/kg	<0.20	
ilver	7440-22-4	E440	0.1	mg/kg	<0.10	
odium	7440-23-5	E440	50	mg/kg	<50	
trontium	7440-24-6	E440	0.5	mg/kg	<0.50	
ulfur	7704-34-9	E440	1000	mg/kg	<1000	
nallium	7440-28-0	E440	0.05	mg/kg	<0.050	
n	7440-31-5	E440	2	mg/kg	<2.0	
tanium	7440-32-6	E440	1	mg/kg	<1.0	
ungsten	7440-33-7	E440	0.5	mg/kg	<0.50	
ıranium	7440-61-1	E440	0.05	mg/kg	<0.050	

Page : 6 of 10 Work Order : VA20B8430

Client : Gandalf Consulting Ltd.

Project : ---

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Metals (QCLot: 105363) - continued						
vanadium	7440-62-2	E440	0.2	mg/kg	<0.20	
zinc	7440-66-6	E440	2	mg/kg	<2.0	
zirconium	7440-67-7	E440	1	mg/kg	<1.0	

 Page
 : 7 of 10

 Work Order
 : VA20B8430

Client : Gandalf Consulting Ltd.

Project : ---

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid			Laboratory Control Sample (LCS) Report								
				Spike	Recovery (%)	Recovery	/ Limits (%)				
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Physical Tests (QCLot: 105364)											
pH (1:2 soil:water)	E108		pH units	6 pH units	100	95.0	105				
Metals (QCLot: 105362)											
mercury	7439-97-6 E510	0.005	mg/kg	0.1 mg/kg	100	80.0	120				
Metals (QCLot: 105363)											
aluminum	7429-90-5 E440	50	mg/kg	200 mg/kg	98.2	80.0	120				
antimony	7440-36-0 E440	0.1	mg/kg	100 mg/kg	105	80.0	120				
arsenic	7440-38-2 E440	0.1	mg/kg	100 mg/kg	99.8	80.0	120				
barium	7440-39-3 E440	0.5	mg/kg	25 mg/kg	104	80.0	120				
beryllium	7440-41-7 E440	0.1	mg/kg	10 mg/kg	101	80.0	120				
bismuth	7440-69-9 E440	0.2	mg/kg	100 mg/kg	105	80.0	120				
poron	7440-42-8 E440	5	mg/kg	100 mg/kg	102	80.0	120				
cadmium	7440-43-9 E440	0.02	mg/kg	10 mg/kg	101	80.0	120				
calcium	7440-70-2 E440	50	mg/kg	5000 mg/kg	103	80.0	120				
chromium	7440-47-3 E440	0.5	mg/kg	25 mg/kg	102	80.0	120				
cobalt	7440-48-4 E440	0.1	mg/kg	25 mg/kg	100	80.0	120				
copper	7440-50-8 E440	0.5	mg/kg	25 mg/kg	99.3	80.0	120				
ron	7439-89-6 E440	50	mg/kg	100 mg/kg	103	80.0	120				
ead	7439-92-1 E440	0.5	mg/kg	50 mg/kg	103	80.0	120				
ithium	7439-93-2 E440	2	mg/kg	25 mg/kg	97.6	80.0	120				
magnesium	7439-95-4 E440	20	mg/kg	5000 mg/kg	99.6	80.0	120				
manganese	7439-96-5 E440	1	mg/kg	25 mg/kg	97.6	80.0	120				
molybdenum	7439-98-7 E440	0.1	mg/kg	25 mg/kg	105	80.0	120				
nickel	7440-02-0 E440	0.5	mg/kg	50 mg/kg	99.9	80.0	120				
phosphorus	7723-14-0 E440	50	mg/kg	1000 mg/kg	100.0	80.0	120				
ootassium	7440-09-7 E440	100	mg/kg	5000 mg/kg	101	80.0	120				
selenium	7782-49-2 E440	0.2	mg/kg	100 mg/kg	100	80.0	120				
silver	7440-22-4 E440	0.1	mg/kg	10 mg/kg	108	80.0	120				
sodium	7440-23-5 E440	50	mg/kg	5000 mg/kg	98.0	80.0	120				
strontium	7440-24-6 E440	0.5	mg/kg	25 mg/kg	104	80.0	120				
sulfur	7704-34-9 E440	1000	mg/kg	5000 mg/kg	102	80.0	120				
hallium	7440-28-0 E440	0.05	mg/kg	100 mg/kg	103	80.0	120				
tin	7440-31-5 E440	2	mg/kg	50 mg/kg	106	80.0	120				
titanium	7440-32-6 E440	1	mg/kg	25 mg/kg	96.9	80.0	120				

Page : 8 of 10 Work Order : VA20B8430

Client : Gandalf Consulting Ltd.

Project : --

Sub-Matrix: Soil/Solid	trix: Soil/Solid						Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier				
Metals (QCLot: 105363) - continued													
tungsten	7440-33-7	E440	0.5	mg/kg	10 mg/kg	107	80.0	120					
uranium	7440-61-1	E440	0.05	mg/kg	0.5 mg/kg	111	80.0	120					
vanadium	7440-62-2	E440	0.2	mg/kg	50 mg/kg	102	80.0	120					
zinc	7440-66-6	E440	2	mg/kg	50 mg/kg	104	80.0	120					
zirconium	7440-67-7	E440	1	mg/kg	10 mg/kg	97.7	80.0	120					

 Page
 : 9 of 10

 Work Order
 : VA20B8430

Client : Gandalf Consulting Ltd.

Project : --

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix: Soil/	Solid					Referen	nce Material (RM) Re	eport	
					RM Target	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
letals (QCLo	t: 105362)								
QC-105362-003	SCP SS-2	mercury	7439-97-6	E510	0.059 mg/kg	104	70.0	130	
Metals (QCLo	t: 105363)								
QC-105363-003	SCP SS-2	aluminum	7429-90-5	E440	9817 mg/kg	105	70.0	130	
QC-105363-003	SCP SS-2	antimony	7440-36-0	E440	3.99 mg/kg	96.1	70.0	130	
QC-105363-003	SCP SS-2	arsenic	7440-38-2	E440	3.73 mg/kg	105	70.0	130	
QC-105363-003	SCP SS-2	barium	7440-39-3	E440	105 mg/kg	106	70.0	130	
QC-105363-003	SCP SS-2	beryllium	7440-41-7	E440	0.349 mg/kg	96.4	70.0	130	
QC-105363-003	SCP SS-2	boron	7440-42-8	E440	8.5 mg/kg	112	40.0	160	
QC-105363-003	SCP SS-2	cadmium	7440-43-9	E440	0.91 mg/kg	102	70.0	130	
QC-105363-003	SCP SS-2	calcium	7440-70-2	E440	31082 mg/kg	98.6	70.0	130	
QC-105363-003	SCP SS-2	chromium	7440-47-3	E440	101 mg/kg	108	70.0	130	
QC-105363-003	SCP SS-2	cobalt	7440-48-4	E440	6.9 mg/kg	102	70.0	130	
QC-105363-003	SCP SS-2	copper	7440-50-8	E440	123 mg/kg	102	70.0	130	
QC-105363-003	SCP SS-2	iron	7439-89-6	E440	23558 mg/kg	107	70.0	130	
QC-105363-003	SCP SS-2	lead	7439-92-1	E440	267 mg/kg	103	70.0	130	
QC-105363-003	SCP SS-2	lithium	7439-93-2	E440	9.5 mg/kg	96.6	70.0	130	
QC-105363-003	SCP SS-2	magnesium	7439-95-4	E440	5509 mg/kg	106	70.0	130	
QC-105363-003	SCP SS-2	manganese	7439-96-5	E440	269 mg/kg	108	70.0	130	
QC-105363-003	SCP SS-2	molybdenum	7439-98-7	E440	1.03 mg/kg	106	70.0	130	
QC-105363-003	SCP SS-2	nickel	7440-02-0	E440	26.7 mg/kg	106	70.0	130	
QC-105363-003	SCP SS-2	phosphorus	7723-14-0	E440	752 mg/kg	95.8	70.0	130	
QC-105363-003	SCP SS-2	potassium	7440-09-7	E440	1587 mg/kg	111	70.0	130	
QC-105363-003	SCP SS-2	sodium	7440-23-5	E440	797 mg/kg	105	70.0	130	
QC-105363-003	SCP SS-2	strontium	7440-24-6	E440	86.1 mg/kg	99.7	70.0	130	
QC-105363-003	SCP SS-2	thallium	7440-28-0	E440	0.0786 mg/kg	89.5	40.0	160	
QC-105363-003	SCP SS-2	tin	7440-31-5	E440	10.6 mg/kg	130	70.0	130	
QC-105363-003	SCP SS-2	titanium	7440-32-6	E440	839 mg/kg	115	70.0	130	
QC-105363-003	SCP SS-2	uranium	7440-61-1	E440	0.52 mg/kg	106	70.0	130	
QC-105363-003	SCP SS-2	vanadium	7440-62-2	E440	32.7 mg/kg	108	70.0	130	

Page : 10 of 10 Work Order : VA20B8430

Client : Gandalf Consulting Ltd.

Project : ---

Sub-Matrix: Soil/Sol	id				Reference Material (RM) Report						
							Recovery L				
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier		
Metals (QCLot: 1	05363) - continued										
QC-105363-003	SCP SS-2	zinc	7440-66-6	E440	297 mg/kg	100	70.0	130			
QC-105363-003	SCP SS-2	zirconium	7440-67-7	E440	5.73 mg/kg	102	70.0	130			

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here (lab use only)

coc Number: 17 - 86403**6**

Canada Toll Free: 1 800 668 9878

	www.alsglobal.com				la T	as all	**************************************		· · · · · · · · · · · · · · · · · · ·	,							
Report To	Contact and company name below will appea	or on the final report		Report Fermat	/ Distribution		Γ	Select S	ervice Level	elow - Cont	act your	AM to conf	irm all E	&P TATs (s	surcharges	may appl	у)
Company: .	GAND PLE COUS	CONTING-	Select Report Fo	rmat: 🔽 PDF [EXCEL E	DD (DIGITAL)		Regula	r[R] 🔽 s	tandard TAT if	received b	y 3 pm - busi	iness days	s - no surchar	rges apply		
Contact:		NOTION	Quality Control (0	C) Report with Rep	ort YES	NO	> ê	4 day [P	4-20%]	NC	1 Busi	ness day	E - 100	%]			Ĺ
Phone:	40+602	2750	Compare Resu	lts to Criteria on Deport -	provide details below it	f box checked	D SE	3 day [P:	3-25%]	ERGE	Same D	av. Week	end or !	Statutory	holiday [£	2 -200%	. =
	Company address below will appear on the final	report	Select Distributio	n: EMAIL	MAIL	FAX	B Bala	2 day [P:	2-50%]	₫	Same Day, Weekend or Statutory holiday [E2 -200% (Laboratory opening fees may apply)]					L	
Street:			Email 1 or Fax					Date and Ti	me Required for	ali E&P TATs:	' T			dd-mmm-	yy hh:mm		
City/Province:			Email 2				For tests	that can not	be performed acco	rding to the ser	vice level se	lected, you wi	til be conta	acted.			
Postal Code:	/		Email 3								Analy	/sis Requ	est			*	
Invoice To	Same as Report To V yes	NO		Invoice De	tribution				Indicate Filter	ed (F), Presen	ved (P) or F	iltered and P	reserved ((F/P) below			
	Copy of Invoice with Report YES	NO	Select Invoice Di	stribution: E	MAIL MAIL	FAX	18									┨	ous)
Company:		<u></u> -	Email 1 or Fax				10							_		보	ĘĘ
Contact:			Email 2	mail 2						王	nst						
	Project Information		0	il and Gas Require	d Fields (client us	se)	CONTAINERS							.			<u> </u>
ALS Account # /	Quote #:		AFE/Cost Center:		PO#			11	.		1 1		i				ğ
Job#:	· · · · · · · · · · · · · · · · · · ·		Major/Minor Code:		Routing Code:		181	V,I			1		. [0	8
PO/AFE:			Requisitioner:		·		Ĭŭ l	الد	1	_ .		.] ,				Si	
LSD:			Location:	'			유	Q		/ <u>-</u>					. 1	"	SUSPECTED HAZARD (see Special Instructions)
		r#					1861			1		menta	u Div	ision		▎ਛ	¥
ALS Lab Wor	k Order # (lab use only):		ALS Contact:		Sampler:		8	(1)	1	· Vi	ancou	iver Order D				ΙŽ	Ä
ALS Sample #	Sample Identification	and/or Coordinates		Date	Time		NUMBER	5			\/\	Order R	ereren 30/	1GE	!	ା ₹	Ä
(lab use only)	(This description will a	ppear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	١ź١				VA	.20E	204	+30	!	S	SE
Ħ	ATEC 6	551		201016		SOIL	, {	1					-			1	
	\	= 7	•	~	-	,		√	+ + +				. 113 .		-	+	-
eg/*		- 22 2						. /-	+			8.4	110.	(1	+	+-	+
. "	13EC 6	222	<u> </u>	*			1	<u> </u>	+			71.7	1118		-	+-	_
			·			<u> </u>	<u> </u>					. 5 KY	ļΩ		4	 	
<u> </u>										~ .		<u> </u>					
										l C li	epnone :	+1 604 25	3 4188				
*		,									ı		 -		7		
									 								
A								-				- †.			 	 	_ _
				·····		 	 - 		+ + +		╁╌┼╴	\dashv	\dashv		+ +	+-	- + -
Said-		*			-		+		+		-				$\vdash\vdash$	+	
Salah.			:			· .	1 +		+		-					┼	
4			· · · · · · · · · · · · · · · · · · ·	ļ												<u> </u>	
Drinkin	g Water (DW) Samples¹ (client use)	Special Instructions / S		add on report by clicl stronic COC only)	king on the drop-de	own list below		. 580		MPLE CO			<u> </u>	ab use on			_
	from a Regulated DW System?						Frozer	· C	٠ . الحل		Observati	2	Yes	H			
	S No	CSR	- H2	e st	BWDA/	2D.	ice Pa	cks g initiated	1	LI Custo	ody seal i	intact	Yes	ā 🔲 🌯	No) .s _i	· 🗀
_	uman consumption/ use?	- · •					CODIIII		AL COOLER TEM	DEDATUDES	O nana	4. 19 ⁻¹		INAL COOLE	D TEMPERA	TUBES OF 1	
					•		42.	1.5	AL COOLER TEM	-ERMIUNES	O 55%	7	507	MAL COOLE	N IEWPERA	TOKES O	
YE	SHIPMENT RELEASE (client use)			SIMPLIAL CUIDARCE	T BECERTION "		40		±8% ↔	SS"	I Glube			<u></u>			
Released by:	Date:	Time:	Received by:	INITIAL SHIPMEN	Date:	io use only)	Time:	Rei	ceived by:	4		ate: *	EPHON	N (lab use	only)	Time:	
4:	1	1				e e e e e e e e e e e e e e e e e e e	\$6.2		AM	1, 10	າ ັ	1.5	+ 50	୧୭		16:7	10 PM
REFER TO BACK I	PAGE FOR ALS LOCATIONS AND SAMPLING INF	ORMATION	.*1		TE - LABORATORY		V - CLIE	NT COPY		' —	1748						JUNE 2018 FRON

CERTIFICATE OF ANALYSIS

Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Contact : Bob Symington

Address : 500 - 1190 Melville St. P.O. Box 48806

Vancouver BC Canada V6E 3W1

Telephone : 604 633 2750 Project : 6040 LN

PO · ----

C-O-C number : 17-858032

Sampler : XS
Site : ---Quote number : ---No. of samples received : 9
No. of samples analysed : 9

Page : 1 of 6

Laboratory : Vancouver - Environmental

Account Manager : Edward Ngai

Address : 8081 Lougheed Highway

Burnaby BC Canada V5A 1W9

Telephone : +1 604 253 4188

Date Samples Received : 03-Dec-2020 17:24

Date Analysis Commenced : 08-Dec-2020

Issue Date : 09-Dec-2020 16:44

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

SignatoriesPositionLaboratory DepartmentAngela RenTeam Leader - MetalsMetals, Burnaby, British ColumbiaDee LeeAnalystMetals, Burnaby, British ColumbiaOphelia ChiuSupervisor - Organics InstrumentationOrganics, Burnaby, British Columbia

Page : 2 of 6

Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
mg/kg	milligrams per kilogram
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in reports identified as "Preliminary Report" are considered authorized for use.

Page Work Order : 3 of 6 : VA20C2524

: Gandalf Consulting Ltd. : 6040 LN Client

Project

Analytical Results

Sub-Matrix: Soil			CI	ient sample ID	4M1	4M2	4M3	4M4	4M5
(Matrix: Soil/Solid)									
			Client sampli	ng date / time	03-Dec-2020	03-Dec-2020	03-Dec-2020	03-Dec-2020	03-Dec-2020
Analyte	CAS Number	Method	LOR	Unit	VA20C2524-001	VA20C2524-002	VA20C2524-003	VA20C2524-004	VA20C2524-005
Analyte	One Warmer	, moureu			Result	Result	Result	Result	Result
Physical Tests					rtodut	- Noodil	- Toodail	- Tobali	rtodak
pH (1:2 soil:water)		E108	0.10	pH units	6.70	9.02	7.16	7.35	7.05
Metals									
aluminum	7429-90-5	E440	50	mg/kg	19100	30200	12400	15200	15000
antimony	7440-36-0		0.10	mg/kg	0.28	0.43	0.28	0.32	0.32
arsenic	7440-38-2		0.10	mg/kg	2.70	2.36	4.24	4.28	3.14
barium	7440-39-3		0.50	mg/kg	176	239	56.8	98.9	150
beryllium	7440-41-7		0.10	mg/kg	0.48	0.75	0.30	0.49	0.46
bismuth	7440-69-9		0.20	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
boron	7440-42-8		5.0	mg/kg	5.9	7.9	<5.0	<5.0	<5.0
cadmium	7440-43-9		0.020	mg/kg	0.218	0.281	0.082	0.092	0.154
calcium	7440-70-2		50	mg/kg	6820	8400	15200	6690	6510
chromium	7440-47-3		0.50	mg/kg	29.9	43.6	22.6	25.8	25.3
cobalt	7440-48-4		0.10	mg/kg	12.8	18.1	11.2	8.79	10.8
copper	7440-50-8		0.50	mg/kg	47.0	78.5	27.2	54.4	52.1
iron	7439-89-6		50	mg/kg	27400	36200	29000	30100	26900
lead	7439-92-1		0.50	mg/kg	4.92	8.52	2.65	3.90	4.46
lithium	7439-93-2		2.0	mg/kg	6.3	10.1	7.2	6.7	5.7
magnesium	7439-95-4		20	mg/kg	5130	8120	9520	5030	4800
manganese	7439-96-5		1.0	mg/kg	740	905	511	381	597
mercury	7439-97-6	E510	0.0500	mg/kg	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
molybdenum	7439-98-7	E440	0.10	mg/kg	1.01	1.11	0.61	0.44	0.71
nickel	7440-02-0		0.50	mg/kg	22.5	37.7	20.2	15.9	18.1
phosphorus	7723-14-0		50	mg/kg	455	599	775	571	466
potassium	7440-09-7	E440	100	mg/kg	3410	5860	600	2160	2470
selenium	7782-49-2		0.20	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
silver	7440-22-4		0.10	mg/kg	<0.10	0.16	<0.10	0.12	<0.10
sodium	7440-23-5		50	mg/kg	316	323	371	166	221
strontium	7440-24-6		0.50	mg/kg	57.9	70.2	57.1	41.5	71.6
sulfur	7704-34-9		1000	mg/kg	<1000	<1000	<1000	<1000	<1000
thallium	7440-28-0		0.050	mg/kg	0.098	0.156	<0.050	0.077	0.081
tin	7440-31-5		2.0	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0

Page : 4 of 6

Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

ALS

Analytical Results

Sub-Matrix: Soil			CI	ient sample ID	4M1	4M2	4M3	4M4	4M5
(Matrix: Soil/Solid)									
			Client sampli	ng date / time	03-Dec-2020	03-Dec-2020	03-Dec-2020	03-Dec-2020	03-Dec-2020
Analyte	CAS Number	Method	LOR	Unit	VA20C2524-001	VA20C2524-002	VA20C2524-003	VA20C2524-004	VA20C2524-005
					Result	Result	Result	Result	Result
Metals									
titanium	7440-32-6	E440	1.0	mg/kg	995	1320	1030	553	674
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
uranium	7440-61-1	E440	0.050	mg/kg	0.648	0.988	0.354	0.510	0.620
vanadium	7440-62-2	E440	0.20	mg/kg	71.4	71.1	72.5	80.8	76.7
zinc	7440-66-6	E440	2.0	mg/kg	76.8	101	48.9	46.1	53.6
zirconium	7440-67-7	E440	1.0	mg/kg	8.0	21.3	6.8	8.0	7.6

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page Work Order : 5 of 6 : VA20C2524

: Gandalf Consulting Ltd. : 6040 LN Client

Project

Analytical Results

Sub-Matrix: Soil			C	lient sample ID	4M6	4M7	4M8	4MX	
(Matrix: Soil/Solid)									
			Client sampli	ing date / time	03-Dec-2020	03-Dec-2020	03-Dec-2020	03-Dec-2020	
Analyte	CAS Number	Method	LOR	Unit	VA20C2524-006	VA20C2524-007	VA20C2524-008	VA20C2524-009	
					Result	Result	Result	Result	
Physical Tests									
pH (1:2 soil:water)		E108	0.10	pH units	7.36	8.99	7.14	8.97	
Metals									
aluminum	7429-90-5		50	mg/kg	21000	13400	25200	13100	
antimony	7440-36-0	E440	0.10	mg/kg	0.38	0.28	0.43	0.29	
arsenic	7440-38-2	E440	0.10	mg/kg	3.49	4.87	3.19	4.12	
barium	7440-39-3	E440	0.50	mg/kg	179	52.6	221	64.7	
beryllium	7440-41-7	E440	0.10	mg/kg	0.54	0.33	0.63	0.33	
bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	<0.20	<0.20	
boron	7440-42-8	E440	5.0	mg/kg	5.9	<5.0	6.3	<5.0	
cadmium	7440-43-9	E440	0.020	mg/kg	0.192	0.101	0.454	0.087	
calcium	7440-70-2	E440	50	mg/kg	8260	19500	9430	15000	
chromium	7440-47-3	E440	0.50	mg/kg	33.7	22.1	42.6	21.7	
cobalt	7440-48-4	E440	0.10	mg/kg	14.3	10.9	21.0	10.8	
copper	7440-50-8	E440	0.50	mg/kg	57.3	28.8	81.1	27.6	
iron	7439-89-6	E440	50	mg/kg	32600	29400	32400	27500	
lead	7439-92-1	E440	0.50	mg/kg	4.86	2.51	6.81	2.65	
lithium	7439-93-2	E440	2.0	mg/kg	8.0	7.5	9.7	7.5	
magnesium	7439-95-4	E440	20	mg/kg	6250	9670	8280	9070	
manganese	7439-96-5	E440	1.0	mg/kg	865	627	1040	500	
mercury	7439-97-6	E510	0.0500	mg/kg	<0.0500	<0.0500	<0.0500	<0.0500	
molybdenum	7439-98-7	E440	0.10	mg/kg	0.72	0.51	0.52	0.47	
nickel	7440-02-0	E440	0.50	mg/kg	26.7	17.9	38.9	19.2	
phosphorus	7723-14-0	E440	50	mg/kg	418	922	620	752	
potassium	7440-09-7	E440	100	mg/kg	3640	660	4220	710	
selenium	7782-49-2	E440	0.20	mg/kg	<0.20	<0.20	<0.20	<0.20	
silver	7440-22-4	E440	0.10	mg/kg	<0.10	<0.10	0.16	<0.10	
sodium	7440-23-5	E440	50	mg/kg	257	382	657	399	
strontium	7440-24-6	E440	0.50	mg/kg	60.3	62.1	80.5	64.4	
sulfur	7704-34-9	E440	1000	mg/kg	<1000	<1000	<1000	<1000	
thallium	7440-28-0		0.050	mg/kg	0.103	<0.050	0.132	<0.050	
tin	7440-31-5		2.0	mg/kg	<2.0	<2.0	<2.0	<2.0	
titanium	7440-32-6	E440	1.0	mg/kg	990	1100	1670	1160	

Page : 6 of 6

Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

ALS

Analytical Results

Sub-Matrix: Soil			C	lient sample ID	4M6	4M7	4M8	4MX	
(Matrix: Soil/Solid)									
			Client sampli	ing date / time	03-Dec-2020	03-Dec-2020	03-Dec-2020	03-Dec-2020	
Analyte	CAS Number	Method	LOR	Unit	VA20C2524-006	VA20C2524-007	VA20C2524-008	VA20C2524-009	
					Result	Result	Result	Result	
Metals									
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<0.50	<0.50	
uranium	7440-61-1	E440	0.050	mg/kg	0.669	0.384	0.909	0.392	
vanadium	7440-62-2	E440	0.20	mg/kg	90.2	78.4	83.1	75.7	
zinc	7440-66-6	E440	2.0	mg/kg	65.5	45.9	82.8	45.1	
zirconium	7440-67-7	E440	1.0	mg/kg	9.0	6.4	16.2	7.2	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

: VA20C2524 **Work Order** : 1 of 9 Page

Client **Gandalf Consulting Ltd.** Laboratory : Vancouver - Environmental

Contact **Bob Symington Account Manager** : Edward Ngai

> Address 500 - 1190 Melville St. P.O. Box 48806 : 8081 Lougheed Highway Vancouver BC Canada V6E 3W1

Burnaby, British Columbia Canada V5A 1W9

Telephone 604 633 2750 Telephone : +1 604 253 4188 **Project** 6040 LN **Date Samples Received** : 03-Dec-2020 17:24

PO Issue Date : ----

: 09-Dec-2020 16:44 C-O-C number : 17-858032 Sampler : XS

No. of samples received : 9 No. of samples analysed : 9 This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions

and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology

Key

Address

Site Quote number

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

references and summaries.

LOR: Limit of Reporting (detection limit).

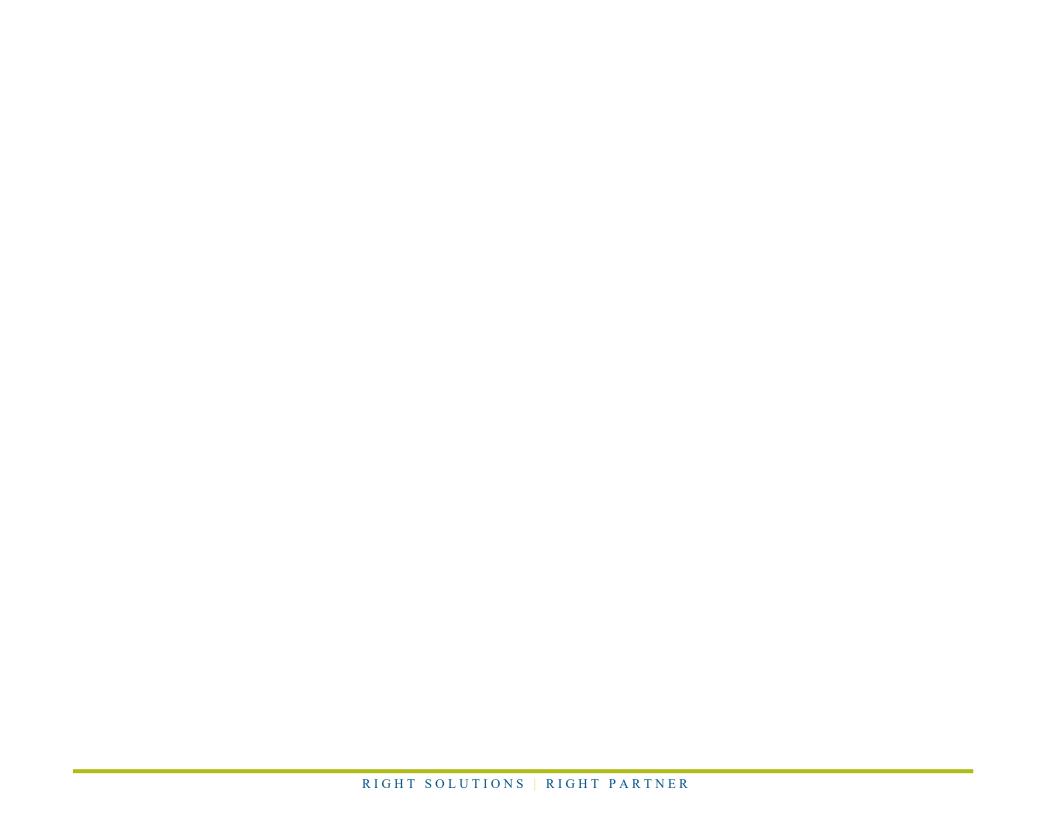
RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Duplicate outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 9
Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Soil/Solid

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Duplicate (DUP) RPDs								
Metals	Anonymous	Anonymous	antimony	7440-36-0	E440	86.4 % DUP-H	30%	Duplicate RPD does not meet the DQO for this test.
Metals	Anonymous	Anonymous	arsenic	7440-38-2	E440	33.2 % DUP-H	30%	Duplicate RPD does not meet the DQO for this test.
Metals	Anonymous	Anonymous	copper	7440-50-8	E440	33.6 % DUP-H	30%	Duplicate RPD does not meet the DQO for this test.

Result Qualifiers

Qualifier	Description

DUP-H Duplicate results outside ALS DQO, due to sample heterogeneity.

Page : 4 of 9
Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 15:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 15:00 is used for calculation purposes.

Matrix: Soil/Solid Evaluation: × = Holding time exceedance; √ = Within Holding Time

Analyte Group Container / Client Sample ID(s) Metals : Mercury in Soil/Solid by CVAAS Glass soil jar/Teflon lined cap 4M1	Method	Sampling Date 03-Dec-2020	Ext Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Analys Holding Rec	Times Actual	Eval
Metals : Mercury in Soil/Solid by CVAAS Glass soil jar/Teflon lined cap	E510	02 Dog 2020				Eval	Analysis Date			Eval
Glass soil jar/Teflon lined cap	E510	02 Dec 2020	Date	Rec	Actual			Rec	Actual	
Glass soil jar/Teflon lined cap	E510	03 Dog 2020								
· · · · · · · · · · · · · · · · · · ·	E510	02 Dog 2020								
4M1	E510	02 Dec 2020								
		03-Dec-2020	08-Dec-2020	28	5 days	✓	09-Dec-2020	22 days	0 days	✓
				days						
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
4M2	E510	03-Dec-2020	08-Dec-2020	28	5 days	✓	09-Dec-2020	22 days	0 days	✓
				days						
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap	E510	03-Dec-2020	08-Dec-2020		F 4	✓	09-Dec-2020	00 4	0 4	1
4M3	E510	03-Dec-2020	08-Dec-2020	28	5 days	•	09-Dec-2020	22 days	o days	•
				days						
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap 4M4	E510	03-Dec-2020	08-Dec-2020	28	5 days	✓	09-Dec-2020	22 days	0 daya	√
41/14	L310	03-Dec-2020	06-Dec-2020	days	5 uays	•	09-Dec-2020	ZZ uays	0 days	•
				uays						
Metals : Mercury in Soil/Solid by CVAAS							I			
Glass soil jar/Teflon lined cap 4M5	E510	03-Dec-2020	08-Dec-2020	28	5 days	✓	09-Dec-2020	22 days	0 days	√
		00 200 2020	00 200 2020	days			00 200 2020		o aayo	
Metals : Mercury in Soil/Solid by CVAAS				,-						
Glass soil jar/Teflon lined cap										
4M6	E510	03-Dec-2020	08-Dec-2020	28	5 days	✓	09-Dec-2020	22 days	0 days	✓
				days						
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
4M7	E510	03-Dec-2020	08-Dec-2020	28	5 days	✓	09-Dec-2020	22 days	0 days	✓
				days					•	

Page : 5 of 9 Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Matrix: Soil/Solid Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Actual Rec Actual Date Metals : Mercury in Soil/Solid by CVAAS Glass soil jar/Teflon lined cap 08-Dec-2020 4M8 E510 03-Dec-2020 5 days ✓ 09-Dec-2020 22 days 0 days ✓ 28 days Metals : Mercury in Soil/Solid by CVAAS Glass soil jar/Teflon lined cap 1 ✓ 4MX E510 03-Dec-2020 08-Dec-2020 28 5 days 09-Dec-2020 22 days 0 days days Metals : Metals in Soil/Solid by CRC ICPMS Glass soil jar/Teflon lined cap 4M1 E440 03-Dec-2020 08-Dec-2020 ✓ 08-Dec-2020 0 days ✓ 180 5 days 174 days days Metals: Metals in Soil/Solid by CRC ICPMS Glass soil jar/Teflon lined cap E440 08-Dec-2020 ✓ 08-Dec-2020 ✓ 4M2 03-Dec-2020 180 5 days 174 0 days days days Metals: Metals in Soil/Solid by CRC ICPMS Glass soil jar/Teflon lined cap 0 days E440 03-Dec-2020 08-Dec-2020 5 days 1 08-Dec-2020 ✓ 4M3 180 174 days days Metals : Metals in Soil/Solid by CRC ICPMS Glass soil jar/Teflon lined cap 4M4 E440 03-Dec-2020 08-Dec-2020 ✓ 08-Dec-2020 ✓ 180 5 days 174 0 days days days Metals : Metals in Soil/Solid by CRC ICPMS Glass soil jar/Teflon lined cap 4M5 E440 03-Dec-2020 08-Dec-2020 5 days ✓ 08-Dec-2020 0 days 1 180 174 days days Metals: Metals in Soil/Solid by CRC ICPMS Glass soil jar/Teflon lined cap ✓ ✓ 4M6 E440 03-Dec-2020 08-Dec-2020 180 5 days 08-Dec-2020 174 0 days days days Metals: Metals in Soil/Solid by CRC ICPMS Glass soil jar/Teflon lined cap E440 1 ✓ 4M7 03-Dec-2020 08-Dec-2020 5 days 08-Dec-2020 0 days 180 174 days days

Page : 6 of 9
Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Matrix: Soil/Solid Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Actual Rec Actual Date Metals: Metals in Soil/Solid by CRC ICPMS Glass soil jar/Teflon lined cap 4M8 E440 03-Dec-2020 08-Dec-2020 5 days ✓ 08-Dec-2020 0 days ✓ 180 174 days days Metals : Metals in Soil/Solid by CRC ICPMS Glass soil jar/Teflon lined cap 1 ✓ 4MX E440 03-Dec-2020 08-Dec-2020 180 5 days 08-Dec-2020 174 0 days days days Physical Tests: pH by Meter (1:2 Soil:Water Extraction) Glass soil jar/Teflon lined cap 4M1 E108 03-Dec-2020 08-Dec-2020 ✓ 09-Dec-2020 24 days 0 days 1 5 days 30 days Physical Tests : pH by Meter (1:2 Soil:Water Extraction) Glass soil jar/Teflon lined cap 4M2 E108 08-Dec-2020 ✓ 09-Dec-2020 03-Dec-2020 30 5 days 24 days 0 days days Physical Tests : pH by Meter (1:2 Soil:Water Extraction) Glass soil jar/Teflon lined cap E108 03-Dec-2020 08-Dec-2020 1 09-Dec-2020 4M3 5 days 24 days 0 days 30 days Physical Tests: pH by Meter (1:2 Soil:Water Extraction) Glass soil jar/Teflon lined cap 4M4 03-Dec-2020 08-Dec-2020 ✓ 09-Dec-2020 24 days ✓ E108 30 5 days 0 davs days Physical Tests : pH by Meter (1:2 Soil:Water Extraction) Glass soil jar/Teflon lined cap 4M5 E108 03-Dec-2020 08-Dec-2020 5 days ✓ 09-Dec-2020 24 days 0 days 1 30 days Physical Tests : pH by Meter (1:2 Soil:Water Extraction) Glass soil jar/Teflon lined cap ✓ ✓ 4M6 E108 03-Dec-2020 08-Dec-2020 30 5 days 09-Dec-2020 24 days 0 days days Physical Tests : pH by Meter (1:2 Soil:Water Extraction) Glass soil jar/Teflon lined cap E108 1 ✓ 4M7 03-Dec-2020 08-Dec-2020 5 days 09-Dec-2020 24 days 0 days 30 days

Page : 7 of 9
Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Matrix: Soil/Solid Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Wild Art Collection						diddion.	riolaning time oxtoot	, ,	******	Troluing Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding Times Eval		Eval Analysis Date		Holding Times		
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap 4M8	E108	03-Dec-2020	08-Dec-2020	30 days	5 days	✓	09-Dec-2020	24 days	0 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap 4MX	E108	03-Dec-2020	08-Dec-2020	30 days	5 days	✓	09-Dec-2020	24 days	0 days	√

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 8 of 9
Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid Evaluation: **x** = QC frequency outside specification; ✓ = QC frequency within specification. Quality Control Sample Type Count Frequency (%) Method QC Lot # QC Regular Actual Expected Evaluation Analytical Methods Laboratory Duplicates (DUP) Mercury in Soil/Solid by CVAAS 126720 16 6.2 5.0 E510 Metals in Soil/Solid by CRC ICPMS E440 126719 1 16 6.2 5.0 pH by Meter (1:2 Soil:Water Extraction) 1 16 6.2 5.0 E108 126721 1 Laboratory Control Samples (LCS) Mercury in Soil/Solid by CVAAS 126720 2 16 12.5 10.0 E510 Metals in Soil/Solid by CRC ICPMS 126719 2 16 12.5 10.0 E440 pH by Meter (1:2 Soil:Water Extraction) 126721 1 16 6.2 5.0 E108 Method Blanks (MB) Mercury in Soil/Solid by CVAAS 126720 16 6.2 1 5.0 E510 Metals in Soil/Solid by CRC ICPMS 126719 16 6.2 5.0 E440

Page : 9 of 9 Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter (1:2 Soil:Water Extraction)	E108 Vancouver - Environmental	Soil/Solid	BC Lab Manual	pH is determined by potentiometric measurement with a pH electrode at ambient laboratory temperature (normally 20 ± 5°C), and is carried out in accordance with procedures described in the BC Lab Manual (prescriptive method). The procedure involves mixing the dried (at <60 °C) and sieved (10mesh/2mm) sample with ultra pure water at a 1:2 ratio of sediment to water. The pH is then measured by a standard pH probe.
Metals in Soil/Solid by CRC ICPMS	E440 Vancouver - Environmental	Soil/Solid	EPA 6020B (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI. This method is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.
Mercury in Soil/Solid by CVAAS	E510 Vancouver - Environmental	Soil/Solid	EPA 200.2/1631 Appendix (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI, followed by CVAAS analysis.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil:Water for pH/EC	EP108 Vancouver - Environmental	Soil/Solid	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water.
Digestion for Metals and Mercury	EP440 Vancouver - Environmental	Soil/Solid	EPA 200.2 (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCl. This method is intended to liberate metals that may be environmentally available.

QUALITY CONTROL REPORT

Work Order :VA20C2524

Page : 1 of 10

Client : Gandalf Consulting Ltd.

: Bob Symington

Address : 500 - 1190 Melville St. P.O. Box 48806

Vancouver BC Canada V6E 3W1

Telephone : 604 633 2750

Project : 6040 LN

PO :----

C-O-C number : 17-858032

Sampler : XS
Site :---Quote number :----

No. of samples received : 9
No. of samples analysed : 9

Laboratory : Vancouver - Environmental

Account Manager : Edward Ngai

Address : 8081 Lougheed Highway

Burnaby, British Columbia Canada V5A 1W9

Telephone : +1 604 253 4188

Date Samples Received : 03-Dec-2020 17:24

Date Analysis Commenced : 08-Dec-2020

Laboratory Department

Issue Date : 09-Dec-2020 16:44

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Position

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Signatories

Contact

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

3		· · · · · · · · · · · · · · · · · · ·
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Ophelia Chiu	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia

Page : 2 of 10
Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Page : 3 of 10
Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

ALS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Soil/Solid							Labora	atory Duplicate (D	OUP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	C Lot: 126721)										
/A20C2429-001	Anonymous	pH (1:2 soil:water)		E108	0.10	pH units	6.52	6.68	2.42%	5%	
letals (QC Lot: 12	(6719)										
/A20C2429-001	Anonymous	aluminum	7429-90-5	E440	50	mg/kg	27300	27800	1.81%	40%	
		antimony	7440-36-0	E440	0.10	mg/kg	1.45	3.65	86.4%	30%	DUP-
		arsenic	7440-38-2	E440	0.10	mg/kg	8.15	11.4	33.2%	30%	DUP-
		barium	7440-39-3	E440	0.50	mg/kg	130	141	8.32%	40%	
		beryllium	7440-41-7	E440	0.10	mg/kg	0.40	0.40	0.007	Diff <2x LOR	
		bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR	
		boron	7440-42-8	E440	5.0	mg/kg	<5.0	<5.0	0	Diff <2x LOR	
		cadmium	7440-43-9	E440	0.020	mg/kg	0.249	0.232	6.85%	30%	
		calcium	7440-70-2	E440	50	mg/kg	5790	6440	10.5%	30%	
		chromium	7440-47-3	E440	0.50	mg/kg	41.2	38.7	6.24%	30%	
		cobalt	7440-48-4	E440	0.10	mg/kg	10.7	11.3	4.90%	30%	
		copper	7440-50-8	E440	0.50	mg/kg	103	73.4	33.6%	30%	DUP-
		iron	7439-89-6	E440	50	mg/kg	28100	31300	11.0%	30%	
		lead	7439-92-1	E440	0.50	mg/kg	23.2	22.4	3.29%	40%	
		lithium	7439-93-2	E440	2.0	mg/kg	14.8	15.8	6.37%	30%	
		magnesium	7439-95-4	E440	20	mg/kg	6410	6750	5.23%	30%	
		manganese	7439-96-5	E440	1.0	mg/kg	485	499	2.74%	30%	
		molybdenum	7439-98-7	E440	0.10	mg/kg	0.93	0.89	5.10%	40%	
		nickel	7440-02-0	E440	0.50	mg/kg	32.6	32.1	1.78%	30%	
			7723-14-0	E440	50	mg/kg	750	832	10.4%	30%	
		phosphorus	7440-09-7	E440	100	mg/kg	920	980	7.14%	40%	
		potassium	7782-49-2	E440	0.20		0.31	0.29	0.02	Diff <2x LOR	
		selenium 				mg/kg					
		silver	7440-22-4	E440	0.10	mg/kg	0.47	0.45	0.02	Diff <2x LOR	
		sodium	7440-23-5	E440	50	mg/kg	160	179	19	Diff <2x LOR	
		strontium	7440-24-6	E440	0.50	mg/kg	33.1	33.0	0.426%	40%	
		sulfur	7704-34-9	E440	1000	mg/kg	<1000	<1000	0	Diff <2x LOR	
		thallium	7440-28-0	E440	0.050	mg/kg	0.094	0.098	0.004	Diff <2x LOR	
		tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	0	Diff <2x LOR	
		titanium	7440-32-6	E440	1.0	mg/kg	1190	1300	8.80%	40%	
		tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	

Page : 4 of 10 Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Sub-Matrix: Soil/Solid					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Metals (QC Lot: 126	719) - continued										
VA20C2429-001	Anonymous	uranium	7440-61-1	E440	0.050	mg/kg	0.464	0.493	6.10%	30%	
		vanadium	7440-62-2	E440	0.20	mg/kg	66.1	75.1	12.8%	30%	
		zinc	7440-66-6	E440	2.0	mg/kg	142	155	8.70%	30%	
		zirconium	7440-67-7	E440	1.0	mg/kg	1.7	1.9	0.2	Diff <2x LOR	
Metals (QC Lot: 126720)											
VA20C2429-001	Anonymous	mercury	7439-97-6	E510	0.0500	mg/kg	0.118	0.0993	0.0186	Diff <2x LOR	

Qualifiers

Qualifier Description

DUP-H Duplicate results outside ALS DQO, due to sample heterogeneity.

Page : 5 of 10
Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

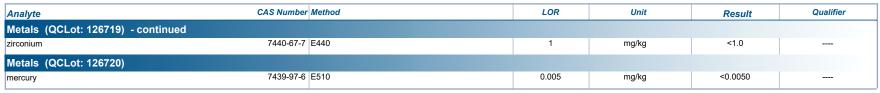
ALS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Metals (QCLot: 126719)						
luminum	7429-90-5	E440	50	mg/kg	<50	
ntimony	7440-36-0	E440	0.1	mg/kg	<0.10	
rsenic	7440-38-2	E440	0.1	mg/kg	<0.10	
arium	7440-39-3	E440	0.5	mg/kg	<0.50	
eryllium	7440-41-7	E440	0.1	mg/kg	<0.10	
smuth	7440-69-9	E440	0.2	mg/kg	<0.20	
oron	7440-42-8	E440	5	mg/kg	<5.0	
admium	7440-43-9	E440	0.02	mg/kg	<0.020	
alcium	7440-70-2	E440	50	mg/kg	<50	
hromium	7440-47-3	E440	0.5	mg/kg	<0.50	
obalt	7440-48-4	E440	0.1	mg/kg	<0.10	
opper	7440-50-8	E440	0.5	mg/kg	<0.50	
on	7439-89-6	E440	50	mg/kg	<50	
ad	7439-92-1	E440	0.5	mg/kg	<0.50	
hium	7439-93-2	E440	2	mg/kg	<2.0	
agnesium	7439-95-4	E440	20	mg/kg	<20	
anganese	7439-96-5	E440	1	mg/kg	<1.0	
olybdenum	7439-98-7	E440	0.1	mg/kg	<0.10	
ckel	7440-02-0	E440	0.5	mg/kg	<0.50	
hosphorus	7723-14-0	E440	50	mg/kg	<50	
otassium	7440-09-7	E440	100	mg/kg	<100	
elenium	7782-49-2	E440	0.2	mg/kg	<0.20	
lver	7440-22-4	E440	0.1	mg/kg	<0.10	
odium	7440-23-5	E440	50	mg/kg	<50	
rontium	7440-24-6	E440	0.5	mg/kg	<0.50	
ulfur	7704-34-9	E440	1000	mg/kg	<1000	
allium	7440-28-0	E440	0.05	mg/kg	<0.050	
1	7440-31-5	E440	2	mg/kg	<2.0	
anium	7440-32-6	E440	1	mg/kg	<1.0	
ngsten	7440-33-7	E440	0.5	mg/kg	<0.50	
ranium	7440-61-1	E440	0.05	mg/kg	<0.050	
anadium	7440-62-2	E440	0.2	mg/kg	<0.20	
inc	7440-66-6		2	mg/kg	<2.0	


 Page
 : 6 of 10

 Work Order
 : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Sub-Matrix: Soil/Solid

Page : 7 of 10
Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid					Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	/ Limits (%)				
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Physical Tests (QCLot: 126721)											
oH (1:2 soil:water)	E108		pH units	6 pH units	100	95.0	105				
Metals (QCLot: 126719)											
aluminum	7429-90-5 E440	50	mg/kg	200 mg/kg	99.3	80.0	120				
antimony	7440-36-0 E440	0.1	mg/kg	100 mg/kg	95.0	80.0	120				
arsenic	7440-38-2 E440	0.1	mg/kg	100 mg/kg	96.2	80.0	120				
parium	7440-39-3 E440	0.5	mg/kg	25 mg/kg	101	80.0	120				
peryllium	7440-41-7 E440	0.1	mg/kg	10 mg/kg	100	80.0	120				
pismuth	7440-69-9 E440	0.2	mg/kg	100 mg/kg	95.8	80.0	120				
poron	7440-42-8 E440	5	mg/kg	100 mg/kg	99.6	80.0	120				
cadmium	7440-43-9 E440	0.02	mg/kg	10 mg/kg	100	80.0	120				
calcium	7440-70-2 E440	50	mg/kg	5000 mg/kg	105	80.0	120				
chromium	7440-47-3 E440	0.5	mg/kg	25 mg/kg	97.8	80.0	120				
cobalt	7440-48-4 E440	0.1	mg/kg	25 mg/kg	99.0	80.0	120				
copper	7440-50-8 E440	0.5	mg/kg	25 mg/kg	96.7	80.0	120				
ron	7439-89-6 E440	50	mg/kg	100 mg/kg	97.8	80.0	120				
ead	7439-92-1 E440	0.5	mg/kg	50 mg/kg	97.4	80.0	120				
ithium	7439-93-2 E440	2	mg/kg	25 mg/kg	102	80.0	120				
nagnesium	7439-95-4 E440	20	mg/kg	5000 mg/kg	102	80.0	120				
manganese	7439-96-5 E440	1	mg/kg	25 mg/kg	101	80.0	120				
nolybdenum	7439-98-7 E440	0.1	mg/kg	25 mg/kg	93.4	80.0	120				
nickel	7440-02-0 E440	0.5	mg/kg	50 mg/kg	97.0	80.0	120				
phosphorus	7723-14-0 E440	50	mg/kg	1000 mg/kg	99.9	80.0	120				
ootassium	7440-09-7 E440	100	mg/kg	5000 mg/kg	96.7	80.0	120				
selenium	7782-49-2 E440	0.2	mg/kg	100 mg/kg	90.7	80.0	120				
silver	7440-22-4 E440	0.1	mg/kg	10 mg/kg	90.2	80.0	120				
sodium	7440-23-5 E440	50	mg/kg	5000 mg/kg	101	80.0	120				
strontium	7440-24-6 E440	0.5	mg/kg	25 mg/kg	97.7	80.0	120				
sulfur	7704-34-9 E440	1000	mg/kg	5000 mg/kg	98.4	80.0	120				
hallium	7440-28-0 E440	0.05	mg/kg	100 mg/kg	93.8	80.0	120				
in	7440-31-5 E440	2	mg/kg	50 mg/kg	91.5	80.0	120				
itanium	7440-32-6 E440	1	mg/kg	25 mg/kg	92.6	80.0	120				
ungsten	7440-33-7 E440	0.5	mg/kg	10 mg/kg	96.3	80.0	120				
ıranium	7440-61-1 E440	0.05	mg/kg	0.5 mg/kg	104	80.0	120				

Page : 8 of 10 Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Sub-Matrix: Soil/Solid					Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	ery (%) Recovery Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Metals (QCLot: 126719) - continued										
vanadium	7440-62-2	E440	0.2	mg/kg	50 mg/kg	99.6	80.0	120		
zinc	7440-66-6	E440	2	mg/kg	50 mg/kg	95.9	80.0	120		
zirconium	7440-67-7	E440	1	mg/kg	10 mg/kg	87.6	80.0	120		
Metals (QCLot: 126720)										
mercury	7439-97-6	E510	0.005	mg/kg	0.1 mg/kg	102	80.0	120		

Page : 9 of 10
Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

ALS

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix: Soil/Solid					Reference Material (RM) Report					
					RM Target	Recovery (%)	Recovery Limits (%)			
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier	
Metals (QCLot	: 126719)									
QC-126719-003	SCP SS-2	aluminum	7429-90-5	E440	9817 mg/kg	101	70.0	130		
QC-126719-003	SCP SS-2	antimony	7440-36-0	E440	3.99 mg/kg	95.1	70.0	130		
QC-126719-003	SCP SS-2	arsenic	7440-38-2	E440	3.73 mg/kg	103	70.0	130		
QC-126719-003	SCP SS-2	barium	7440-39-3	E440	105 mg/kg	102	70.0	130		
QC-126719-003	SCP SS-2	beryllium	7440-41-7	E440	0.349 mg/kg	102	70.0	130		
QC-126719-003	SCP SS-2	boron	7440-42-8	E440	8.5 mg/kg	110	40.0	160		
QC-126719-003	SCP SS-2	cadmium	7440-43-9	E440	0.91 mg/kg	101	70.0	130		
QC-126719-003	SCP SS-2	calcium	7440-70-2	E440	31082 mg/kg	104	70.0	130		
QC-126719-003	SCP SS-2	chromium	7440-47-3	E440	101 mg/kg	103	70.0	130		
QC-126719-003	SCP SS-2	cobalt	7440-48-4	E440	6.9 mg/kg	100	70.0	130		
QC-126719-003	SCP SS-2	copper	7440-50-8	E440	123 mg/kg	99.8	70.0	130		
QC-126719-003	SCP SS-2	iron	7439-89-6	E440	23558 mg/kg	101	70.0	130		
QC-126719-003	SCP SS-2	lead	7439-92-1	E440	267 mg/kg	91.6	70.0	130		
QC-126719-003	SCP SS-2	lithium	7439-93-2	E440	9.5 mg/kg	99.7	70.0	130		
QC-126719-003	SCP SS-2	magnesium	7439-95-4	E440	5509 mg/kg	98.7	70.0	130		
QC-126719-003	SCP SS-2	manganese	7439-96-5	E440	269 mg/kg	104	70.0	130		
QC-126719-003	SCP SS-2	molybdenum	7439-98-7	E440	1.03 mg/kg	93.0	70.0	130		
QC-126719-003	SCP SS-2	nickel	7440-02-0	E440	26.7 mg/kg	98.2	70.0	130		
QC-126719-003	SCP SS-2	phosphorus	7723-14-0	E440	752 mg/kg	93.3	70.0	130		
QC-126719-003	SCP SS-2	potassium	7440-09-7	E440	1587 mg/kg	102	70.0	130		
QC-126719-003	SCP SS-2	sodium	7440-23-5	E440	797 mg/kg	101	70.0	130		
QC-126719-003	SCP SS-2	strontium	7440-24-6	E440	86.1 mg/kg	92.9	70.0	130		
QC-126719-003	SCP SS-2	thallium	7440-28-0	E440	0.0786 mg/kg	92.4	40.0	160		
QC-126719-003	SCP SS-2	tin	7440-31-5	E440	10.6 mg/kg	92.5	70.0	130		
QC-126719-003	SCP SS-2	titanium	7440-32-6	E440	839 mg/kg	109	70.0	130		
QC-126719-003	SCP SS-2	uranium	7440-61-1	E440	0.52 mg/kg	105	70.0	130		
QC-126719-003	SCP SS-2	vanadium	7440-62-2	E440	32.7 mg/kg	103	70.0	130		
QC-126719-003	SCP SS-2	zinc	7440-66-6	E440	297 mg/kg	97.0	70.0	130		
QC-126719-003	SCP SS-2	zirconium	7440-67-7	E440	5.73 mg/kg	89.4	70.0	130		

Page : 10 of 10 Work Order : VA20C2524

Client : Gandalf Consulting Ltd.

Project : 6040 LN

Sub-Matrix: Soil/Solid					Reference Material (RM) Report					
						Recovery (%)	Recovery L	imits (%)		
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier	
Metals (QCLot: 126720)										
QC-126720-003	SCP SS-2	mercury	7439-97-6	E510	0.059 mg/kg	103	70.0	130		

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here

coc Number: 17 - 858032

(lab use only)

Page of

Canada Toll Free: 1 800 668 9878

Report To	Contect and company name below will appear on the final report		Report Format / Distribution				Select Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply)						
Company:	Candalt		Select Report Format: EDF EXCEL EDD (DIGITAL)				Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply						
Contact:	Bas Symunation		Quality Control (QC) Report with Report YES NO				4 day [P4-20%] 1 Business day [E - 100%]						
Phone:			sults to Criteria on Report -			RIOR	3 day [P3-25%] Same Day, Weekend or Statutory holiday [E2 -200%	ᅱ					
	Company address below will appear on the final report	Select Distributi					2 day [P2-50%] (Laboratory opening fees may apply)]						
Street:		Email 1 or Fax					Date and Time Required for all E&P TATs: dd-mmm-yy hh:mm						
City/Province:		Email 2					asts that can not be performed according to the service level selected, you will be contacted.						
Postal Code:		Email 3					Analysis Request	\Box					
	Same as Report To YES NO		Invoice Dis	stribution		1,0	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below	<u>.</u>					
	Copy of Invoice with Report YES NO	Select Invoice D	Select Invoice Distribution:			CONTAINERS	P P P	ا قِ					
Company:	·	Email 1 or Fax				↓ 男		<u> </u>					
Contact:		Email 2	<u>.</u> <u></u>			1₹		Se					
	Project Information		Oil and Gas Require		se)	15	Environmental Division Vancouver	통					
ALS Account # /		AFE/Cost Center:		PO#		ō	Vancouver 5	Š					
Job #:	6040LN	Major/Minor Code:		Routing Code:		-	Work Order Reference VA20C2524 9	se					
PO / AFE:	<u></u>	Requisitioner:				8	VA20C2524 \ \ \ \ \ \ \ \	2					
LSD:		Location:						}					
ALS Lab Work Order# (lab use only):		ALS Contact:	ALS Contact: Sampler: X'5		^S	NUMBER	AMPL	SUSPECTED HAZARD (see Special instructions)					
ALS Sample #	Sample Identification and/or Coordinates	<u> </u>	Date	Time	.	1₹		표					
(lab use only)	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	۱ź		ŝ					
	LAM (Dec.3/20		Sail	1		٦					
	4m2		100			1	Telephone : +1 604 253 4188	⊣					
-	4m 3				1	1		ᅥ					
	4md		1 1		 	1		\dashv					
	1E-sa S		+		 	1		\dashv					
	477		 		 .	1		4					
	4m6				 	1		_					
	4mt		1 1,		1 1	1		_					
, ,	4m 88		⊥ ₩		W.	1							
	<u> </u>	<u></u>			V		X .						
ny Mar managa						<u> </u>		_					
		·						4					
, and take the		. .	<u> </u>	<u> </u>		<u> </u>		4					
Drinking	Water (DW) Samples¹ (client use) Special instruction		add on report by clici actronic COC only)	king on the drop-de	own list below —								
	from a Regulated DW System?		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			- 46	zen SIF Observations Yes No Packs Cubes Custody seal intact Yes No	1					
YE:	s 🗌 NO					Cooli	ling Initiated	- [
Are samples for human consumption/ use?							INITIAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATURES °C	コ					
YE	' ' ' _ ' _ ' '						* 13.9	- [
	SHIPMENT RELEASE (client use)		INITIAL SHIPMEN	T	ıb use only)		FINAL SHIPMENT RECEPTION (lab use only)	コ					
Released by:	<u> </u>	e: Received by:		Date:	#1 2g 18	Time:	e: Received by: MB Date: Sec 3 Time: 5:24P	'n					
REFER TO BACK P	PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WHI	TE - LABORATORY	COPY YELLOV	W - CLI	LIENT COPY JUNE 20 o ps	RONT					