## **FINAL**

# PHASE II ENVIRONMENTAL SITE ASSESSMENT FOR FOUR SITES ON THE PIPSUEL, JOEYASKA, AND NICOLA MAMEET RESRVES

## **MERRITT, BC**

Project No. 14-0493

## Prepared for

## Lower Nicola Indian Band 181 Nawishaskin Lane, Merritt, BC. V1K 0A7

&

## **Aboriginal Affairs and Northern Development Canada**

1138 Melville Street, Suite 600 Vancouver, B.C. V6E 4S3

## Submitted by

## Columbia Environmental Consulting Ltd.

RR#2, Site 55, Compartment 10 Penticton, BC V2A 6J7

March 31, 2014





RR#2, Site 55, Compartment 10 Penticton, BC, V2A 6J7

March 31, 2014

Lower Nicola Indian Band 181 Nawishaskin Lane, Merritt, BC. V1K 0A7

Attention: Mr. John Keating, LNIB Lands and Leasing Office

Subject: Phase II Environmental Site Assessment (ESA), for Four Sites on the

Pipseul, Joeyaska and Nicola Mameet Reserves, Merritt, BC.

We trust that this report meets your needs. Two hard copies of the report and three CD-ROMs including the source files and an Adobe PDF version have been provided. Please do not hesitate to call if you have any questions or comments, or if you require anything further.

Yours truly,

Columbia Environmental Consulting Ltd.

Per: Graham Martens, R.P.Bio

Project Manager

Attch.

## **EXECUTIVE SUMMARY**

Based on the findings of historical environmental investigations, the Lower Nicola Indian Band (LNIB) and Aboriginal Affairs and Northern Development Canada (AANDC) created a list of priority sites requiring further investigation which included the Pipsuel IR#3 Concrete Plant, Nicola Mameet IR#1 Asphalt Plant and former Mojos Gas Station, and salt contamination on the Joeyaska IR# 2 related to the off-site adjacent Godey Gravel Pit all near Merritt, BC.

Columbia Environmental Consulting Ltd. (Columbia) was retained by the LNIB, on behalf of AANDC, to conduct a Phase II Environmental Site Assessment (ESA) for the priority list of four Areas of Potential Environmental Concern (APECs) located on three (3) reserves.

## Pipsuel IR#3 Concrete Plant

The Pipsuel IR#3 Concrete Plant was reported to have been an LNIB owned batch concrete plant and gravel pit in operation over 35 years ago. All that remains of the concrete plant are some concrete foundations, occasional treated wood waste, and scrap metal. Based on the former Site use and scattered wastes, the Site was retained as a potential concern with APECs including a treated wood waste pile, metal debris pile, poured concrete waste, hydrocarbon containers, former silo, and former building footprint. Currently, the LNIB are in the process of obtaining permitting to re-open the Site as a gravel pit, and require confirmation of the presence or absence of Contaminants of Potential Concern (COPC) at concentrations of concern at the Site.

An intrusive investigation was undertaken including test pit and borehole investigation, installation of a groundwater monitoring well, and sampling of both surface and subsurface soil and water media. A limited volume of waste materials generally consisting of metal debris and wood waste were identified at the former concrete plant. The presence of PAH contaminated soil was confirmed at the treated wood waste (APEC 1). Delineation of the PAH contaminated soils was not achieved; however, is anticipated to be limited to shallow soils underlying the treated wood debris. The treated wood waste area is retained as AEC 1. Contaminated soils were not encountered at the remaining APECs. Based on the absence of contaminated soil, APECs 2 through 5 were dismissed.

It should be noted that detectable concentrations of aluminum, naphthalene and toluene were reported in the initial round of groundwater monitoring. A second round of follow-up monitoring did not detect measureable concentrations of these parameters. It is standard industry practice to complete two (2) compliant sampling events to definitively dismiss these COPC detections; however, as the LNIB is not seeking specific approvals and the high probability that the initial detections were a drilling artifact, no further investigation is recommended at this time.

## Nicola Mameet IR#1 Peter Bros Asphalt Plant and Mojos Gas Station

The Peter Brothers Asphalt Plant and former Mojos Gas Station were identified as APECs during the Phase I ESA of the Nicola Mameet IR#1. The two (2) Sites are located within the band operated gravel pit. Various debris, fuel handling and storage, production of asphalt, and spotty soil staining were identified as potential concerns throughout the property. Additionally, at the time of the Phase I ESA it was unknown if the former gas station USTs had been removed.



Further investigation was recommended for the Site to update the property to current Federal guidance and protocols with respect to contaminated sites assessments.

An intrusive investigation was conducted throughout the property at the current asphalt plant location, former asphalt plant location, recycled asphalt pile, former service station, former maintenance/warehouse building, and at the current Above Ground Storage Tank (AST). A total of eight (8) boreholes were installed throughout the property, with two (2) completed as groundwater monitoring wells.

Based on the findings it is concluded that the small volumes of waste materials including miscellaneous metals, concrete wastes, machinery and spotty surficial staining located throughout the gravel pit property are typical of commercial operations. These materials do no present a significant environmental risk, rather are a general housekeeping issue. Contaminated soil was not identified by this investigation. Based on the absence of soil contamination, APECs 2 through 6 are dismissed.

Concentrations of silver and toluene greater than guidelines were identified in groundwater at MW14-1 located down gradient of the asphalt plant area (APEC 1). Naphthalene and xylenes concentrations were also detected at concentrations less than applicable guidelines. It was suspected that the trace concentrations of toluene and naphthalene could be artifacts from the ODEX drilling process¹ given the significant depth to groundwater and absence of soil contamination identified. A second round of groundwater sampling did not detect measurable concentrations of silver, naphthalene, toluene or xylenes. As such, the indicated detections from March 2014 were concluded to be an artifact of drilling and have been shown by the May 2014 sampling to have attenuated. It is standard industry practice to complete two (2) compliant sampling events to definitively dismiss these COPC detections; however, as the LNIB is not seeking specific approvals and the high probability that the previous detections were a drilling artifact, no further investigation is recommended at this time and APEC 1 is dismissed. No further investigation is recommended at this time.

#### Joeyaska IR#3 Godey Gravel Pit

The Godey Pit is a Ministry of Transportation (MoT) gravel pit with a containment facility for mixed salt and winter abrasives, located off-site but adjacent to the Joeyaska IR#2. The presence of salt impacted groundwater has been identified both at and down gradient of the Pit, including the Joeyaska Reserve. Investigation and risk assessment of the salt- impacted groundwater by MoT is on-going, with an application submitted to the BC Ministry of Environment (MoE) for an approval in principal of a remedial plan consisting of monitored natural attenuation in conjunction with source removal over time. A third party review of environmental studies provided by the LNIB and a round of independent monitoring was recommended to provide an update to the LNIB regarding the risks and liability posed to the Joeyaska IR#2 by the salt contamination.

<sup>&</sup>lt;sup>1</sup> ODEX requires the use of compressed air to drive the down-hole air rotary bit and is susceptible to cross contamination from any leaks or contamination within the compressor unit.



-

Ten (10) monitoring wells have been installed by MoT on the Joeyaska Reserve to investigate the off-site migration of salt contaminated groundwater from the Godey Pit. Eight (8) of the ten (10) wells were located, monitored and sampled. Overall the general trend of sodium and chloride concentrations in groundwater were consistent with the previous investigations completed by MoT. Concentrations of dissolved metals were found to meet the applicable criteria in all wells sampled. This supports MoT's position that the dissolved metals impacts identified in the previous MoT investigations are not related to the salt contamination originating from the Godey Pit.

The Godey Pit is retained as an AEC. This contaminated site is under active investigation by MoT following the BC Ministry of Environment (MoE) procedures with respect to the Provincial Contaminated Sites Regulation and Environmental Management Act. MoT has submitted a remediation plan supporting an application for an Approval in Principal (AIP) and Wide Area Contaminated Site designation. The remediation plan calls for monitored natural attenuation with gradual source removal and administrative controls to mitigate unacceptable risks. Estimates for monitored natural attention by MoT are up to 25 and 41 years, respectively, for sodium and chloride concentrations in groundwater to drop to acceptable levels. Theoretically these attenuation periods may be reduced if a more aggressive remedial strategy were undertaken such as complete source removal on a quicker timeline. It is our understanding that an AIP has not been issued to date and consultation by MoT with the MoE affected landowners is ongoing.

The Joeyaksa Reserve is under Federal jurisdiction; therefore, the BC MoE process and Wide Area Contaminated Site designation would not apply to the contamination on the reserve. There is no parallel Federal prescriptive process. A unique legal agreement between AANDC/LNIB and MoT outlining expectations with milestones and remediation endpoints, responsibilities, and consideration is required to address AANDC and the LNIB's liabilities associated with the contamination. Legal council should be sought on this issue. The environmental due diligence completed by MoT to support the Wide Area Contaminated Site designation is anticipated to meet the technical requirements for any AANDC approval, assuming the remediation plan is acceptable to LNIB stakeholders.



## TABLE OF CONTENTS

| 1.0        | INTR           | ODUCTION                                                                   | 1   |
|------------|----------------|----------------------------------------------------------------------------|-----|
| 1.         | .1 Овј         | ECTIVE                                                                     | 1   |
| 1.         |                | CKGROUND                                                                   |     |
| 1.         | .3 Scc         | PE OF WORK                                                                 | 2   |
| 2.0        | SITE           | DESCRIPTION                                                                | 3   |
| 2.         | .1 Pips        | SEUL IR#3 FORMER CONCRETE PLANT                                            | 3   |
|            |                | OLA MAMEET IR#1 FORMER SERVICE STATION AND ASPHALT PLANT                   |     |
| 2          | .3 Јое         | YASKA IR#2 GODEY PIT SALT CONTAMINATION                                    | 5   |
| 3.0        | PREV           | IOUS ENVIRONMENTAL REPORTS                                                 | 6   |
| 3          | .1 Pips        | SEUL IR#3 FORMER CONCRETE PLANT                                            | 6   |
| 3.         | .2 MA          | MEET LAKE IR#1 FORMER GAS STATION AND ASPHALT PLANT                        | 6   |
| 3          | .3 Јое         | YASKA IR#2 GODEY PIT SALT CONTAMINATION                                    | 8   |
| 4.0        | AREA           | S OF POTENTIAL ENVIRONMENTAL CONCERN                                       | .12 |
| 4          | .1 Pips        | SEUL IR#3 FORMER CONCRETE PLANT                                            | 12  |
| -          |                | MEET LAKE IR#1 FORMER GAS STATION AND ASPHALT PLANT                        |     |
| 4          | .3 Јое         | YASKA IR#2 GODEY PIT SALT CONTAMINATION                                    | .14 |
| 5.0        | METI           | HODOLOGY                                                                   | .16 |
| 5          | .1 HEA         | ALTH AND SAFETY PLAN                                                       | 16  |
| _          |                | FACE SOIL INVESTIGATION                                                    |     |
| 5          |                | T PIT INVESTIGATION                                                        |     |
| 5          |                | REHOLE INVESTIGATION                                                       |     |
|            |                | DUNDWATER CHARACTERIZATION                                                 |     |
|            |                | FACE WATER CHARACTERIZATION                                                |     |
|            |                | MPLE PREPARATION AND LABORATORY ANALYSIS                                   |     |
| 5          |                | DATE NATIONAL CLASSIFICATION SYSTEM FOR CONTAMINATED SITES (NCSCS) SCORING |     |
| 6.0        |                | JLATORY FRAMEWORK                                                          |     |
| -          |                | ERAL GUIDELINES                                                            | -   |
| 6          |                | VINCIAL STANDARDS                                                          |     |
|            |                | Provincial Background Soil Quality                                         |     |
| <b>7.0</b> | PHAS           | E II ESA FINDINGS                                                          | .21 |
| 7          | .1 Pips        | SEUL IR#3 FORMER CONCRETE PLANT                                            | .21 |
|            | 7.1.1          | Surface Conditions                                                         |     |
|            | 7.1.2          | Hydrogeology                                                               |     |
|            | 7.1.3          | Waste Material                                                             |     |
|            | 7.1.4          | Soil Vapor Screening                                                       |     |
|            | 7.1.5<br>7.1.6 | Laboratory Analysis Summary and Discussion                                 |     |
| 7          |                | MEET LAKE IR#1 FORMER SERVICE STATION AND ASPHALT PLANT                    |     |
| ,          | 7.2.1          | Structures                                                                 |     |
|            | 7.2.2          | Surface Conditions                                                         |     |
|            | 7.2.3          | Hydrogeology                                                               |     |
|            | 7.2.4          | Soil Vapor Screening                                                       | .26 |



| 7.2.5 Laboratory Analysis                                                   | 26         |
|-----------------------------------------------------------------------------|------------|
| 7.2.6 Summary and Discussion                                                | 28         |
| 7.3 JOEYASKA IR#2 GODEY PIT SALT CONTAMINATION                              | 28         |
| 7.3.1 Groundwater Monitoring                                                | 28         |
| 7.3.2 Hydrogeology                                                          | 29         |
| 7.3.3 Laboratory Analysis                                                   | 29         |
| 7.3.4 Summary and Discussion                                                | 30         |
| 7.4 DATA REDUCTION AND VALIDATION                                           | 31         |
| 7.4.1 Field Quality Assurance/ Quality Control                              | 31         |
| 7.4.2 Lab Quality Assurance/ Quality Control                                | 32         |
| 8.0 NCSCS CLASSIFICATION UPDATE                                             | 34         |
| 9.0 CONCLUSION & RECOMMENDATIONS                                            | 35         |
| 10.0 REPORT USE & LIMITATIONS                                               | 37         |
| 11.0 PROFESSIONAL STATEMENT                                                 | 38         |
| 12.0 REFERENCES                                                             | 39         |
| T TOTAL OF THE WINDS TO A DE TO                                             |            |
| LIST OF IN-TEXT TABLES                                                      |            |
| Table A: APECs – Pipseul IR#3 Former Concrete Plant                         | 12         |
| Table B: APECs - Mojos Service Station and Peter Bros Asphalt Plant         | 14         |
| Table C. Pipseul Concrete Plant Summary of Solid Waste                      | 22         |
| Table D. Groundwater Monitoring Results – Joeyaksa IR#2                     |            |
| Table E. Relative Percent Differences (RPDs) of Duplicate Analyses          |            |
| Table F: Summary of APECs and AECs                                          | 35         |
| LIST OF FIGURES                                                             |            |
| Figure 1 – Site Locations                                                   | APPENDIX A |
| Figure 2 – Site Plan – Former Pipseul Concrete Plant                        |            |
| Figure 3 – Sample Results - Former Pipseul Concrete Plant                   |            |
| Figure 4 – Site Plan – Lot 265 Mojos Station and Peter Bros Asphalt Plant   |            |
| Figure 5 – Sample Results - Lot 265 Mojos Station and Peter Bros Asphalt Pl |            |
| Figure 6 – Site Plan – Joeyaska IR#2 Salt Contamination                     |            |
| Figure 7 – Sample Results – Joeyaska IR#2 Salt Contamination                |            |
| Figure 8 – Piezometric Surface - Joeyaska IR#2 Salt Contamination           |            |
| LIST OF APPENDICES                                                          |            |
| Figures                                                                     | APPENDIX A |
| Photographic Documentation                                                  |            |
| Test Pit and Borehole Logs                                                  |            |
| Analytical Tables                                                           |            |
| Laboratory Certificates of Analysis                                         |            |
| CCME NCSCS Spreadsheets                                                     |            |
| Comments on MoT Response to LNIB Concerns                                   |            |



#### LIST OF ACRONYMS

**AANDC** Aboriginal Affairs and Northern Development Canada

**AERA** Agricultural and Ecological Risk Assessment

**APEC** Areas of Potential Environmental Concern

**AIP** Approval in Principle

**CCME** Canadian Council of Ministers of the Environment

**CEQG** Canadian Environmental Quality Guidelines

**COPC** Contaminants of Potential Concern

CSA Canadian Standards Association

**CSQG** Canadian Soil Quality Guidelines

**CSR** Contaminated Sites Regulation (BC)

**ESA** Environmental Site Assessment

**FIGWQ** Federal Interim Groundwater Quality

**HASP** Health and Safety Plan

*IACR* Index of Additive Cancer Risk

LEPH/HEPH Light/Heavy Extractable Petroleum Hydrocarbon

**LNIB** Lower Nicola Indian Band

**MDL** Method Detection Limit

*MoE* BC Ministry of Environment

*MoT* BC Ministry of Transportation

**NCSCS** National Classification System for Contaminated Sites

**PAH** Polycyclic Aromatic Hydrocarbon

**PHC** Petroleum Hydrocarbon

**RAP** Remedial Action Plan

**TPE** Total Potency Equivalent

*UST/AST* Underground/Aboveground Storage Tank

**VOC** Volatile Organic Compound

**WAS** Wide Area Site



#### 1.0 INTRODUCTION

Columbia Environmental Consulting Ltd. (Columbia) was retained by the Lower Nicola Indian Band (LNIB), on behalf of Aboriginal Affairs and Northern Development Canada (AANDC), to conduct a Phase II Environmental Site Assessment (ESA) for a priority list of four Areas of Potential Environmental Concern (APECs) located on three (3) reserves: Pipseul IR #3, Mameet IR #1, and Joeyaska IR #2, herein referred to as the "Sites" or "Site". The three reserves are located northwest, west, and east of Merritt, B.C., respectively. This report details the results of the Phase II ESA and follows the procedures outlined in the Canadian Standards Association (CSA) document Z769-00 Phase II ESA, March 2000.

#### 1.1 OBJECTIVE

The objective of this assessment was to determine the current environmental and physical conditions at the Sites and to develop appropriate remediation strategies and costs if required. This includes the identification of contaminated media (soil, soil vapour, surface water, and groundwater), and delineation of contaminated media where possible.

#### 1.2 BACKGROUND

A Phase I ESA of ten (10) LNIB Reserves was conducted in 2010 (Columbia 2011). Nineteen (19) Areas of Potential Environmental Concern (APEC) were identified associated with residential Aboveground Storage Tanks (ASTs), dumps and waste sites, sawmills, gas stations, a concrete plant, shooting area, and known contaminated soils associated with a residential heating oil underground storage tank (UST). Potentially affected media identified included soil, groundwater, surface water, and soil vapour.

Based on the findings of the Phase I ESA, the LNIB and AANDC created a list of priority sites for further investigation which included:

- Pipseul IR #3
  - o APEC 1 Concrete Plant
- Mameet IR #1
  - o APEC 12a Mojo Gas Station
  - o APEC 12b Peter Bros Asphalt Plant
- Joeyaska IR #2
  - o APEC 5 Godey Gravel Pit (Off-site)

The Pipsuel IR#3 Concrete Plant was reported to have been an LNIB owned batch concrete plant and gravel pit in operation over 35 years ago. All that remains of the concrete plant are some concrete foundations, occasional treated wood waste, and scrap metal. Based on the former Site use and scattered wastes, the Site was retained as an APEC. Currently, the LNIB are in the process of obtaining permitting to re-open the Site as a gravel pit, and require confirmation of the



presence or absence of Contaminants of Potential Concern (COPC) at concentrations of concern at the Site.

The Peter Brothers Asphalt Plant and former Mojos Gas Station were identified as APECs during the Phase I ESA of the Nicola Mameet IR#1. The two Sites are located within the band operated gravel pit. Various debris, fuel handling and storage, production of asphalt, and spotty soil staining were identified as potential concerns throughout the property. Additionally, at the time of the phase I ESA it was unknown if the former gas station USTs had been removed. Further investigation was recommended for the Site to update the property to current Federal guidance and protocols with respect to contaminated sites assessments.

The Godey Pit is a Ministry of Transportation (MoT) gravel pit with a containment facility for mixed salt and winter abrasives, located adjacent to the Joeyaska IR#2. The presence of salt impacted groundwater has been identified both at and down gradient of the Pit, including the Joeyaska Reserve. Investigation and risk assessment of the salt- impacted groundwater by MoT is on-going, with an application submitted to the BC Ministry of Environment (MoE) for an approval in principal of a remedial plan consisting of monitored natural attenuation in conjunction with source removal over time. A third party review of environmental studies and a round of independent monitoring was recommended to provide an update to the LNIB regarding the risks and liability posed to the Joeyaska IR#2 by the salt contamination.

#### 1.3 SCOPE OF WORK

The Phase II ESA consisted of the following tasks:

- Review Background Information and prepare a Detailed Work Plan;
- Prepare a Site-specific Health and Safety Plan (HASP);
- Conduct Ground Penetrating Radar (GPR) and Locate surveys at the Sites;
- Characterize environmental media at the APECs with respect to the applicable criteria;
- Delineate contaminated media where possible;
- Review of five technical reports completed by SNC Lavalin Environment (SNC) and Azimuth Consulting Group completed in 2011, and any addenda to the 2011 technical reports in order to summarize the noted reports' assessment of liability and risks from the salt contamination originating from the Godey Pit. Review, analysis and consideration of other available information, assessments, reports and compliance investigations, in relation to the contamination at Godey Pit, were not conducted;
- Update Sites according to CCME National Classification System for Contaminated Sites (NCSCS); and
- Preparation of this written report.



#### 2.0 SITE DESCRIPTION

The LNIB is comprised of ten (10) reserves that total 17,500 acres. Nine (9) reserves are located within the Merritt area, BC. The Pipseul IR #3 is located along Hwy 97C near Logan Lake, approximately 40 km northwest of Merritt. The Nicola Mameet IR#1 is located along Highway 8 and 97C, approximately 8 km west of Merritt. The Joeyaska IR#2 is located approximately 5 km east of Merritt. Detailed descriptions of the individual Sites are presented below, and site features are presented on figures included in Appendix A. Representative photographs are provided in Appendix B.

#### 2.1 PIPSEUL IR#3 FORMER CONCRETE PLANT

Pipseul IR#3 is square in shape and 220 acres in size. Coordinates for the Site are zone 10 654938E, 5592863N on topographic NTS map sheet 092P07. The Former Concrete Plant is located on the northern portion of the Reserve, with the remaining surrounding reserve lands consisting of cattle pasture and undeveloped lands. The Mamit Lake Road (Highway 97C) right of way and a gas pipeline right of way go through the northeast corner of the Reserve.

The former concrete plant is located on a sand and gravel terrace above the Guichon Creek floodplain, at an elevation of approximately 1000 m above sea level. The Site is relatively flat, with a moderate embankment bordering the Site and sloping to the east toward Guichon Creek. Overall topography slopes to the south, with Guichon Creek flowing south. The property is fenced and gated, and accessible by gravel road. One overhead electrical power pole was noted on the eastern portion of the Site, but has been deactivated. The Site is not reported to be serviced by any other utilities or water wells. The BC MoE Water well database<sup>2</sup> was searched for all water wells within a 500 m radius of the Site on February 14<sup>th</sup>, 2014. No wells were identified within the boundary of the property, or within 500 m of the Site.

The former concrete plant consists of two structures (silo, and pedestal), a former sump, several concrete pads, and limited scattered debris throughout the area. Debris generally consists of miscellaneous metals from old conveyor and support systems, with a limited amount of empty hydrocarbon containers and treated wood noted on the northern portions of the Site. Concrete foundations are located along the top of the embankment to Guichon Creek floodplain, with occasional metals and concrete pieces pushed over the bank. The silo and majority of the metal debris is located in the center of the Site. Cut slopes from historical sand and gravel extraction are visible on the southern portion of the Site.

<sup>&</sup>lt;sup>2</sup> Ministry of Environment. 2013. Water Resource Atlas Web Mapping Application <a href="http://www.env.gov.bc.ca/wsd/">http://www.env.gov.bc.ca/wsd/</a> data searches/wrbc/index.html



\_

#### 2.2 NICOLA MAMEET IR#1 FORMER SERVICE STATION AND ASPHALT PLANT

Nicola Mameet IR #1 is the largest of the ten (10) LNIB reserves at 11,350 acres in size. The former Mojos service station and Peter Bros. asphalt plant are located on Lot 265, on the southern portion of the Reserve along Hwy 97, also referred to as 9886 Mamit Lake road. Coordinates for the Site are zone 10 654367E 5556900 on topographic NTS map sheet 092I02. The majority of land use in the area is residential and agricultural with two (2) industrial areas along Mamit Lake Road, including the former Mojos Service Station and Peter Bros. Asphalt Plant.

The former service station and asphalt plant are located in a gravel pit that spans two lots: Lot 265 and Lot 117. The service station and plant are located in Lot 265 making up the eastern portion of the gravel pit. Lot 117 is adjacent, and contains the aggregate source and stockpile area. Lot 265 is approximately 3.7 acres in size, is relatively flat with a gentle slope to the south and consists of the former station building and shop, a weigh scale, and a former workshop that is currently used as a warehouse. Prior to being a service station it is reported that Mojos was a concrete batch plant, with a concrete support for the former loading area located at the back of the abandoned station building. A newer double walled 3,000 L Diesel AST is located at the northern end of the former service station on a concrete pad.

Peter Bros. asphalt plant was historically located on the northern portion of Lot 265, on an upper terrace northwest of the former workshop/warehouse. Currently, the asphalt plant is located due west and on grade with the former service station building, southwest of the warehouse. The portable asphalt plant consists of four trailers with different components, including a liquid asphalt cement tank, drum mixer and blower, ASTs, and a generator. The plant also contains a conveyor and loading silo, aggregate feed bins, and two metal lined in ground sumps, not on trailers.

A recycled asphalt stockpile was noted in the gravel pit on Lot 117 to the west. Storage of miscellaneous metals and equipment was noted throughout the property, generally concentrated around the existing buildings. The property is not paved, and contains graded gravel road base in the main traffic areas. There are concrete pads in front of the former service station and warehouse, and abandoned concrete structures located south of the service station. Three (3) groundwater monitoring wells are located in the former tank nest, within the concrete pad on the east side of the former service station building.

Nicola River is located 1.7 km to the south, Guichon Creek is located 3 km to the east, and both are down gradient. The gravel pit property is fenced, and accessible by Highway 97. The Site is serviced by overhead electrical, and forced main water from a pump station located to the south of the property. A total of two (2) groundwater wells were identified on the BC water resource atlas within 500 m of the Site. Both wells are owned by the LNIB. Well number 302678 is a water supply well located 340 m to the southeast. Lithology consists of 104 feet of sand and gravel, over a clay and rock layer to a depth of 105 feet. Well number 25702 is of unknown use and located 500 m from the center of the gravel pit. Lithology indicates a water bearing gravel unit at 85 feet, with alternating sandy gravel and till layers to surface.



#### 2.3 JOEYASKA IR#2 GODEY PIT SALT CONTAMINATION

The Joeyaska IR#2 is roughly rectangular in shape and is 320 acres in size, located east of Merritt, BC on topographic NTS map sheet 092I02. The majority of land use in the area is residential with agricultural sections. Godey Creek runs through the north portion of the reserve, which is a tributary of the Coldwater River located west of the Site. Right of ways for Highway 97C and an oil pipeline cross the northern portion of the Reserve.

The MoT Godey Pit borders the southeast edge of Joeyaska Reserve, and is up gradient of rural agricultural property. The Pit is moderately sloped to the northwest, and is used for storage of salt, winter abrasive, as an aggregate source, and for storage miscellaneous road maintenance materials. Former salt storage operations have resulted in off-site migration onto the adjacent Joeyaska Reserve with sodium and chloride impacts identified in groundwater wells across the southwestern portion of the Joeyaska Reserve. Topography in this portion of the Site is sloped gently to the northwest, towards the Coldwater River located approximately 1.5 km to the west. There are nine (9) groundwater monitoring wells, and one drinking water well located within the impacted portion of the Site.



#### 3.0 PREVIOUS ENVIRONMENTAL REPORTS

This section summarizes previous environmental reports reviewed in development of the detailed work plan. Report information is provided below by APEC.

#### 3.1 PIPSEUL IR#3 FORMER CONCRETE PLANT

Phase I Environmental Site Assessment, Pipseul IR#3, Lower Nicola Indian Band, Merritt, BC, 2011, Columbia Environmental Consulting Ltd.

In 2010/2011, Columbia conducted a reserve-wide Phase I ESA for the Pipseul IR#3, which consisted of the compilation of known and potential environmental issues based on historical reviews, interviews, and site inspections. Two (2) APECs were identified for the Site, including the Former Concrete Plant, and Off-site Gas Pipeline Right of Way (R/W).

Waste materials observed at the former concrete plant included empty hydrocarbon containers, scrap metals, occasional solid wastes, treated wood, and waste concrete. An open concrete lined sump was observed on the property. Though the debris was observed to limited in nature and likely more of a general housekeeping issue, a Phase II ESA was recommended based on former Site use with respect to fuel and solid wastes handling and storage, and to confirm the presence or absence of COPCs.

#### 3.2 MAMEET LAKE IR#1 FORMER GAS STATION AND ASPHALT PLANT

Stage 2 Preliminary Site Investigation, 9886 Mameet Lake Road, Merritt, BC, Lower Nicola Indian Band, 2003, Levelton Engineering Ltd.

Levelton Engineering Ltd (Levelton) completed a Phase II ESA for the 9886 Mamit Lake Road related to the Peter Bros Asphalt Plant and Mojos Enterprises Ltd service station (Mojos). At the time of the investigation the asphalt plant was located on the northwest portion of the Site, was not in operation, and consisted of portable equipment including conveyor systems, mixing tanks, generator, and several ASTs for diesel and propane. Several containers of various chemical were also noted to be stored between the asphalt plant and an abandoned warehouse, and were considered to be an APEC (APEC 4). The ASTs were not observed to have secondary containment, and were also considered an APEC (APEC 5).

The southern half of the Site was occupied by Mojos Enterprises, consisting of an office building, maintenance building, weigh scale, and a dismantled former ready mix concrete plant. Four USTs associated with the service station had formerly been present on-site. In 1999 Golder Associates completed a Phase I ESA for the station, and recommended a Phase II ESA. A second Phase I ESA was completed at a later date for the Site by Levelton. These reports were not available for review, but were summarized in the Levelton Phase II ESA.



Historical review indicates the service station was operational between 1987 and 1999. The USTs were removed in 1999, but no soil or groundwater investigation was undertaken at the time of removal. The former tank nest was considered an APEC. Since 1971 auto repair and maintenance works were conducted at the maintenance building, (also referred to as the warehouse), with storage of waste oil in an adjacent AST. The maintenance building and AST were considered APECs.

A total of nine (9) boreholes were advanced at the Site, with four (4) completed as groundwater monitoring wells to address the former UST nest, asphalt plant, maintenance building, chemical storage, and used oil AST. The three (3) deeper boreholes in the vicinity of the UST nest were completed as monitoring wells. All groundwater samples collected were found to meet applicable guidelines with all extractable petroleum hydrocarbon (LEPH, HEPH), Polycyclic Aromatic Hydrocarbon (PAH) and Volatile Organic Compounds (VOC) reported below laboratory method detection limits. Soil results from the borehole investigation indicated concentrations of EPH above the applicable guidelines in a layer of surficial soil staining down gradient of the asphalt plant, requiring further investigation. Soil samples collected from the chemical storage area, waste oil storage area, outside the maintenance building, and from the former UST nest were found to meet applicable guidelines, and no further investigation was considered warranted for these APECs.

Confirmatory Environmental Site Investigation for 9886 Mameet Lake Road, Lot 265, Plan Lower Nicola Indian Reserve No.1, 2005, UMA Engineering Ltd.

Minor surficial petroleum hydrocarbon contamination related to the Peter Bros. asphalt plant was identified on the northwest portion of the Site in a Phase II ESA completed by Levelton (2003). Reportedly, Peter Bros. cleaned up the hydrocarbon staining associated with the asphalt operation; however, no environmental professional was present to confirm the condition of the Site following the remedial activities. The objective of the UMA investigation was to confirm the environmental status of the property. It was noted that since 2003 Peter bros had moved the asphalt plant from its previous location northwest of the maintenance building to an area east of the former service station. The asphalt plant remains at this new location to date.

A test pit was advanced in the location of the hydrocarbon staining at the former asphalt plant, and existing on-site groundwater monitoring wells in the vicinity of the former Mojos service station were re-sampled. No hydrocarbon soil contamination identified, and groundwater monitoring results were found to be consistent with the Phase II ESA. Soil samples collected from the former asphalt plant location, current asphalt plant location, and a diesel AST were found to contain LEPH impacts above applicable guidelines.

It was concluded that there were no environmental impacts at the former service station (Mojos). Environmental concerns at the property were limited to the release of diesel fuel in association with both past and on-going asphalt plant operations, and an additional new Band-owned AST for diesel re-fuelling with the potential for a source of release to the subsurface. Removal of waste oil containers and chemicals was recommended, in addition to secondary containment for the new diesel AST.



Based on a conversation with Joe Cuzecrea of Peter Bros (UMA, 2005), it was understood that the area of soil staining at the former asphalt plant had been remediated, by excavation of visually impacted soils, crushing and processing of the hydrocarbon stained soils through the asphalt plant, and backfilling of the impacted area. Soil samples collected from this area by UMA indicated residual impacts remaining in a clay layer approximately 0.8 m deep requiring delineation and additional remedial works.

## 3.3 JOEYASKA IR#2 GODEY PIT SALT CONTAMINATION

Third Party Review of Environmental Studies Pertaining to Salt Contamination Originating on the Godey Pit, Located Near Merritt, BC, Columbia Environmental Consulting Ltd. 2012.

A peer review of technical reports completed by SNC-Lavalin Environment (SNC) and Azimuth Consulting Group completed in 2011 was conducted, specific to salt contamination. A total of five (5) reports were reviewed including a preliminary and detailed site investigation, Human Health Risk Assessment, Agricultural and Ecological Risk Assessment (AERA), Remedial Action Plan (RAP), and a DCAD Erratum for the Ecological Risk Assessment.

During the review it was noted that marginally elevated concentrations of metals were identified in groundwater on the Joeyaska reserve. These metals were not investigated in surface water, nor specifically investigated or considered in the risk assessment. It was concluded that further investigation or justification is required to confirm the absence of risk or liability posed by these metals.

While the risk assessment found risks with regard to human exposures to the contaminants on LNIB lands negligible, the potential for risks were identified for wildlife, amphibians and aquatic invertebrates, and plants. The risk of using contaminated groundwater for irrigation purposes was not assessed; however the AERA indicated that it is likely unsuitable for irrigation. Potential risks posed by consumption of food grown on the reserve was not assessed, nor was potential risks from use or development of a shallow groundwater drinking well. Additional assessment of these ecological and agricultural risks and on-going monitoring of the existing drinking water wells was recommended.

Response to LNIB Re: Godey Pit Contamination on the Joeyaska Reserve and Columbia Environmental Consulting Ltd third Party Review Report, SNC, April 22, 2013.

At the request of MoT, SNC and Azimuth prepared a memorandum in response to the Columbia third party review, which addresses the following:

An addendum to the AERA was completed March of 2012, which replaces the DCAD Erratum, and former AERA. Items address in the addendum included investigation of co-located soil and vegetation samples to facilitate re-evaluation of risks to wildlife and livestock, with no appreciable differences identified.



The report provided clarification that surface water on the Joeyaska Reserve was not investigated for metals as there is no surface water present on the Reserve. The location of Diamond vale Brook shown on historical mapping has been corrected on current mapping. Concentrations of metals observed in groundwater and surface water on adjacent properties were not considered a contaminant of concern with respect to the salt contamination issue, as the appearance of these constituents was not consistent and could not be definitively attributed to the Godey Pit or any other source. At the time of this report SNC is awaiting feedback from the Ministry of Environment (MoE) on this matter.

Potential ecological receptors were noted to be indicative of the adjacent Coldwater Road property, and not the Joeyaska Reserve, as surface water is not present. The agricultural risks with respect to water access and soil fertility impacts due to salt content were revised to "no risk". Further works were completed with regard to identifying a reference site for a review of impacts to traditionally used plants and amphibians, but no reference site meeting the criteria could be identified.

As recommended, continued mining of salt impacted soils from the Godey Pit for use as winter abrasive has continued, with an estimated 28,890 m<sup>3</sup> having been removed. Annual groundwater and surface water monitoring to evaluate natural attenuation of sodium and chloride in both on and off-site areas has been carried out.

Concerns regarding shallow drinking water and potential impacts from salt contamination were addressed. Firstly, the existing groundwater well on the Joeyaska reserve is in a deeper aquifer, with salt impacts in the upper shallower aquifer. It is considered unlikely that salt will impact this deeper aquifer due to the presence of fine grained impermeable soils. Secondly, additional groundwater monitoring of shallow wells on the Joeyaksa reserve have indicated either steady state, or decreasing salt concentrations.

A review of SNC's responses to the Columbia's review was conducted with the following outstanding concerns identified:

- Dismissal of the dissolved metals elevated in groundwater above the CSR Standards as not being related to the activities at the Godey Pit may require further justification. MoE provided a similar critique in their review.
- Clarification is required with respect to impacts to soil fertility on the southwest portion of the Joeyaska Reserve.

Columbia's complete review is included in Appendix G.

MoT Email Response regarding the Godey Pit and Concerns Raised by the LNIB, MoT, 2013

MoT issued a letter response with regard to concerns/points brought forth by the LNIB regarding the salt contamination associated with the Godey Pit. In general terms, the letter response is



supported by the above summarized report, with respect to the applicable framework and the need for further assessment, and revision of remediation plans to address concerns for present and future drinking water.

Memorandum: MoT Godey Pit: Detailed Responses to MoE DSI Comments, SNC, 2014.

An application for an Approval in Principal (AIP) and Wide Area Site (WAS) designation was submitted by SNC on behalf of MoT to MoE in June of 2011.

Several concerns were raised by MoE, including the requirement for:

- delineation of the salt contamination plume,
- further investigation of potential to impacts to deeper aquifers,
- correlation of elevated concentrations of metals to salt impacted areas,
- delineation of the metals impacts and potential additional impacts from stormwater runoff from the Coquihalla Hwy,
- further statistical analysis to demonstrate plume is stable and/or shrinking, and
- further evidence of salt wicking to prove it is a regional phenomenon, and not a side effect of the salt contamination.

MoE also raised concerns regarding attenuation times for lower permeability soils.

In response to the comments, further statistical analyses and investigation were conducted. Statistical review of the relationship between water soluble and saturated paste results found strong correlation. This correlation was used to estimate saturated paste levels, and it was concluded that delineation of sodium and chloride is not complete, with further investigation required.

Additional background soil samples were collected to more accurately define the zone of impact and further augment the argument for background concentrations. Potentiometric methods were used to better define extent of the salt swale based on known observation points, site photographs and historical observations. Soil samples were collected from outside of the swale in areas observed to have salt wicking, to show that local background locations are up to two times higher than those measured within the contaminated area.

Preliminary modeling to predict groundwater concentrations at a receptor was undertaken and indicate that chloride concentrations would not exceed standards at the edge of the Merritt Aquifer, and down gradient day-lighting of groundwater has been sampled as surface water, with no exceedances of chloride identified. As such, the groundwater plume is considered; additional groundwater sampling at the leading edge of the plume is proposed to determine plume stability and refine modeling. Furthermore, it was noted that groundwater samples from wells adjacent to roadways were observed to be geochemically different from salt impacted water known to be related to the Godey Pit, and may be related to alternate sources of salt impact. A review of deeper well log information was undertaken, and found to indicate an aquitard-like condition



(hard pan clay or silty clay) from 8 to 13 m, protecting the underlying water bearing zones from salt impacts.

Additional data collected in 2013 was reviewed with respect to metals impacts and found to show that concentrations of magnesium, the metal of concern, have decreased in many locations, particularly where salt contamination is the greatest. Concentrations of barium and cadmium were found to meet the applicable guidelines in the recent monitoring events, and as such sodium and chloride are currently the only parameters that exceed the CSR standards. A review of additional monitoring data and results for samples collected up gradient indicate other common inorganics exceeding the BCWQG are isolated, and unrelated to the Godey Pit Operations.

A latent source of salt present at the Godey Pit renders potential additional impacts from stormwater run-off negligible. An up gradient surface sample representing stormwater run-off from the Coquihalla was collected and found to confirm this assumption.

The flushing of sodium and chloride was estimated for the RAP using a mass balance approach. There are now several years of monitoring data available to provide an alternate basis for prediction of natural attenuation rates. Additional plots and trends applied to this data indicate that sodium and chloride concentrations have been decreasing, and that continued risk management and natural attenuation may reduce the groundwater conditions below applicable guidelines within the next 5 to 15 years in the alluvial fan sands, and within 7 to 21 years within the higher permeability soils.



#### 4.0 AREAS OF POTENTIAL ENVIRONMENTAL CONCERN

Based on the historical reports reviewed, several areas of potential environmental concern were identified which are detailed in the following sections, and summarized in Tables A and B below, by reserve.

#### 4.1 PIPSEUL IR#3 FORMER CONCRETE PLANT

The Site contains a former concrete batch plant, with small amounts of debris and metal wastes. Though materials appear limited in nature and are likely a general housekeeping issue, former Site use is likely to have included the storage and handling of hazardous materials including fuels, form oils, and other chemicals. Guichon Creek is located directly adjacent to and down gradient of the Site. Additionally, the presence of an open concrete sump represents a physical hazard.

Potentially affected media at the Site includes surface and subsurface soils, groundwater, and surface water, with potential contaminants of concern including metals, PAH, Petroleum hydrocarbons (PHC) and VOC.

Table A: APECs - Pipseul IR#3 Former Concrete Plant

| AEC/APEC                              | COPCs Current Conditions / Description |                                                                                                                                                                                                                                                                                                        | Potentially<br>Affected<br>Media       |
|---------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| APEC 1 – Treated<br>Wood Waste        | • Metals, PAH, PHC, VOC                | •5m diameter pile of treated wood waste between two large concrete pedestals.                                                                                                                                                                                                                          | Soil, Surface<br>Water,<br>Groundwater |
| APEC 2 – Metal<br>Debris Pile         | • Metals, PAH, PHC, VOC                | •8m x 3m area containing 4 metal conveyors, large iron plate, metal gasket, oil filter, ladder, and 1 empty 205L drum                                                                                                                                                                                  | Soil, Surface<br>Water,<br>Groundwater |
| APEC 3 – Poured<br>Concrete Waste     | • Metals, PAH, PHC, VOC                | <ul> <li>6m diameter area of poured waste concrete</li> <li>Occasional scattered metals to the south including conveyors.</li> </ul>                                                                                                                                                                   | Soil, Surface<br>Water,<br>Groundwater |
| APEC 4 –<br>Hydrocarbon<br>Containers | • Metals, PAH, PHC, VOC                | <ul> <li>5m diameter pile of dimensional wood waste with nails, 2 large rubber tires, occasional aerosol cans, electrical conduit, and tarred roofing material.</li> <li>2m diameter area of empty petroleum hydrocarbon and paint containers (20L and 1L containers and 1 empty 205L drum)</li> </ul> | Soil, Surface<br>Water,<br>Groundwater |
| APEC 5 – Former Silo                  | • Metals                               | Collapsed 3.5m x 6m metal silo with concrete pedestal and filter                                                                                                                                                                                                                                       | Soil, Surface<br>Water,<br>Groundwater |



| AEC/APEC                              | COPCs                   | Current Conditions / Description                                                                                                                                                                                                                                                                                                            | Potentially<br>Affected<br>Media       |
|---------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| APEC 6 – Former<br>Building Footprint | • Metals, PAH, PHC, VOC | <ul> <li>Three concrete pad/foundations (120 m²) along eastern boundary of Site with occasional metals debris.</li> <li>3m x 1.5m concrete lined sump</li> <li>5 m diameter area of broken concrete pushed down bank</li> <li>Groundwater has not been characterized, however impacts are anticipated to be minor and localized.</li> </ul> | Soil, Surface<br>Water,<br>Groundwater |

PAH = Polycyclic Aromatic Hydrocarbons

VOC = Volatile Organic Compounds including Benzene, Toluene, Ethylbenzene and Xylenes (BTEX)

PHC = Petroleum Hydrocarbons including F1, F2, F3 and F4 fractions

#### 4.2 MAMEET LAKE IR#1 FORMER GAS STATION AND ASPHALT PLANT

The property contains an asphalt plant that has been moved from its original location. Spotty surface soil impacts have been identified in both the former plant location, and in the current plant location, relating to the storage and handling of fuels. Personal communication with Joe Cuzecrea of Peter Bros. in February of 2014 indicated that the residual hydrocarbon impacted soils at the former plant location had been excavated by rubber tire backhoe under the supervision of an environmental consultant, and recycled through the asphalt plant following the 2005 UMA Phase II investigation.

The 2012 Phase I ESA identified the storage of various chemical and fuels in drums throughout the Site, in addition to discolored/yellowing soils adjacent to the asphalt plant, and spotty soil impacts below the ASTs of the current asphalt plant.

The property formerly contained Mojos service station. Historical reports indicated that the USTs associated with the retail fuel operation had been removed, with subsequent environmental investigations confirming no impacts to soils or groundwater. Groundwater monitoring is recommended to confirm the previous investigation results with respect to current regulations.

The former service station included a maintenance building to the north, where vehicle and machine repair and maintenance was undertaken. Storage of waste oil and hydrocarbon containers were reported. Shallow borehole investigation of the former waste oil AST did not identify gross contamination at depth in this area. Continued maintenance activities within the workshop have the potential to have negatively impacted the Site since the last intrusive investigation. Given the ongoing use, an update of Site status is required at this APEC.

The 2012 Phase I ESA identified a large stockpile of recycled asphalt located within the gravel pit to the east of the asphalt plant. Potential for impacts from leaching asphalt has not been investigated.



The LNIB maintains a 3000 L diesel AST located between the former service station and maintenance building. The tank is double walled over concrete, with locked handles. Spotty surface soil stains were observed adjacent to the concrete pad.

Table B: APECs – Mojos Service Station and Peter Bros Asphalt Plant

| AEC/APEC                                                                                                                                        | COPCs                                                                                                                                                                                                          | Current Conditions / Description                                        | Potentially<br>Affected<br>Media |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|--|
| APEC 1 – Current<br>Asphalt Plant                                                                                                               |                                                                                                                                                                                                                |                                                                         |                                  |  |
| APEC 2 – Former<br>Asphalt Plant                                                                                                                | PEC 2 – Former  • Metals, PAH,  •Former soil contamination has been remediated. Storage of metals noted in recent                                                                                              |                                                                         |                                  |  |
| APEC 3 – Recycled Asphalt Pile  • Metals, PAH  • 100m long recycled asphalt pile with potential to leach into surrounding sand and gravel soils |                                                                                                                                                                                                                |                                                                         | Soil,<br>Groundwater             |  |
| Service Station  • Metals, PAH, USTs have been removed.                                                                                         |                                                                                                                                                                                                                | Phase II update to current regulations                                  | Soil,<br>Groundwater             |  |
| APEC 5 – Former<br>Maintenance Building /<br>Warehouse                                                                                          | • Former used oil AST did not indicate presence of contamination at the time of investigation – requires update to current regulations  • Metals, PAH, PHC, VOC  • Building was not historically accessible to |                                                                         | Soil,<br>Groundwater             |  |
| APEC 6 – 3000L<br>Diesel AST                                                                                                                    | • Metals, PAH, PHC, VOC                                                                                                                                                                                        | • 3000 L diesel AST over concrete has soil staining on adjacent gravel. | Soil,<br>Groundwater             |  |

PAH = Polycyclic Aromatic Hydrocarbons

VOC = Volatile Organic Compounds including Benzene, Toluene, Ethylbenzene and Xylenes (BTEX)

PHC = Petroleum Hydrocarbons including F1, F2, F3 and F4 fractions

#### 4.3 JOEYASKA IR#2 GODEY PIT SALT CONTAMINATION

The Godey Pit has historically been used for storage of mixed salt and winter abrasives, resulting in off-site salt contamination of soil, surface water, and groundwater. The salt contamination issue has undergone continuous investigation and monitoring from 2010 to present. An Approval in Principal (AIP) has been submitted to the BC MoE for MoT's remediation plan. The plan is seeking a Wide Area Contaminated Site (WAS) designation under the Contaminated Site Regulation (CSR) for the salt contamination plume with remediation by a combination of monitored natural attenuation, administrative controls pertaining to groundwater use, and on-



going source removal. Annual groundwater monitoring will also be conducted. The salt contamination plume originating from the MoT Godey Pit is an Area of Environmental Concern (AEC).

## Outstanding concerns identified include:

- Dismissal of the dissolved metals elevated in groundwater above the CSR Standards as not being related to the activities at the Godey Pit may require further justification. MoE provided a similar critique in their review.
- Clarification is required with respect to impacts to soil fertility on the southwest portion of the Joeyaska Reserve.
- Administrative controls are recommended to reduce the risk to groundwater users for future groundwater wells installed on the Joeyaska Reserve.
- Internal stakeholder meetings with band members, particularly the affected parties of the
  Joeyaska Reserve to gather input into this process and confirm the land use assumptions
  applied to the risk assessments is valid. Traditional knowledge should be sought with
  respect to species potentially extirpated from the reserve due to salt impacts, particularly
  amphibians.
- The LNIB should remain engaged in the remediation process between MoT and MoE. Given Band lands are Federal Jurisdiction, it is assumed that the MoE is not responsible for administration of contaminated site approvals for the portion of the salt contamination plume on the Joeyeska Reserve. AANDC and/or the LNIB is recommended to remain an active stakeholder for this issue as it pertains to the Band.

Columbia conducted independent sampling of groundwater monitoring wells targeting the salt plume located on the Joeyaska Reserve. Results are detailed in Section 7.



## 5.0 METHODOLOGY

The Phase II ESA was conducted by Summer Zawacky, B.Sc., EP from Columbia and Alec Jimmie from the LNIB, between March 3<sup>rd</sup> and March 8<sup>th</sup>, 2014. A round of follow-up monitoring was conducted on May 26<sup>th</sup>, 2014, for select wells.

The former concrete plant, asphalt plant, and service station on IR#1 and #3 are commercial operations with some incidental surficial soil stains and debris anticipated. Therefore, the scope of the Phase II ESA in these locations focused on identifying gross contamination, if present, with characterization of media with anticipated exposure pathways to human and ecological receptors. Sampling was biased towards characterization soils below spotty surficial impacts, subsurface soils, adjacent surface water bodies, and potential groundwater migrating from the Sites.

The Godey Pit salt contamination plume issue has undergone several levels of assessment by MoT since 2010. In 2012 an independent review of the assessment reports to date was completed to provide the LNIB with recommendations moving forward. Continued monitoring and assessment has been completed, requiring additional review to provide an updated status review to the LNIB. For this Site the scope of work was focused on this literature review, with a round of independent groundwater monitoring to confirm site status.

#### 5.1 HEALTH AND SAFETY PLAN

Prior to intrusive investigation activities, Columbia prepared a Site-specific HASP addressing health and safety concerns potentially encountered during the field program. A BC-One Call was completed, with no records of interfering services at the Sites. A utility locate was undertaken at each of the Sites to ensure no interfering utilities in subsurface investigation locations. There were no incidents or near misses during the field program.

#### 5.2 SURFACE SOIL INVESTIGATION

Surface soil sampling was generally conducted following the *BC MoE Technical Guidance 1:* Site Characterization and Confirmation Testing. Surface soil samples were collected manually from test pit and borehole locations generally from 0.3-0.6 m bgs targeting anticipated highest contaminant concentrations based on field evidence. As spotty soil impacts were observed with impacts limited to surface cover, the underlying anticipated non-contaminated soils were targeted for vertical delineation purposes. Subsurface soils were also collected from the groundwater interface where applicable, to characterize soil conditions.

## 5.3 TEST PIT INVESTIGATION

Eight (8) test pits were advanced at the Pipseul IR#3 former concrete plant, to a maximum depth of 1.4 m bgs using a rubber tire backhoe. Subsurface soil samples were collected by scraping



laboratory supplied receptacles vertically along the excavation walls, or as a grab sample from the bucket of the excavator. Test pit locations were based on surface debris, evidence of disturbance, and overall site coverage.

During test pitting a field log was recorded including soil descriptions, visual and olfactory observations, and soil vapour headspace measurements. All soil samples were field screened for soil vapours headspace using an RKI Eagle<sup>TM</sup> combustible gas indicator (CGI) calibrated to hexane. The test pit locations are presented on Figures 4 and 5 in Appendix A, and test pit logs are provided in Appendix C.

#### 5.4 BOREHOLE INVESTIGATION

Blue Max Drilling Inc. mobilized a Truck-mounted ODEX rig to the Site. One (1) borehole was advanced at the Pipseul former concrete plant, and eight (8) boreholes were advanced at the Nicola Mameet former service station and asphalt plant, to a maximum depth of 28 m bgs. The borehole locations were selected targeting groundwater conditions down gradient that would be leaving the Sites. Subsurface soils were logged directly from solid stem augers, or were ODEX was used soils were logged from drill cuttings expelled through the cyclone.

A field log was recorded including soil descriptions, visual and olfactory observations and soil vapour headspace measurements. The borehole locations are presented on figures 2 through 5 included in Appendix A, and detailed logs are provided in Appendix C.

#### 5.5 GROUNDWATER CHARACTERIZATION

Three (3) of the boreholes were completed as groundwater monitoring wells, down gradient of the asphalt plant, former service station tank nest, and former concrete plant.

The groundwater monitoring wells were constructed with a 25 mm diameter PVC pipe and 0.25 mm slotted PVC screen. The annulus of the monitoring well was packed with silica sand to a minimum level of 0.3 m above the top of the screen. A seal of controlled-swelling bentonite chips was placed above the sand pack to hydraulically isolate the screened interval of the well and prevent surface water infiltration. Refer to the borehole logs in Appendix C for monitoring well construction details. Upon installation, monitoring wells were developed by vigorously purging pore-water from each well until steady water chemistry was achieved using dedicated Waterra tubing equipped with foot valves.

Groundwater monitoring wells at the Pipseul concrete plant, former service station and asphalt plant on IR#1, and Joeyaska Reserve (specific to the Godey Pit salt contamination) were monitored for vapour headspace, groundwater elevation, purged, and sampled for dissolved metals, PAHs, PHC fractions F1-F4, VOC, and/or anions. Purging involved the removal of three (3) pore water volumes from each well and/or until stable pH, temperature, and conductivity readings were achieved. Representative groundwater samples for organic parameters were collected using dedicated, weighted bailers lowered at a rate of 1 cm/sec within the water column



to minimize the disturbance and consequent entrainment of any sediments that could negatively affect the analytical results. Samples collected for metals analysis were filtered in the field using a Waterra in-line high capacity filter and were preserved with nitric acid (HNO<sub>3</sub>). Samples collected for organics were preserved in the field with sodium bisulfate (NaHSO<sub>4</sub>). Samples collected for general chemistry including anions were not preserved.

An elevation survey of the monitoring wells at the former service station and asphalt plant was completed in the field using a rod and level.

During the groundwater investigation a borehole was advanced just outside of the former workshop/warehouse. The borehole was advanced to the maximum extent of the rig, 28 m, with no saturated zone identified. A groundwater monitoring well was not installed within this borehole.

#### 5.6 SURFACE WATER CHARACTERIZATION

Three (3) surface water samples were collected from Guichon Creek, flowing adjacent to the Pipseul Site. Surface water samples were collected directly from the targeted watercourse using laboratory supplied containers. The downstream sample locations were collected first so as not to disturb any other locations prior to sampling. Samples for total metals analysis were preserved in the field with nitric acid. Sample locations are shown on the figures included in Appendix A.

#### 5.7 SAMPLE PREPARATION AND LABORATORY ANALYSIS

All samples were collected in laboratory supplied containers following BC MoE and industry protocols. Samples were stored in coolers chilled with ice packs and couriered to the laboratory under chain of custody. Laboratory analysis of submitted site media was requested based on the project objectives, COPCs identified, spatial coverage, and the allocated project budget. Blind split-duplicate samples were collected and submitted to the laboratory on a 1 in 10 basis. Laboratory analysis was conducted by CARO Analytics Inc. of Richmond, BC, a CALA accredited laboratory.

# 5.8 UPDATE NATIONAL CLASSIFICATION SYSTEM FOR CONTAMINATED SITES (NCSCS) SCORING

The Canadian Council of Ministers of the Environment (CCME) National Classification System for Contaminated Sites (NCSCS 2010) is a method for evaluating contaminated sites according to their current or potential adverse impact on human health and the environment. The NCSCS allows the classification and prioritization of contaminated sites by using an additive numerical method that assigns scores to a number of site characteristics.



#### 6.0 REGULATORY FRAMEWORK

Federal and Provincial screening criteria are land use based. Currently, the Sites are zoned for a mixture of agricultural, residential, commercial, and industrial land use. Federal screening criteria for Residential/Parkland (RL/PL), Commercial (CL), and Industrial (IL) land uses applied were applied for screening purposes. Agricultural (AL) uses were applied with respect to groundwater on the Joeyaska Reserve.

#### 6.1 FEDERAL GUIDELINES

Soil, water, and sediment quality guidelines applicable to land under Federal jurisdiction are provided in the Canadian Ministers of the Environment Canadian Environmental Quality Guidelines (CEQG), the CCME Canada Wide Standards (CWS) for PHC in soil, Federal Interim Groundwater Quality Guidelines (FIGWQ), and Drinking Water Guidelines published by Health Canada.

#### Soil

Soil analytical results were compared to CCME Canadian Soil Quality Guidelines (CSQGs) for RL, CL, and IL Land Use and CCME CWS for PHC in soil. The CWS for PHC provide risk based standards based on land use, soil depth, and soil grain size. Given the gravel pit settings, coarse grain standards were applied at the Sites, with analytical tables are included in Appendix D.

In 2010 the CCME CEQG for PAHs were updated to improve the understanding of how to implement the PAH soil quality guidelines. Soil contamination by PAH is widespread in Canada due to the ubiquitous nature of its major sources, and are almost always found in complex mixtures. As such, the consideration of the risks when the entire suite of PAH are present is evaluated using the Total Potency Equivalents (TPE), which is the sum of estimated cancer potency relative to the concentration of Benzo(a)pyrene, and the Index of Additive Cancer Risk (IACR), which accounts for potential threats to potable groundwater from leaching of carcinogenic PAH mixtures. TPE and IACR are calculated measures used in the protection of human health, whereas the individual PAH guidelines are provided to compare numerical soil data for the protection of environmental health. Formulas for the calculations of TPE and IACR have been included in Table 2, in Appendix D.

#### **Surface Water**

Surface water analytical results for samples collected from Guichon Creek were compared directly to CCME FW guidelines applicable to surface water as they are representative of aquatic environments.

## **Groundwater Water**

Groundwater at the Pipsuel Site was compared to CCME FIGWQ and FW, due to proximity of Guichon Creek. Groundwater at the IR#1 Sites resides in a deeper aquifer, which is used for irrigation, so FIGWQ and guidelines for the protection of irrigation water were applied. There



are two (2) aquifers on the Joeyaska Reserve, with groundwater daylighting to surface water, and being used for irrigation. Groundwater quality on the Joeyaska Reserve was compared to the FIGWQ, FW, and the protection of irrigation water.

#### 6.2 PROVINCIAL STANDARDS

## 6.2.1 Provincial Background Soil Quality

The MoE CSR provides a "release" at a contaminated site when the concentrations of substances at a site do not exceed local background levels. When assessing, remediating, or relocating contaminated soil, on site substance concentrations may be evaluated against background. Regional background concentrations for inorganic parameters are published by the MoE in Protocol: 4 Determining Background Soil Quality – Region 3 Southern Interior. When greater than the CCME CEQG screening criteria, the regional background concentrations were adopted as the baseline objective. Regional background concentrations are greater than the CCME CEQG for Arsenic, Chromium, Copper, Nickel, Selenium, and Vanadium.



#### 7.0 PHASE II ESA FINDINGS

The results of the intrusive investigation are reported for each APEC in the following sections. All supporting data has been included in the Appendices, with test pit and borehole logs included in Appendix C, analytical data included in Appendix D, and copies of the laboratory certificates of analysis are included in Appendix E. NCSCS Scoring sheets are located in Appendix F.

#### 7.1 PIPSEUL IR#3 FORMER CONCRETE PLANT

#### 7.1.1 Surface Conditions

The Pipseul former concrete plant was snow covered at the time of the site visit. Features identified in the 2010 Phase II ESA were located in the field, including three (3) concrete pads, creosote treated wood waste, a pile of scrap metal consisting mostly of metals frames and conveyors, a small area of petroleum hydrocarbon products and miscellaneous waste storage, and a collapsed metal silo. Historical reports identified a concrete lined sump on the northern portion of the property, which was not identified in the snow covered conditions.

The Site appears to have been recently disturbed, with two small soil fill piles noted along the eastern portion of the Site at the top of bank, and a recent cut slopes visible in the adjacent gravel pit. Occasional debris including metals, hydrocarbon containers, and concrete were noted to have been pushed over the bank. Test pit locations were selected at the Pipseul former concrete plant below these waste materials to ensure no buried wastes or gross contamination from the limited waste materials. Soils observed within the test pits consisted mostly of sand and gravel, with cobbles at depth and trace silts near surface. One borehole was advanced next to the concrete foundations and in an overall down gradient location from the Site. No staining, odours, stressed vegetation or evidence of impacts were noted below the waste materials, or test pits.

#### 7.1.2 Hydrogeology

The former plant is located on a sand and gravel terrace approximately 8 m above the Guichon Creek floodplain, at an elevation of approximately 1000 m above sea level. The Site is relatively flat, with a moderate embankment bordering the Site and sloping to the east toward Guichon creek. One borehole, BH14-9 was advanced down gradient of the waste materials, to a depth of 10 m bsg, with groundwater encountered at 8.3 m bsg. BH14-9 was completed as a monitoring well (MW14-3).

#### 7.1.3 Waste Material

Currently no solid waste is generated on the Site. Details of the debris areas and wastes remaining at the former concrete plant are shown on Figure 2, and summarized in the table below. Representative photographs have been included in Appendix B.



Table C. Pipseul Concrete Plant Summary of Solid Waste

| Area Details                | Content Description                                                                                                                                                           |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Hydrocarbon Containers      | •0.5 m <sup>3</sup> of empty petroleum hydrocarbon and paint containers over a 2 m diameter area                                                                              |  |  |
| Dimensional Wood Waste      | •5 m diameter pile of dimensional wood waste with occasional miscellaneous waste. 5 m³ waste materials.                                                                       |  |  |
| Poured Waste Concrete       | •6 m diameter area of poured waste concrete (8 m <sup>3</sup> )                                                                                                               |  |  |
| Metal Debris                | • 12 m <sup>3</sup> metal wastes including metal conveyors, large iron plates, metal gasket, ladder, and 1 empty 205L drum over an 8m x 3m area.                              |  |  |
| Occasional Scattered Metals | •Occasional scattered metals were noted throughout the Site estimated at 2 m³ in volume. Collapsed silo measures 6 m by 3 m and is in addition to the scattered metal wastes. |  |  |

### 7.1.4 Soil Vapor Screening

Soil samples collected from within and below waste materials were screened for soil vapor headspace using an RKI Eagle<sup>TM</sup> combustible gas indicator (CGI). All vapour headspace measurements were between 0 and 45 ppm, therefore; soil vapour headspace concentrations did not suggest the presence of PHCs and/or VOCs.

## 7.1.5 Laboratory Analysis

A total of nine (9) soil samples including one (1) duplicate, three (3) surface water samples, and one (1) groundwater sample, were collected and analyzed for COPCs. The analytical results were screened against the applicable criteria detailed in Section 7. Media with analytical results indicating concentrations greater than the applicable criteria are presented on Figure 3.

#### Soil

The pH of the samples collected from the former concrete plant property ranged from 7.6 to 9.1, with an average pH of 8.4 indicating slightly alkaline soils.

Concentrations of copper were greater than the applicable criteria in the subsurface soil sample collected from BH14-9 (BH9-1). Concentrations of copper were not found to be greater than commercial land use guidelines, and were only marginally greater than the local background concentrations. Concentrations of all other metals were found to meet the applicable guidelines. The indicated elevated copper concentration at BH9-1 is anticipated to be within the natural variability present at the Site and therefore is not retained as a COPC for the concrete plant.

Concentrations of the PAHs constituents Phenthanrene and Benzo(b&j)fluoranthene were found to exceed the applicable guidelines for industrial land use in soils beneath the treated wood waste pile (TP1-1). Concentrations of PAH in all other samples were below the applicable guidelines, and/or laboratory detection limits. PAH is retained as a Contaminant of Concern (COC) for surface soils in the treated wood waste area.

PHC fractions and VOCs were reported to be below applicable guidelines and laboratory MDL in all soils analyzed for these parameters, and are dismissed as COPCs.



#### Surface Water

Three (3) surface water samples collected from Guichon Creek up gradient, adjacent, and down gradient of the Site were analyzed for total metals, PAH, PHC, and VOC. Concentrations of all COPC were reported below the applicable guidelines, with all organic COPCs reported less than the laboratory Method Detection Limits (MDLs). Surface water is not retained as a media of concern at the former concrete plant.

## Groundwater

One (1) borehole (BH9) was completed as a monitoring well (MW14-3) and sampled for dissolved metals, PAH, PHC, and VOC. Concentrations of aluminum were greater than the FIGWQ guidelines for commercial and industrial land use in the initial groundwater sample. Follow-up groundwater sampling did not identify concentrations of any dissolved metals of concern.

Concentrations of all other analytes were below the applicable guidelines; however, there were detectable concentrations of naphthalene and toluene in the March 2014 groundwater sample. Follow-up May 2014 sampling results reported concentrations less than the MDL for these analytes.

## 7.1.6 Summary and Discussion

A limited volume of waste materials generally consisting of metal debris and wood waste were identified at the former concrete plant. The presence of PAH contaminated soil was confirmed at the treated wood waste (APEC 1). Delineation of the PAH contaminated soils was not achieved; however, is anticipated to be limited to shallow soils underlying the treated wood debris. The treated wood waste area is retained as AEC 1. Contaminated soils were not encountered at the remaining APECs. Based on the absence of contaminated soil, APECs 2 through 5 were dismissed.

Detectable concentrations of naphthalene and toluene were reported in groundwater at MW14-3 located down gradient of the former concrete plant building area (APEC 6) in the March 2014 groundwater sampling event. Dissolved aluminum was also reported at a concentration greater than the FIGWQ. It was suspected that the trace concentrations of toluene and naphthalene could be artifacts from the ODEX drilling process<sup>3</sup> given the significant depth to groundwater and absence of soil contamination identified. A second round of groundwater sampling was conducted in May 2014 to confirm the initial results. The follow-up groundwater sampling did not detect measurable concentrations of aluminum, naphthalene or toluene. As such, the indicated detections from March 2014 were concluded to be an artifact of drilling and have been shown by the May 2014 sampling to have attenuated. It is standard industry practice to complete two (2) compliant sampling events to definitively dismiss these COPC detections; however, as the LNIB is not seeking specific approvals and the high probability that the previous detections were a drilling artifact, no further investigation is recommended at this time and APEC 6 is dismissed.

<sup>&</sup>lt;sup>3</sup> ODEX requires the use of compressed air to drive the down-hole air rotary bit and is susceptible to cross contamination from any leaks or contamination within the compressor unit.



-

#### 7.2 MAMEET LAKE IR#1 FORMER SERVICE STATION AND ASPHALT PLANT

The area of the gravel pit operation on Lot 265 encompasses the former Mojos service station on the southeast portion, the former workshop (in current use as a warehouse) on the northeastern portion, the asphalt plant due east of the service station, a diesel AST between the service station and warehouse, and gravel pit on the western portion of the property. The location of the former asphalt plant did not appear in use, and was located on the northern portion of the property, west of the warehouse. Details of the subject property are provided on figures 4 and 5, in Appendix A.

#### 7.2.1 Structures

The blue former service station building is deteriorated and no longer in use, and measures approximately 20 m by 7 m. The building is generally empty with few fixtures remaining. The building is of wood frame construction on concrete foundation, with wood paneling, vinyl tiles, ceiling tiles, fluorescent lighting, and electric thermostats. A series of in-ground pipes were noted in the front office, from the former mixing station from the read-mix plant. The southern portion of the building water observed to contain a concrete lined workshop. Heat was provided by electric baseboard, and the building is insulated with fiberglass batting. The septic field for the building is reported to be located off the southwest portion of the building. The building was serviced by municipal water main, with a hydrant and pump located on the southeast corner of the building.

The warehouse measures approximately 32 m by 12 m and is serviced by overhead electrical. The building is of wood frame and slab on grade construction, and contains four bays accessible from the south and west. The two (2) west bays are used and maintained by the LNIB public works department, and contained a variety of materials such as steel pipe, tires, timbers, lights, rubber hose, etc. The east bays are privately leased, and were observed to be empty at the time of the Site visit. It is reported that the easternmost bay was used to repair logging trucks previously to being emptied. No hazardous materials storage or generation of wastes was observed. Building materials for the warehouse consisted generally of unfinished drywall, fluorescent lighting, fiberglass batt insulation, over concrete floor. No floor drains were observed.

A 3000 L double walled diesel AST is located to the north of the service station. The tank is registered (EC-00012460) and is in good condition over an 8 m by 8 m concrete pad. Tank and support structures were free of rust weeps, and dents, the contents and hazards clearly labeled, fill and vent lines clear of obstruction, with handles locked and automatic shut-offs. The tank is generally compliant with regulation, with the exception that there are no vehicular impact measures in place.

The portable asphalt plant consists of four (4) trailers with different components, including a liquid asphalt cement tank, drum mixer and blower, ASTs, and a generator. The plant also contains a conveyor and loading silo, aggregate feed bins, and two metal-lined in ground tanks, not on trailers. Each component is transportable and on its own trailer or flat deck, and spread over an approximate 400 m<sup>2</sup> area.



#### 7.2.2 Surface Conditions

The former Mojos Service Station site was generally snow covered during the morning, but was partially melted by afternoon, allowing for visual confirmation of surface conditions in most areas.

#### APEC 1: Asphalt Plant

Spotty soil stains, storage of fuels and oils, and miscellaneous debris were noted at various locations throughout the plant footprint in small quantities. Spotty soil stains were noted beneath the storage silo (40 m²), trailers with ASTs (24 m²) and along the west side of the liquid asphalt cement tank and drum mixer (60 m²). Additional spotty stains (<0.5 m²) were noted throughout the plant footprint (~400 m²). Soils consisted of sand and gravel with cobbles at depth. Boreholes located within the plant area (BH4, BH6 and BH7) did not exhibit olfactory evidence of impacts to soil.

## **APEC 2: Former Asphalt Plant**

The former asphalt plant location was reviewed in the field, and did not appear in use. Occasional storage of miscellaneous metals including empty ASTs were observed near the boundaries of the area, totaling < 10 m<sup>3</sup> of metal waste. No staining or olfactory evidence of impact were noted in this area. Given the historical remediation of the area (Pers. Comm. Joe Cuzecrea) and inactive status, the former asphalt plant was dismissed as an APEC.

### APEC 3: Recycled Asphalt Pile

A large pile of recycled asphalt was noted in the gravel pit to the west of the asphalt plant and service station measuring 80 m in length, 2 m in height, and approximately 10 m in width. The asphalt was located over bare sands and gravels.

## APEC 4: Former Service Station (Mojo's)

The front (east) side of the service station consists of a treated wood and steel frame weigh scale that is still in operation. To the east of the scale is a concrete pad over the former underground tank nest. A compacted gravel drive surrounds the station on all other sides, with sand and gravel soils observed between the drive and building. On the south and west side of the building small amounts of debris were noted and consist generally of the remnants of the former ready-mix concrete plant, including the loading area, two (2) concrete foundations, pre-cast concrete pieces (storm sewer collars) and rubber hoses. A piping system was noted on the support of the former ready-mix plant, leading into the service station building to the mixing station. GPR survey of this and the surrounding area did not identify the presence of additional subsurface features. There are approximately 25 m³ of concrete waste, and 2 m³ of miscellaneous metals and rubber debris. No areas of soil staining or olfactory evidence of impacts were observed.

#### APEC 5: Former Maintenance Building / Warehouse

The warehouse consists of four (4) garage bays, accessible through doors on the south and west side of the building. A concrete apron is located adjacent to the southern portion of the building. Storage of fuels, oils, and miscellaneous vehicle and machinery parts were observed on the southwest and southeast corners of the building with spotty stains spread over an approximate 20 m<sup>2</sup> area on concrete. Storage of machinery and timber was noted in the cleared gravel area to the



north of the warehouse. A borehole installed down gradient of the warehouse did not have olfactory evidence of impacts to subsurface soils.

#### APEC 6: Diesel AST

The 3000 L diesel AST is located on a concrete pad that drains to the north. Spotty soil stains were noted on sands and gravels adjacent to the northeast corner of the pad. These soil stains did not appear to be from diesel spills, rather incidental leaks from individual vehicles, spread over a 5 m<sup>2</sup> area. The borehole advanced down gradient (BH8) did not exhibit evidence of impacts past 0.1 m.

## 7.2.3 Hydrogeology

In 2002/2003 nine (9) boreholes were installed at the property, with four (4) completed as groundwater monitoring wells. Two (2) of the monitoring wells, MW2 and MW4 were found to be dry. Depth to groundwater was 19.5 m (MW1) and 15.48 m (MW3) bsg in 2003. All wells were dry at the time of this investigation.

A total of eight (8) boreholes were advanced on the former service station and asphalt plant property, up to depths of 28 m bsg. Two (2) of the boreholes (BH1 and BH3) were completed as monitoring wells. Groundwater was encountered at depths of 21.3 m bsg in BH1 (MW14-1), and 22 m bsg in BH3 (MW14-2). Soil stratigraphy in these locations consisted of sand and gravel, with cobbles at depth. Borehole BH2, down gradient of the warehouse was advanced to 28.3 m bsg, with no groundwater encountered. Soils in this location were observed to consist of alternating layers of silts and gravelly sands, over inferred bedrock encountered at 21 m bsg, and were not consistent with soil types observed on the southern portion of the Site.

A level survey was completed for the groundwater wells at the Site. As the historical wells were observed to be dry, there were only two (2) points of reference for contour mapping of the water table. Based on groundwater elevations and general topography of the Site groundwater is anticipated to be flowing south toward lower elevation and the Nicola River.

#### 7.2.4 Soil Vapor Screening

Soil samples collected from within and below waste materials were screened for soil vapor headspace using an RKI Eagle<sup>TM</sup> combustible gas indicator (CGI). All vapour headspace measurements were between 0 and 35 ppm, therefore; soil vapour headspace concentrations did not suggest the presence of PHCs and/or VOCs.

## 7.2.5 Laboratory Analysis

Total of nine (9) soil samples, including one (1) duplicate; and three (3) groundwater samples, including one (1) duplicate, were collected from the property. Samples were analyzed for CPOCs including metals, PAH, PHC, and/or VOC. Analytical results are detailed by APEC below and presented on Figure 5.



### APEC 1: Asphalt Plant

Three (3) boreholes were advanced within spotty soil stains at the asphalt silo (BH7), AST (BH6 and Drum Storage (BH4). Samples were collected from below surficial impacts between 0.3 to 0.9 m bsg and were found to meet applicable criteria for all COPC.

One (1) groundwater sample (MW14-1) was collected down gradient of the asphalt plant in March 2014. Analytical results indicate concentrations of dissolved silver and toluene, greater than applicable FIGWQ guidelines. Concentrations of naphthalene and xylene were also detected in the sample. A duplicate sample collected from MW14 indicated consistent COPC concentrations. All other organic COPCs were found to be below the MDL and applicable guidelines.

Follow-up monitoring was completed in May 2014 at MW14-1 for metals, BTEX and naphthalene. In the second round of monitoring concentrations of dissolved silver, PAH and BTEX were reported below the MDL and applicable guidelines.

## **APEC 3: Recycled Asphalt Pile**

One (1) borehole (BH5) was advanced at the toe of the gravel pit to investigate the potential for leachate from the recycled asphalt pile. A sample of the asphalt itself was also collected and submitted to a synthetic leachate procedure (SPLP) for PAHs to determine potential leachability. Concentrations of metals and PAH in the soil sample were found to meet applicable guidelines. The asphalt SPLP results indicated leachable PAH constituents concentrations less than MDLs.

## APEC 4: Former Service Station (MoJo's)

One (1) borehole, BH3 was advanced in the area of the former tank nest at the service station. Sample BH3-3 was collected from a depth of 2.7 - 3.5 m bsg, consistent with the anticipated grade of the former tank nest. Concentrations of all COPCs were reported below applicable guidelines with organic constituents reported less than MDLs.

One (1) groundwater sample, MW14-2, was collected and analyzed for PHC, PAH, BTEX and dissolved metals. All COPCs were reported at concentrations less than the applicable guidelines, and also found to meet applicable guidelines.

#### APEC 5: Former Maintenance Building / Warehouse

One (1) borehole (BH2) was advanced down gradient of the warehouse, and samples BH2-1 and its duplicate BHDUP3, from 0.7 to 1.5 m bsg was submitted for analysis of all COPCs. Concentrations of copper were found to marginally exceed residential land use guideline and local background in both samples, but met the guideline for commercial land use. The indicated elevated copper concentration at BH2-1 is anticipated to be within the natural variability of soil conditions present at the Site and therefore is not retained as a COPC.

#### APEC 6: Diesel AST

One (1) borehole, BH8, was advanced down gradient of the diesel AST to a depth of 1.5 m bsg in an area of petroleum hydrocarbon staining. Sample BH8-1 collected from 0.3 to 0.6 m bsg was submitted for analysis, and found to meet all applicable guidelines.



## 7.2.6 Summary and Discussion

Small volumes of waste materials including miscellaneous metals, concrete wastes, machinery and spotty surficial staining are located throughout the gravel pit property, and are typical of commercial operations. These materials do no present a significant environmental risk, rather are a general housekeeping issue.

Contaminated soil was not identified by this investigation. Based on the absence of soil contamination, APECs 2 through 6 are dismissed.

Concentrations of silver and toluene greater than the FIGWQ guidelines were identified in groundwater at MW14-1 located down gradient of the asphalt plant area (APEC 1). Naphthalene and xylenes concentrations were also detected at concentrations less than applicable guidelines. It was suspected that the trace concentrations of toluene and naphthalene could be artifacts from the ODEX drilling process<sup>4</sup> given the significant depth to groundwater and absence of soil contamination identified. A second round of groundwater sampling was conducted in May 2014 to confirm the initial results. The follow-up groundwater sampling did not detect measurable concentrations of silver, naphthalene, toluene or xylenes. As such, the indicated detections from March 2014 were concluded to be an artifact of drilling and have been shown by the May 2014 sampling to have attenuated. It is standard industry practice to complete two (2) compliant sampling events to definitively dismiss these COPC detections; however, as the LNIB is not seeking specific approvals and the high probability that the previous detections were a drilling artifact, no further investigation is recommended at this time and APEC 1 is dismissed.

#### 7.3 JOEYASKA IR#2 GODEY PIT SALT CONTAMINATION

#### 7.3.1 Groundwater Monitoring

Ten (10) monitoring wells have been installed by MoT on the Joeyaska Reserve to investigate the off-site migration of salt contaminated groundwater from the Godey Pit. Eight (8) of the ten (10) wells were located and monitored and sampled. Monitoring results are presented in the table below:

| Table D. | Groundw | ater Mo | nitorir | ng Resul | lts – Joe | yaksa l | <b>IR#2</b> |
|----------|---------|---------|---------|----------|-----------|---------|-------------|
|----------|---------|---------|---------|----------|-----------|---------|-------------|

|          | Depth to<br>Water (m) | Depth to<br>Bottom (m) | pH<br>(pH Units) | Conductivity (uS/cm) | Temperature<br>(°C) |
|----------|-----------------------|------------------------|------------------|----------------------|---------------------|
| MW05-12  | 16.47                 | 18.67                  | 8.65             | 1.88                 | 9.7                 |
| MW07-28S | 2.04                  | 5.03                   | 8.25             | 2.620                | 7.4                 |
| MW07-28D | 1.56                  | 11.27                  | 8.77             | 0.510                | 7.9                 |
| MW07-29D | 0.00                  | 7.16                   | 8.91             | 0.419                | 8.2                 |
| MW07-32S | 12.67                 | 13.85                  | 8.35             | 0.827                | 7.6                 |
| MW07-32D | 12.65                 | 16.35                  | 8.33             | 0.930                | 8.1                 |

<sup>&</sup>lt;sup>4</sup> ODEX requires the use of compressed air to drive the down-hole air rotary bit and is susceptible to cross contamination from any leaks or contamination within the compressor unit.



4

|         | Depth to<br>Water (m) | Depth to<br>Bottom (m) | pH<br>(pH Units) | Conductivity (uS/cm) | Temperature (°C) |  |  |  |  |
|---------|-----------------------|------------------------|------------------|----------------------|------------------|--|--|--|--|
| MW08-42 | 12.53                 | 17.16                  | 9.05             | 0.796                | 2.6              |  |  |  |  |
| MW08-43 | 20.49                 | 21.9                   | 8.57             | 1.130                | 8.2              |  |  |  |  |
| MW08-44 | Well not located      |                        |                  |                      |                  |  |  |  |  |
| MW08-45 | Well not located      |                        |                  |                      |                  |  |  |  |  |

### 7.3.2 Hydrogeology

Measured depths to groundwater across the Site ranged from at or just below surface grade on the southeastern portion of the Joeyasksa Reserve, and up to 21.9 m bsg adjacent to the Godey Pit. Based on the recent monitoring event, potentiometric groundwater elevations in the Joeyaska monitoring wells range from approximately 676 m (background well at MW08-42) to 650 m (down gradient wells at MW07-28), indicating a southwestern groundwater flow.

It was noted that the potentiometric elevations in the deeper monitoring wells (MW07-28D and MW07-32D) were higher than the adjacent wells installed in the shallow aquifer, suggesting an upward hydraulic gradient in the lower aquifer. In the case of MW07-29D, installed in the deeper aquifer, the potentiometric surface was at grade with the surface.

### 7.3.3 Laboratory Analysis

A total of nine (9) samples including one (1) duplicate, were collected and analyzed for dissolved metals and anions. The analytical results were screened against the applicable criteria (detailed in Section 7) and are summarized in Tables 6 and 9 included in Appendix D, with analytical results indicating concentrations greater than the applicable criteria are presented on Figure 7.

#### Groundwater

Concentrations of sodium in groundwater were greater than the applicable criteria in two (2) wells, MW05-12 within the Godey Pit, and MW07-28S the most down-gradient well on the Site. Concentrations of sodium were greater in the down gradient well than those identified in the Pit, and ranged from 308 mg/L to 18.9 mg/L. Concentrations of sodium in the deeper aquifer met the applicable guideline of 200 mg/L.

Chloride concentrations were found to exceed the applicable guidelines of 100 mg/L (Irrigation), 120 mg/L (Freshwater) and 230 mg/L (FIGWQ) in both the shallow and deep aquifers across the Site, with concentrations greatest in MW05-12 (387 mg/L) and MW07-28S (609 mg/L). Concentrations of chloride were generally higher than those of sodium. Fluoride was also noted to exceed guidelines in wells MW05-12, MW07-28S/D, MW07-29D, and up gradient wells MW08-42 and MW08-43.

Concentrations of dissolved metals were found to meet the applicable criteria in all wells sampled.



#### 7.3.4 Surface Water

SNC's response letter to LNIB's third party review (pg. 8) provided clarification that "surface water on the Joeyaska Reserve was not investigated for metals as there is no surface water present on the Reserve. The location of Diamond vale Brook shown on historical mapping has been corrected on current mapping". Columbia undertook a brief field review to verify the location of Diamond vale Brook on reserve while looking for monitoring wells associated with the Godey Pit and was unable to locate the brook on the reserve as no evidence of surface water or vegetation suggestive of ephemeral water inundated soils was found at the time of the assessment.

# 7.3.5 Summary and Discussion

Overall the general trend of sodium and chloride concentrations in groundwater were consistent with the previous investigations completed by MoT. Concentrations of dissolved metals were found to meet the applicable criteria in all wells sampled. This supports MoT's position that the dissolved metals impacts identified in the previous MoT investigations are not related to the salt contamination originating from the Godey Pit.

The Godey Pit is retained as an AEC. This contaminated site is under active investigation by MoT following the BC Ministry of Environment (MoE) procedures with respect to the Provincial Contaminated Sites Regulation and Environmental Management Act. MoT has submitted a remediation plan supporting an application for an Approval in Principal (AIP) and Wide Area Contaminated Site designation. The remediation plan calls for monitored natural attenuation with gradual source removal and administrative controls to mitigate unacceptable risks. Estimates for monitored natural attention by MoT are up to 25 and 41 years, respectively, for sodium and chloride concentrations in groundwater to drop to acceptable levels. Theoretically these attenuation periods may be reduced if a more aggressive remedial strategy were undertaken such as complete source removal on a quicker timeline. It is our understanding that an AIP has not been issued to date and consultation by MoT with the MoE affected landowners is ongoing.

The Joeyaksa Reserve is under Federal jurisdiction; therefore, the BC MoE process and Wide Area Contaminated Site designation would not apply to the contamination on the reserve. There is no parallel prescriptive Federal process. A unique legal agreement between AANDC/LNIB and MoT outlining expectations with milestones and remediation endpoints, responsibilities, and consideration is required to address AANDC and the LNIB's liabilities associated with the contamination. Legal council should be sought on this issue. The environmental due diligence completed by MoT to support the Wide Area Contaminated Site designation is anticipated to meet the technical requirements for any AANDC approval, assuming the remediation plan is acceptable to LNIB stakeholders.



#### 7.4 DATA REDUCTION AND VALIDATION

# 7.4.1 Field Quality Assurance/ Quality Control

# **Precision**

The relative percent difference (RPD) of analytical results for duplicate samples  $X_1$  and  $X_2$  is defined as:

$$RPD = |(X_1 - X_2) / mean(X_1, X_2)| * 100\%$$

Where field duplicates were collected, RPD calculations were completed. The results of the RPD calculations for soil are included as Tables 9 and 10. In cases where the concentration of a parameter was less than five (5) times the method detection limit, the RPD was not calculated since these low concentrations are not typically accurate. The recommended RPD data quality objectives (DQOs) were obtained from the BC Environmental Laboratory Manual (BCELM), and are specific to samples analyzed in BC under specific BC analytical methods. Samples were analyzed by CARO Analytics of Richmond, BC. Recommended RPD values are as follows:

- Soil Metals 30%
- High Variability Metals in Soil (Ag, Al, Ba, Hg, K, Mo, Na, Pb, Sn, Sr, Ti) 40%
- PAH in Soil 50%
- EPH/VOC in Soil 40%
- Metals in Water 20%
- Organics in Water 30%

The average, median, maximum, and minimum relative percent differences (RPDs) of the blind field duplicates are presented in the table below.

Table E. Relative Percent Differences (RPDs) of Duplicate Analyses

| Sample Type                 | # of<br>Duplicates | Average RPD (%) | Median RPD<br>(%) |    |   |  |  |
|-----------------------------|--------------------|-----------------|-------------------|----|---|--|--|
| Soils                       |                    |                 |                   |    |   |  |  |
| Inorganic<br>(Metals)       | 2                  | 7               | 4                 | 33 | 0 |  |  |
| Organic<br>(PAH, F2-4, VOC) | 2                  | -               | -                 | -  | - |  |  |
| Water                       |                    |                 |                   |    |   |  |  |



| Sample Type                 | # of<br>Duplicates | Average RPD (%) | Median RPD<br>(%) | Maximum<br>RPD (%) | Minimum<br>RPD (%) |
|-----------------------------|--------------------|-----------------|-------------------|--------------------|--------------------|
| Inorganic<br>(Metals)       | reganic 2 11 6     |                 | 1                 | 7                  | 0                  |
| Organic<br>(PAH, F2-4, VOC) |                    |                 | 6                 | 23                 | 2                  |

The following discussion summarizes the results of the QA/QC program:

#### Soil Results:

As shown in Table 10a in Appendix D, RPDs observed in the two (2) duplicate data sets collected were calculated at an average of 7%, which is below the stated metals in soil DQO of 30%. The RPDs ranged from 0% to 33%, exceeding the metals DQO of 30% in one instance. RPDs were not calculated for Organics in soils, as all organic results reported were below the MDL.

#### Water Results

RPDs for the two (2) duplicate analyses in water are provided in Table 10b. RPDs reported for inorganics in water ranged from 0% to 7%, and did not exceed the DQO of 20%. RPDS calculated for Organics in water ranged from 2% to 23%, with an average of 11%, and did not exceed the DQO of 30% in any instance.

# 7.4.2 Lab Quality Assurance/ Quality Control

A QA/QC review of the laboratory data was undertaken. The laboratory QA/QC program included evaluating laboratory analytical method blanks, analysis of reference materials, laboratory replicate samples and laboratory analytical spikes for soil analysis. The results of the internal laboratory QA testing are provided on the laboratory reports are included in Appendix E.

Split blank and lab duplicates for PAH returned naphthalene surrogate recovery outside of control limits, with RPD values for duplicate analysis outside the acceptable range for soils. Napthalene recovery in the reference material for the same QC batch was also found to be outside the control limits. Data was considered acceptable based on recovery of other surrogates. It should be noted that this could lead to a potentially high bias in naphthalene results in soil; however, as naphthalene was reported below the MDL in all cases, the data is considered acceptable.

The method blanks, reference materials, spikes, and RPDs for analyses in water were all within the acceptable range of variance.

It is concluded that, based on the laboratory data generated and the laboratory's outlined QA/QC program, the laboratory soil and water analytical data can be relied upon for the purposes of this



Site investigation. The RPDs of the lab replicates indicate inherent uncertainty in soil characterization due to heterogeneity in contaminant distribution on the sample volume scale.



#### 8.0 NCSCS CLASSIFICATION UPDATE

The CCME NCSCS evaluates contaminated sites according to their current or potential adverse impact on human health and the environment allowing for prioritization of contaminated sites by using an additive numerical method that assigns scores to a number of site characteristics.

The Godey Pit Salt Contamination is an AEC being actively managed by MoT, and as such is not retained for management under the Federal contaminated sites system. NCSCS for this site is not required.

Contaminated soil was identified on the Pipseul IR#3 associated with treated wood waste. This AEC was scored according to the NCSCS as summarized below. Complete NCSCS worksheets are included in Appendix F.

| Site Letter Grade                  | D    |
|------------------------------------|------|
| Certainty Percentage               | 81%  |
| % Responses that are "Do Not Know" | 10%  |
|                                    |      |
| Total NCSCS Score for site         | 40.4 |
| Site Classification Category       | 3    |

The Treated wood waste area on the Pipseul IR#3 was classified as Class 3 - Low Priority for Action (Total NCS Score 37 - 49.9).

Class 1 - High Priority for Action (Total NCS Score >70)

Class 2 - Medium Priority for Action (Total NCS Score 50 - 69.9)

Class 3 - Low Priority for Action (Total NCS Score 37 - 49.9)

Class N - Not a Priority for Action (Total NCS Score <37)

Class INS - Insufficient Information (>15% of responses are "Do Not Know")

No AECs were identified at Mojos Gas Station on the Nicola Mameet IR#1 Reserve and therefore no NCS Score was required for this location.



# 9.0 CONCLUSION & RECOMMENDATIONS

The following table summarizes the Areas of Potential Environmental Concern, whether they were retained as an APEC or Area of Environmental Concern, based on sampling results, and provides comments and recommendations for further action if required.

**Table F: Summary of APECs and AECs** 

| APEC                                                   | Retained as<br>APEC of AEC | Comment/Recommendation                                                                                                                                                                                                                   |
|--------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pipseul IR#3                                           |                            |                                                                                                                                                                                                                                          |
| APEC 1 – Treated Wood Waste                            | Yes – AEC 1                | Off-site disposal of treated wood waste and PAH impacted soil. In-situ delineation of contaminated soil recommended at time of waste removal, followed by contaminated soil excavation and off-site disposal with confirmation sampling. |
| APEC 2 – Metal Debris Pile                             | No                         | No further investigation recommended at this time.                                                                                                                                                                                       |
| APEC 3 – Poured Concrete<br>Waste                      | No                         | No further investigation recommended at this time.                                                                                                                                                                                       |
| APEC 4 – Hydrocarbon<br>Containers                     | No                         | No further investigation recommended at this time.                                                                                                                                                                                       |
| APEC 5 – Former Silo                                   | No                         | No further investigation recommended at this time.                                                                                                                                                                                       |
| APEC 6 – Former Building<br>Footprint                  | No                         | No further investigation recommended at this time.                                                                                                                                                                                       |
| NICOLA MAMEET LAKE IR#1                                |                            |                                                                                                                                                                                                                                          |
| APEC 1 – Current Asphalt Plant                         | No                         | No further investigation recommended at this time.                                                                                                                                                                                       |
| APEC 2 – Former Asphalt<br>Plant                       | No                         | No further investigation recommended at this time.                                                                                                                                                                                       |
| APEC 3 – Recycled Asphalt<br>Pile                      | No                         | No further investigation recommended at this time.                                                                                                                                                                                       |
| APEC 4 – Former Service<br>Station (Mojo's)            | No                         | No further investigation recommended at this time.                                                                                                                                                                                       |
| APEC 5 – Former<br>Maintenance Building /<br>Warehouse | No                         | No further investigation recommended at this time.                                                                                                                                                                                       |
| APEC 6 – 3000L Diesel AST                              | No                         | No further investigation recommended at this time.                                                                                                                                                                                       |



| APEC                                                | Retained as<br>APEC of AEC | Comment/Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JOEYASKA IR#2                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| APEC 1 – Godey Pit Salt<br>Contamination (Off-site) | Yes – AEC 2                | Conduct internal stakeholder meetings with band members, particularly the affected parties of the Joeyaska Reserve to gather input into this process and confirm the land use assumptions applied to the risk assessments are valid. Traditional knowledge should be sought with respect to species potentially extirpated from the reserve due to salt impacts, particularly amphibians.  Continue engagement with MoT until a remediation plan is approved by MoE with respect to MoT's application for a Wide Area Contaminated Site Designation.  Seek a legal agreement outlining MoT's responsibility to LNIB/AANDC for the contamination. |

In addition to the recommendations above, application of environmental best management practices (BMPs) with respect to the storage and handling of hazardous materials and solid wastes is recommended to reduce the potential for future contaminated site liabilities. Furthermore, third party land leases of reserve lands should be reviewed and updated to include sufficient legal clauses as to protect the LNIB from environmental liabilities incurred by lessees.



#### 10.0 REPORT USE & LIMITATIONS

This Phase II ESA Report has been prepared for the exclusive use of the Lower Nicola Indian Band (LNIB) and Aboriginal Affairs and Northern Development Canada (AANDC) and it is intended to provide the LNIB and AANDC with an understanding of the potential and actual environmental contamination by hazardous materials at the property assessed. The scope of services performed in execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or re-use of this document or the findings, conclusions, or recommendations presented herein is at the sole risk of said user. The findings and recommendations in this report are based upon data and information obtained during Site visits by Columbia personnel to the Site identified herein and the condition of the Site on the dates of such visits, supplemented by information and data obtained by Columbia described herein.

The findings and recommendations contained in this report are based on the expertise and experience of Columbia in conducting similar site assessments. In assessing the Site, Columbia has also relied upon representations and information furnished by individuals noted in the report with respect to existing operations and property conditions and the historical uses of the properties to the extent that the information obtained has not been contradicted by data obtained from other sources. Accordingly, Columbia accepts no responsibility for any deficiency, misstatements or inaccuracy contained in this report as a result of misstatements, omissions, misrepresentations or fraudulent information provided by others.

It should be recognized that this study was not intended to be a definitive investigation of contamination at the site. Given that the limited scope of services for this assessment as stated in the proposal for the Phase II ESA, it is possible that currently unrecognized contamination may exist at the Site and, if present, that the levels of contamination may vary across the Site. Opinions and recommendations presented herein apply to site conditions existing at the time of our assessment and those reasonably foreseeable. Should environmentally significant changes to the Site or additional information become available, Columbia should be provided the opportunity to review this information/data and amend our opinions, as appropriate. Fungi, mycotoxins, bioaerosols and other indoor air quality issues were not included in the scope of work.

Columbia's objective is to perform our work with care, exercising the customary thoroughness and competence of earth science, environmental, and engineering consulting professionals, in accordance with the standard for professional services at the time and location those services are rendered. It is important to recognize that even the most comprehensive scope of services may fail to detect environmental liability on a particular site. Therefore, Columbia cannot act as insurers and cannot "certify" or "underwrite" that a site is free of environmental contamination, and no expressed or implied representation or warranty is included or intended in our reports, except that our work was performed, within the limits prescribed by our client, with the customary thoroughness and competence of our profession.



#### 11.0 PROFESSIONAL STATEMENT

The information compiled for this document has been prepared in accordance with the requirements of the *Environmental Management Act* and its Regulations.

Columbia states that the persons signing this document have demonstrable experience in the assessment of similar sites. The work has been performed by Columbia staff under the guidance and supervision of the signatories below.

If you require any additional information or have any questions, please do not hesitate to contact the undersigned.

Report prepared by:

Columbia Environmental Consulting Ltd.

Summer Zawacky, B.Sc.

Field Assessor

Graham Martens, R.P.Bio.

Project Manager

for

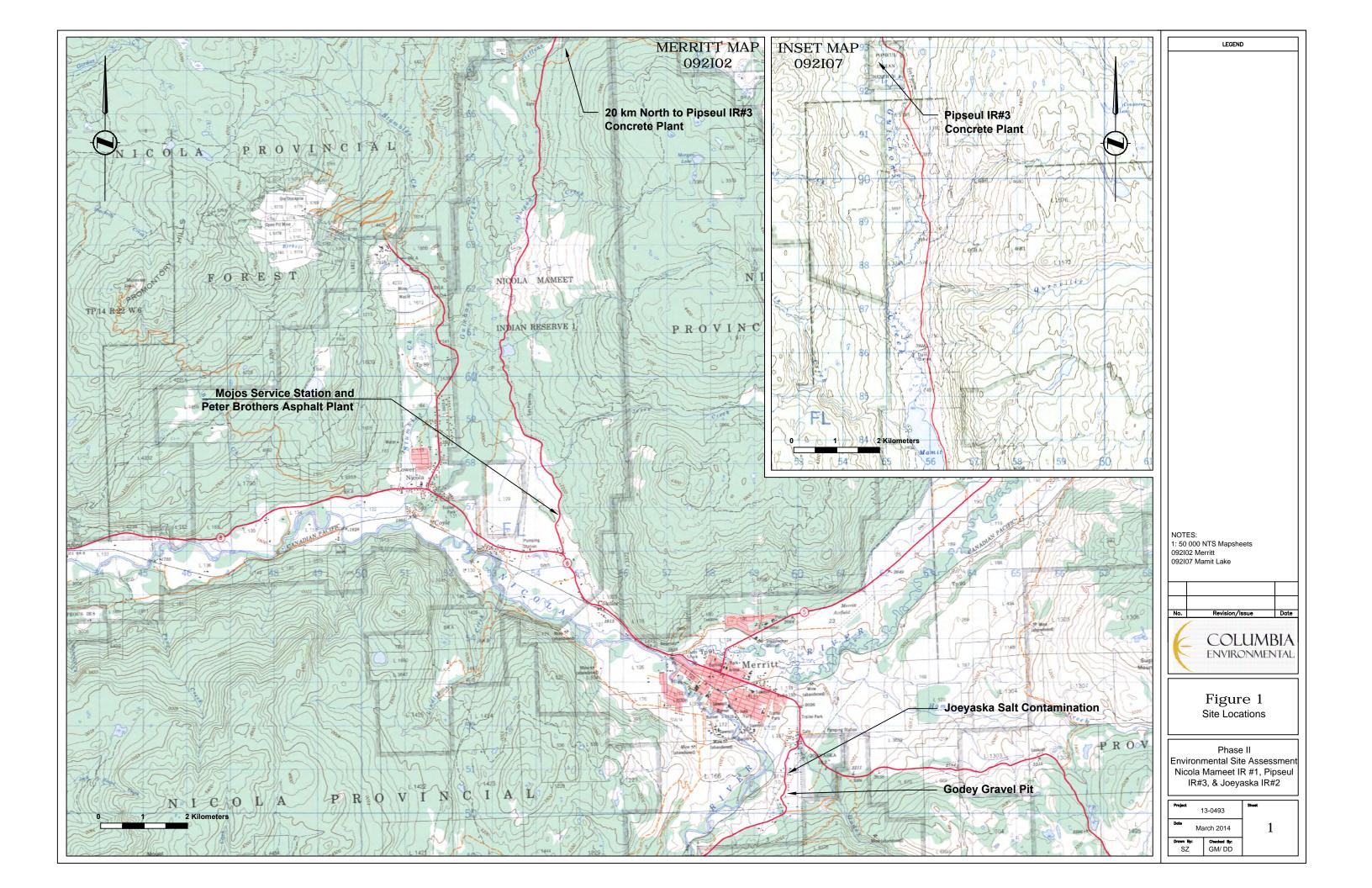
Dave Diplock, P.Eng.

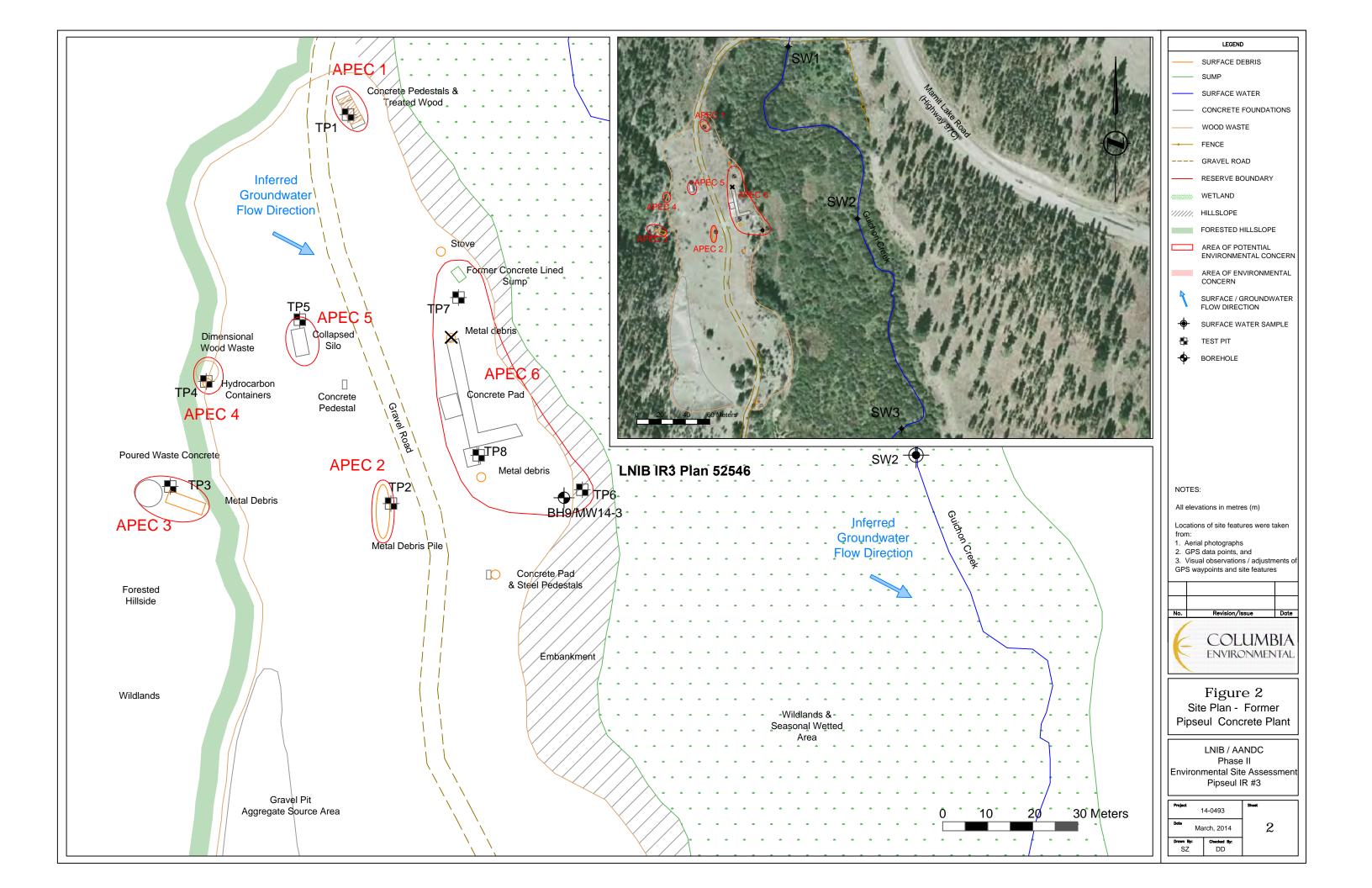
Senior Environmental Engineer

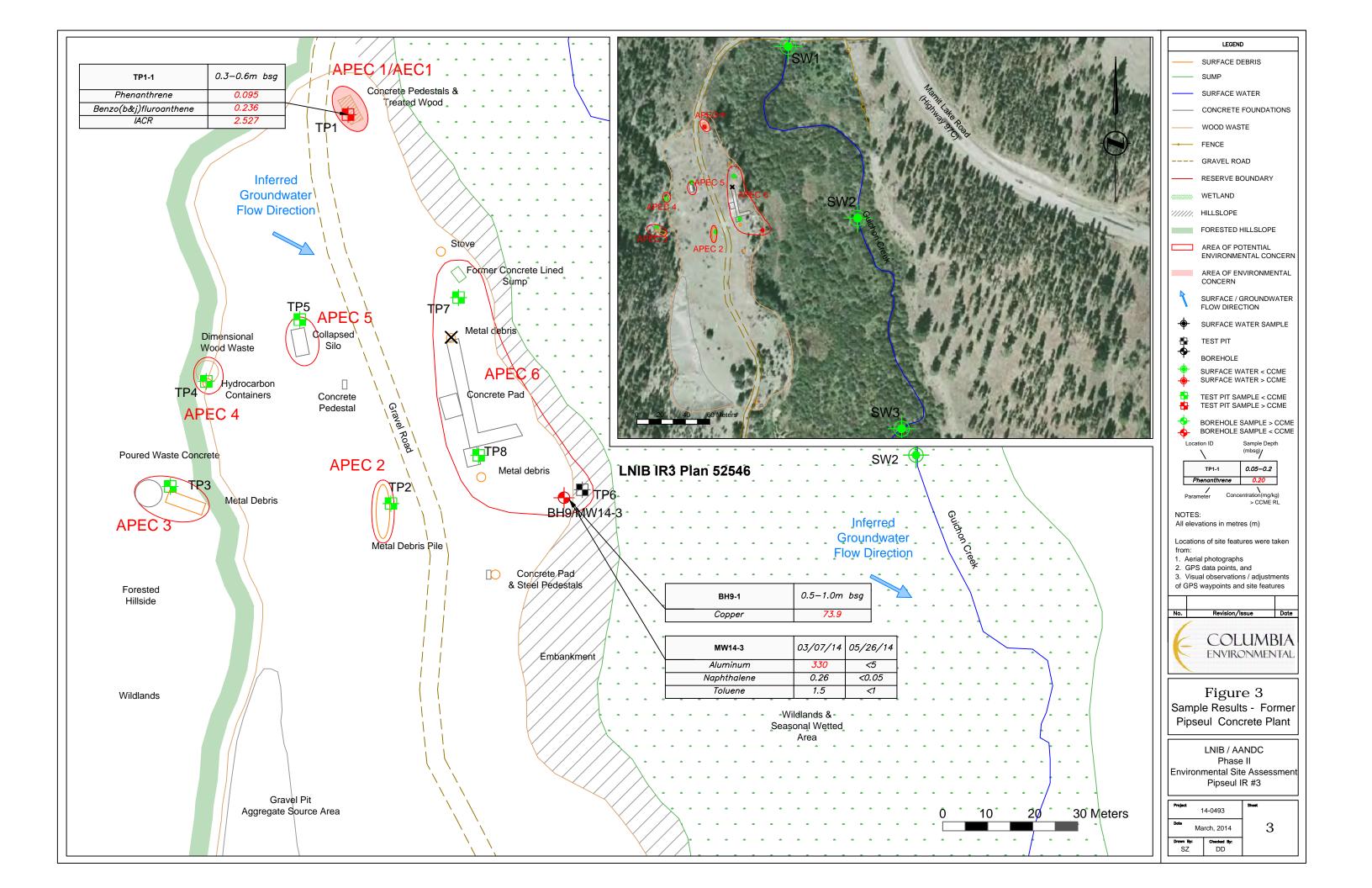


#### 12.0 REFERENCES

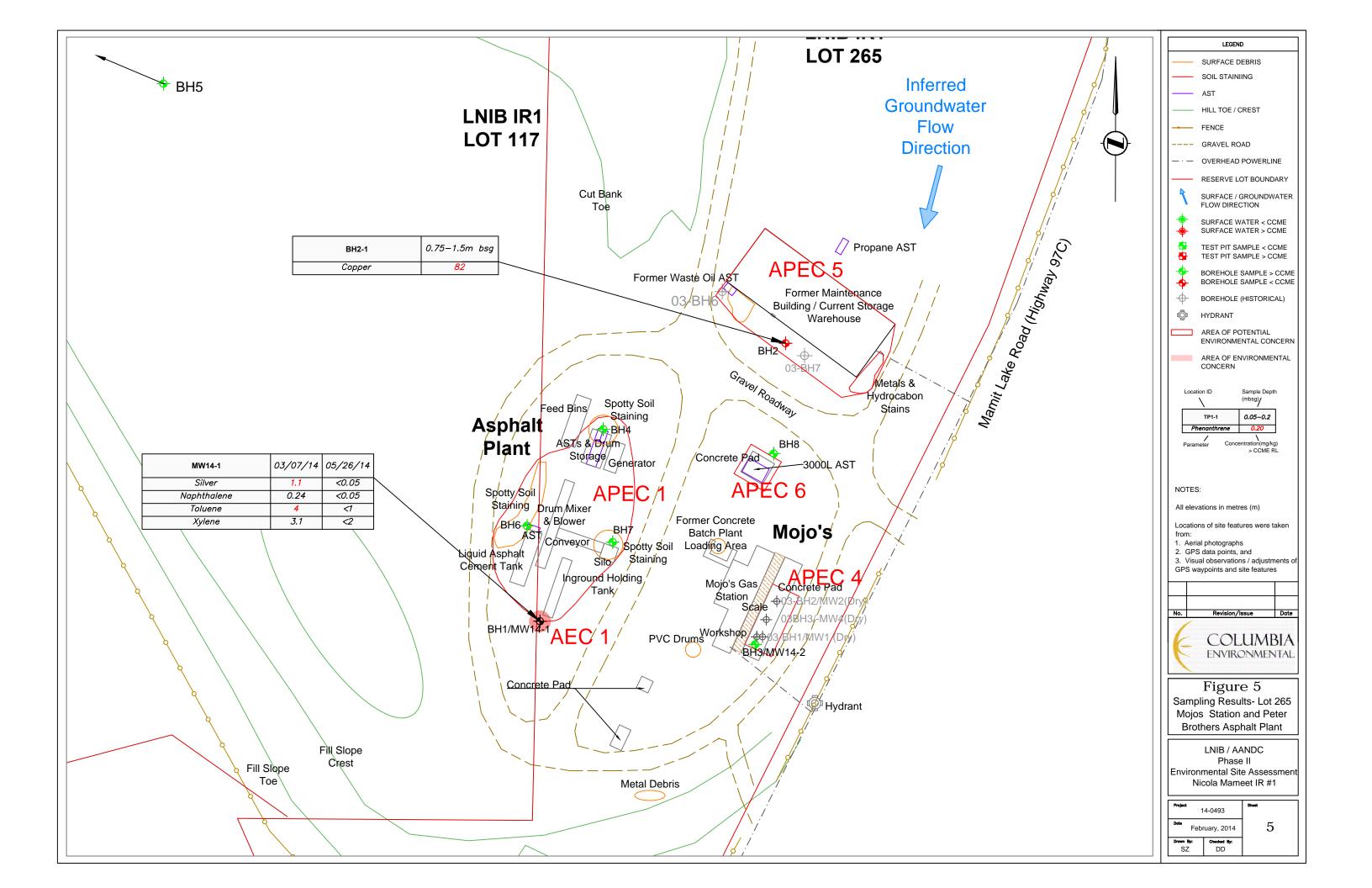
- Azimuth, 2011. <u>Agricultural and Ecological Risk Assessment, Godey Pit and Adjacent Properties, Merritt, BC</u>. Azimuth Consulting Group Inc.
- Azimuth, 2011. <u>DCAD Erratum Agricultural and Ecological Risk Assessment Godey Pit and Adjacent Properties, Merritt, BC</u>. Azimuth Consulting Group Inc.
- Columbia, 2011. <u>Phase I Environmental Site Assessment, Joeyaska IR#2, Lower Nicola Indian Band, Merritt, BC</u>. Columbia Environmental Consulting Ltd.
- CEC, 2011. <u>Phase I Environmental Site Assessment, Nicola Mameet IR#1, Lower Nicola Indian Band, Merritt, BC</u>. Columbia Environmental Consulting Ltd.
- CEC, 2011. <u>Phase I Environmental Site Assessment, Pipseul IR#3, Lower Nicola Indian Band, Merritt, BC.</u> Columbia Environmental Consulting Ltd.
- CEC, 2012. Third Party Review of Environmental Studies Pertaining to Salt Contamination Originating on the Godey Pit, Located Near Merritt, BC. Columbia Environmental Consulting Ltd.
- CSR. 1997. Environmental Management Act. <u>Contaminated Sites Regulation</u>, including amendments up to January 1, 2009. BC Regulation 375/96. Victoria, BC.
- CCME. 2001 Canada <u>Wide Standards (CWS) for Petroleum Hydrocarbons (PHC) in Soil</u>. Winnipeg, Manitoba.
- CCME. 2004. Canadian Environmental Quality Guidelines. Winnipeg, Manitoba.
- CCME. 2010. <u>National Classification System for Contaminated Sites</u>. Canadian Council of Ministers of the Environment, Winnipeg, Manitoba.
- Levelton. 2003. <u>Stage 2 Preliminary Site Investigation</u>, 9886 Mameet Lake Road, Merritt, BC. Levelton Engineering Ltd.
- MoT. 2013. Letter response to LNIB regarding the Godey Pit. Ministry of Transportation.
- SNC. 2011. <u>Preliminary Site Investigation and Detailed Site Investigation, Godey Pit</u> and Adjacent Properties, Merritt, BC. SNC-Lavalin Environment.
- SNC. 2011. <u>Environment, Human Health Risk Assessment for the Properties in the Vicinity of</u> Godey Pit, Merritt, BC. SNC-Lavalin Environment.



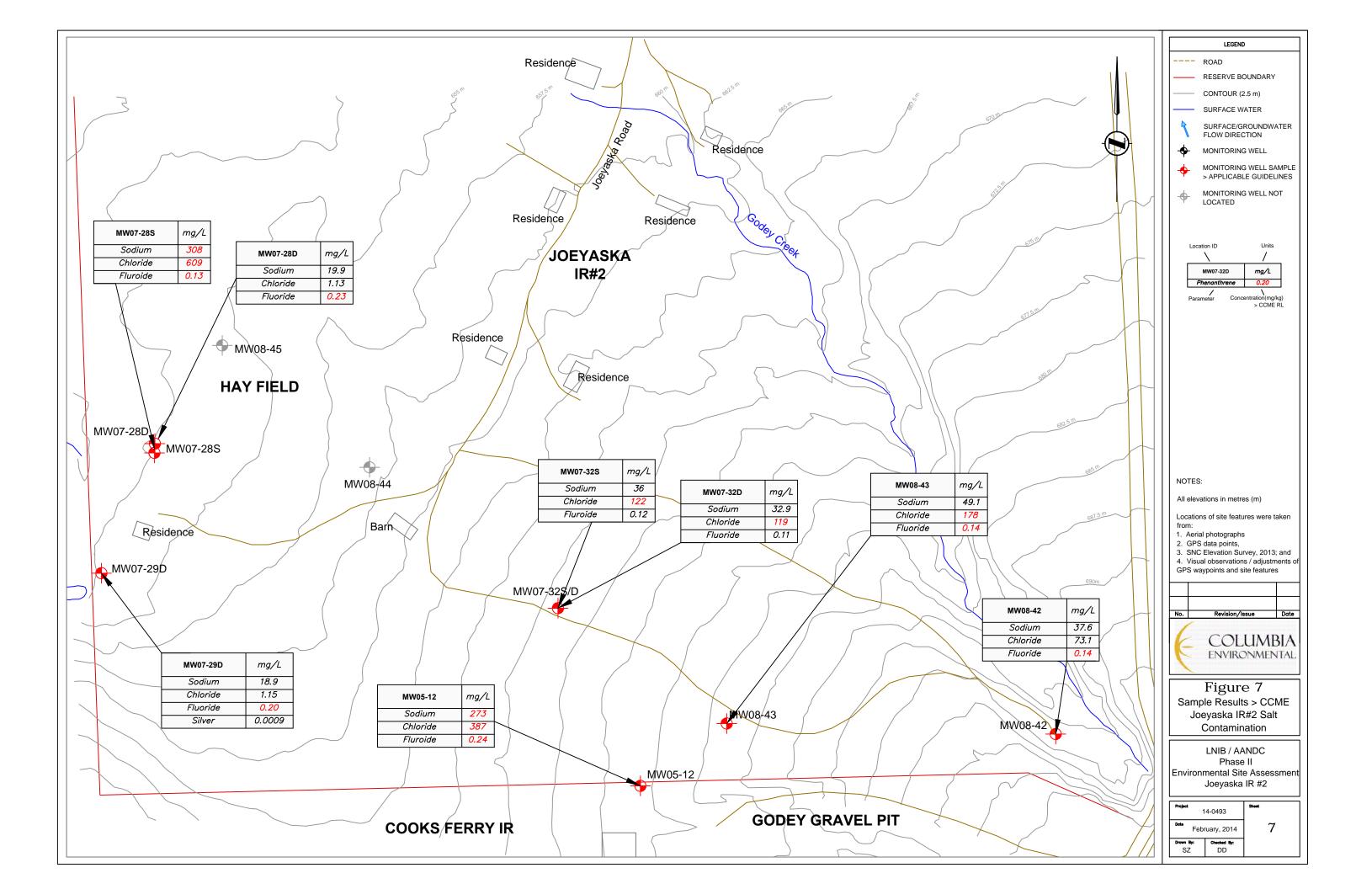


- SNC. <u>2011 Remedial Action Plan for Godey Pit and Adjacent Properties, Merritt, BC. Letter Report.</u> SNC-Lavalin Environment.
- SNC. 2013. Response to Lower Nicola Indian Band Re: Godey Pit Contamination on the Joeyaska Reserve and Columbia Environmental Consulting Ltd Third Party Review Report. SNC-Lavalin Environment.
- SNC. 2014. Memorandum RE: MoT Godey Pit: Detailed Responses to MoE on DSI Comments. Letter Report. SNC-Lavalin Environment.
- UMA. 2005. <u>Confirmatory Environmental Site Investigation for 9886 Mameet Lake Road, Lot 265, Plan BC215 Nicola Indian Reserve No. 1.</u> UMA Engineering Ltd.

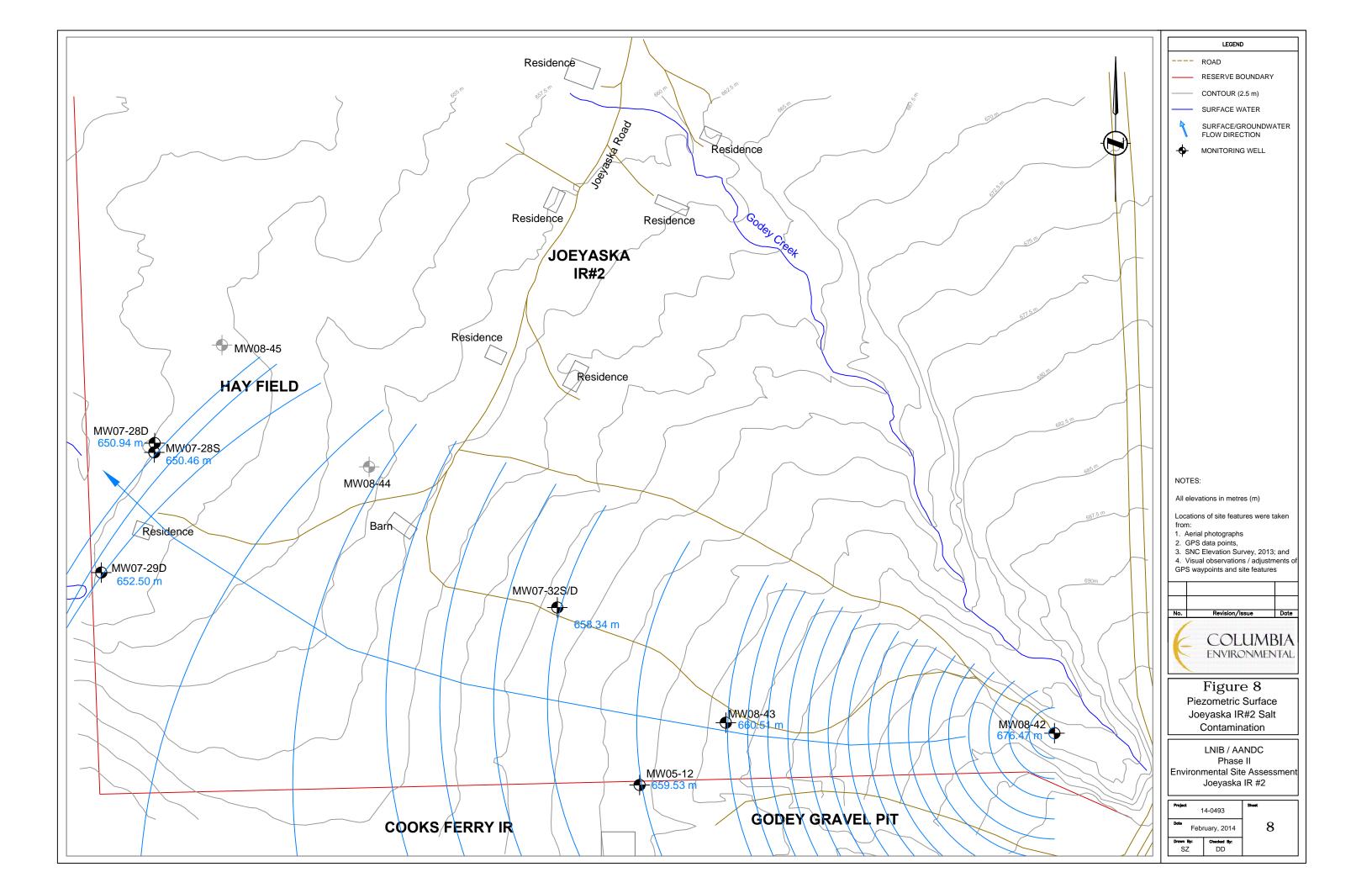



# APPENDIX A FIGURES





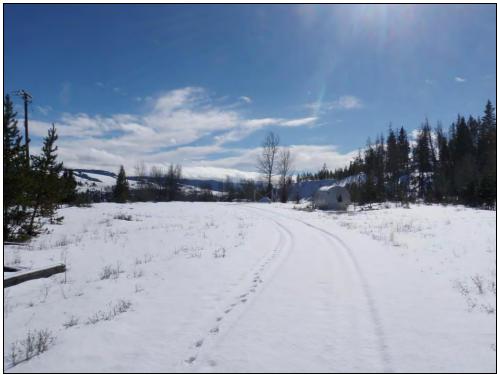












# **APPENDIX B**

PHOTOGRAPHIC DOCUMENTATION



# PIPSEUL IR #3 – Former Concrete Plant



**Photo 1.** Overview of the Pipseul IR#3 Former Concrete Plant facing south. Note the collapsed silo (APEC 5).



Photo 2. View of the Treated Wood and concrete pedestals (APEC 1) facing north.





Photo 3. View of the Metal Debris Pile (APEC 2) and TP2 facing south.



Photo 4. View of the poured Concrete Waste and metal debris (APEC 3) and TP3 facing south.





**Photo 5.** View of the hydrocarbon container pile (APEC 4) and adjacent wood waste facing southeast.



**Photo 6.** View of the concrete pads in the former building footprint (APEC 6) facing northwest.



# NICOLA MAMEET IR#1 – Mojos Station and Peter Bros Asphalt Plant



**Photo 1.** Overview of the Peter Bros Asphalt Plant (APEC 1) facing north.



**Photo 2.** View of typical hydrocarbon storage withint eh footprint of the portable asphalt plant (APEC 1) facing northwest.





**Photo 3.** View of typical spotty soil staining in the vicinity of the various ASTs throughout the asphalt plant footprint (APEC 1), facing south.



**Photo 4.** View the in-ground lined sumps at the asphalt plant (APEC 1) showing the location BH1 and MW14-1, facing south.





Photo 5. View of the former Peter Bros Asphalt Plant location (APEC 2) facing west.



Photo 6. View of the recycled asphalt stockpile (APEC 3) facing west.





**Photo 7.** View of the former Mojos Service Station (APEC 4) facing north. Note the snow-covered weigh scale and concrete pad out front.



**Photo 8.** View of the dismantled former batch concrete plant at the back (west) side of the former Mojos service station (APEC 4), facing south.





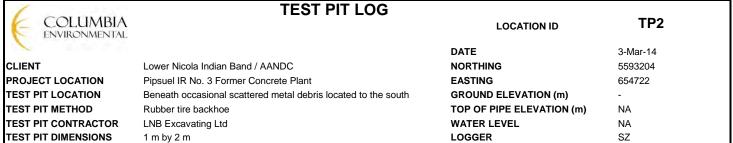
**Photo 9.** View of the former Mojo's Maintenance Building / Current Warehouse (APEC 5) facing north.



**Photo 10.** View of the broken concrete apron, minor soil staining on the south side of the warehouse (APEC 5) and BH2 facing west.



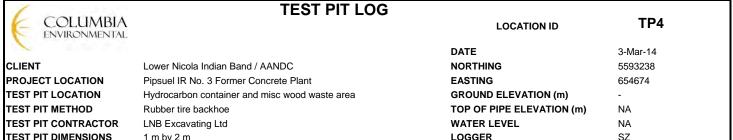



**Photo 11.** View of the 3000L Diesel AST (APEC 6) facing southwest.

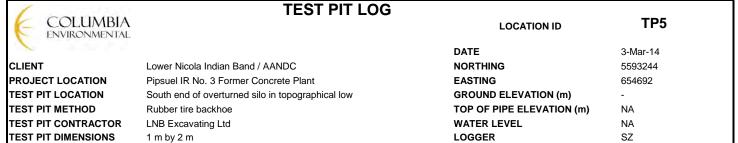
# APPENDIX C TEST PIT AND BOREHOLE LOGS



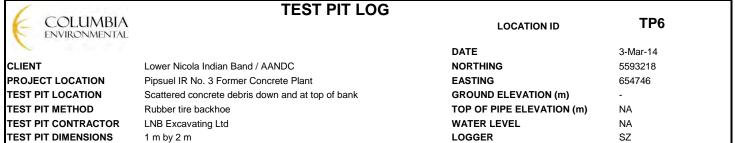



|                            | PIT DIMENSIONS 1 m by 2 m                                                   |                           | LOGGI       |      |            |           |                     | SZ           |
|----------------------------|-----------------------------------------------------------------------------|---------------------------|-------------|------|------------|-----------|---------------------|--------------|
|                            | SAMPLE DESCRIPTION                                                          |                           |             |      |            | SAMPLE    |                     | WELL DETAILS |
| ≥ _                        | O. a.a. 22 Second from                                                      | ┪.                        | ٦           |      |            | 3 LE      |                     |              |
| D E                        |                                                                             | VEL<br>0                  | /BC         | 1    | ER         | 6         | GE                  |              |
| E S                        |                                                                             | L H                       | SYR         | 1    | Š          | Щ.        | SPA                 |              |
| PT-<br>RFA                 |                                                                             | TER                       | USCS SYMBOL | 밆    | % RECOVERY | SAMPLE ID | ADS<br>mv)          |              |
| DEPTH BELOW<br>SURFACE (m) | Soil Surface                                                                | WATER LEVEL<br>(MEASURED) | ŠN          | TYPE | 3 %        | SA        | HEADSPACE<br>(ppmv) |              |
|                            | SAND AND COBBLES                                                            |                           |             |      |            |           |                     |              |
| 1 -                        | Brown damp silty sand and gravel, with cobbles.                             |                           |             | 1    |            |           |                     |              |
| _                          | Occasional wood waste and debris stirred into soils                         |                           |             |      |            |           |                     |              |
| _                          |                                                                             |                           |             |      |            |           |                     | 1            |
| _                          |                                                                             |                           |             | Grab | 100        | TP1-1     | 15                  |              |
| _                          |                                                                             |                           |             |      |            |           |                     |              |
| _                          | SAND AND GRAVEL                                                             |                           |             |      |            |           |                     | 1            |
| _                          | Brown damp coarse to medium grain sand and gravel, with occasional boulders |                           |             |      |            |           |                     | 1            |
| _                          | ······················                                                      |                           |             | Grab | 100        | TP1-2     | 5                   |              |
| 1.0                        |                                                                             |                           |             |      |            |           |                     |              |
| 1.0                        |                                                                             |                           |             |      |            |           |                     | 1            |
| _                          |                                                                             |                           |             |      |            |           |                     |              |
| I -                        |                                                                             |                           |             | 1    |            |           |                     |              |
| -                          | END OF TEST PIT AT 1.3 m                                                    | -                         |             | 1    |            |           |                     |              |
| 1 -                        | LIND OF TEST FITAL 1.3 III                                                  | 1                         |             |      |            |           |                     |              |
| -                          |                                                                             |                           |             | 1    |            |           |                     |              |
| I -                        |                                                                             |                           |             | 1    |            |           |                     |              |
| I -                        |                                                                             |                           |             | 1    | l          |           |                     |              |
| -                          |                                                                             |                           |             | 1    |            |           |                     |              |
|                            |                                                                             |                           |             | 1    |            |           |                     |              |
| 2.0                        |                                                                             |                           |             | 1    |            |           |                     |              |
| -                          |                                                                             |                           |             | 1    |            |           |                     |              |
| _                          |                                                                             |                           |             |      |            |           |                     |              |
| _                          |                                                                             |                           |             |      |            |           |                     |              |
| _                          |                                                                             |                           |             |      |            |           |                     |              |
| _                          |                                                                             |                           |             |      |            |           |                     |              |
|                            |                                                                             |                           |             |      |            |           |                     |              |
|                            |                                                                             |                           |             |      |            |           |                     |              |
| _                          |                                                                             |                           |             |      |            |           |                     |              |
| _                          |                                                                             |                           |             |      |            |           |                     |              |
| 3.0                        |                                                                             |                           |             | 1    |            |           |                     |              |
|                            |                                                                             |                           |             | 1    |            |           |                     |              |
| I -                        |                                                                             |                           |             | 1    |            |           |                     |              |
| I -                        |                                                                             |                           |             | 1    |            |           |                     |              |
| -                          |                                                                             |                           |             | 1    |            |           |                     |              |
| 1 -                        |                                                                             |                           |             | 1    |            |           |                     |              |
| 1 -                        |                                                                             | 1                         |             |      |            |           |                     |              |
| 1 -                        |                                                                             | 1                         |             |      |            |           |                     |              |
| 1 -                        |                                                                             | 1                         |             |      |            |           |                     |              |
| 1 -                        |                                                                             | 1                         |             |      |            |           |                     |              |
|                            |                                                                             |                           |             | 1    | l          |           |                     |              |
| 4.0                        |                                                                             |                           |             | 1    |            |           |                     |              |
| I -                        |                                                                             |                           |             | 1    |            |           |                     |              |
| -                          |                                                                             |                           |             | 1    |            |           |                     |              |
| -                          |                                                                             |                           |             | 1    |            |           |                     |              |
| _                          |                                                                             |                           |             | 1    |            |           |                     |              |
| _                          |                                                                             |                           |             | 1    |            |           |                     |              |
| I _                        |                                                                             |                           |             | 1    |            |           |                     |              |
| 1 -                        |                                                                             | 1                         |             |      |            |           |                     |              |
| I -                        |                                                                             |                           |             | 1    | l          |           |                     |              |
| 1 -                        |                                                                             |                           |             | 1    | l          |           |                     |              |
| 5.0                        |                                                                             |                           |             | 1    | l          |           |                     |              |
|                            |                                                                             |                           |             | 1    | l          |           |                     |              |
| I -                        |                                                                             |                           |             | 1    |            |           |                     |              |
| I -                        |                                                                             |                           |             | 1    |            |           |                     |              |
| 1 -                        |                                                                             | 1                         |             |      |            |           |                     |              |
| I -                        |                                                                             |                           |             | 1    | l          |           |                     |              |
| I -                        |                                                                             |                           |             | 1    | l          |           |                     |              |
| -                          |                                                                             |                           |             | 1    | l          |           |                     |              |
| I -                        |                                                                             |                           |             | 1    |            |           |                     |              |
| 1 -                        |                                                                             | 1                         |             |      |            |           |                     |              |
|                            |                                                                             |                           |             | 1    |            |           |                     |              |
| 6.0                        |                                                                             | 1                         |             |      |            |           |                     |              |
| 1 -                        |                                                                             | 1                         |             |      |            |           |                     |              |
|                            |                                                                             |                           |             |      |            |           |                     |              |

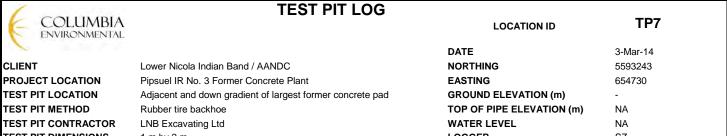



| 0 . 1                      | PIT DIMENSIONS 1 m by 2 m                       |                           | LOGG        | EK          |            |           |                     | SZ           |  |
|----------------------------|-------------------------------------------------|---------------------------|-------------|-------------|------------|-----------|---------------------|--------------|--|
|                            | SAMPLE DESCRIPTION                              |                           |             |             |            | SAMPLE    |                     | WELL DETAILS |  |
| >                          | OTHER DESCRIPTION                               | 1                         |             | <b>-</b>    |            | JAWII LE  |                     | WELL DETAILS |  |
| DEPTH BELOW<br>SURFACE (m) |                                                 | WATER LEVEL<br>(MEASURED) | USCS SYMBOL |             | % RECOVERY | _         | HEADSPACE<br>(ppmv) |              |  |
| BE S                       |                                                 | E E                       | Σ           |             | )<br>N     |           | PAC                 |              |  |
| ΞX                         |                                                 | ER<br>4SU                 | SS          | щ           | EQ.        | IPL.      | S (S                |              |  |
| 를<br>XX                    | Soil Surface                                    | WAT<br>ME,                | JSC         | TYPE        | %<br>R     | SAMPLE ID | Ppn FA              |              |  |
|                            | SAND AND GRAVEL                                 |                           |             | <del></del> | ٥,         | ٠,        |                     |              |  |
| 1 -                        | Brown damp silty sand and gravel, with cobbles. |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| _                          | Brown damp silty sand and gravel, with copples. |                           |             |             |            |           |                     |              |  |
| _                          |                                                 |                           |             | -           |            |           |                     | 4            |  |
| _                          |                                                 |                           |             |             |            |           |                     |              |  |
| _                          |                                                 |                           |             | Grab        | 100        | TP2-1     | 5                   |              |  |
| _                          |                                                 |                           |             |             |            |           |                     |              |  |
|                            |                                                 |                           |             |             |            |           |                     |              |  |
|                            |                                                 |                           |             |             |            |           |                     |              |  |
| _                          |                                                 |                           |             |             |            |           |                     |              |  |
| 1.0                        | END OF TEST PIT AT 0.9 m                        | 1                         | 1           | ĺ           | Ī          |           |                     |              |  |
|                            |                                                 |                           |             |             |            |           |                     |              |  |
| I -                        |                                                 |                           |             |             | 1          |           |                     |              |  |
| 1 -                        |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| 1 -                        |                                                 |                           |             | 1           | 1          |           |                     |              |  |
| 1 -                        |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| I -                        |                                                 |                           |             | 1           | 1          |           |                     |              |  |
|                            |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| 1 _                        |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| 2.0                        |                                                 |                           |             |             | 1          |           |                     |              |  |
| 1 -                        |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| 2.0                        |                                                 |                           |             |             | 1          |           |                     |              |  |
|                            |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| I -                        |                                                 |                           |             |             | 1          |           |                     |              |  |
| -                          |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| -                          |                                                 |                           |             |             | 1          |           |                     |              |  |
| I -                        |                                                 |                           |             |             | 1          |           |                     |              |  |
| I –                        |                                                 |                           |             |             | 1          |           |                     |              |  |
| I _                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| I _                        |                                                 |                           |             |             | 1          |           |                     |              |  |
| _                          |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| I -                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| 3.0                        |                                                 |                           |             |             | 1          |           |                     |              |  |
| 5.0                        |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| -                          |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| 1 -                        |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| I -                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| I -                        |                                                 |                           |             |             | 1          |           |                     |              |  |
| I _                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
|                            |                                                 |                           |             |             | 1          |           |                     |              |  |
| 1 -                        |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| I -                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| -                          |                                                 |                           |             |             | 1          |           |                     |              |  |
| 4.0                        |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| 4.0                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| -                          |                                                 |                           |             |             | 1          |           |                     |              |  |
| _                          |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| I -                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| I _                        |                                                 |                           |             |             | 1          |           |                     |              |  |
| 1                          |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
|                            |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| 1 -                        |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| I -                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| 1 -                        |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| 5.0                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| 5.0                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| _                          |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| I _                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| I _                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| I -                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| _                          |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| I -                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| I -                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| 1 -                        |                                                 |                           | 1           | ĺ           | ĺ          |           |                     |              |  |
| -                          |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| 6.0                        |                                                 |                           | 1           | ĺ           | Ī          |           |                     |              |  |
| 6.0                        |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
| I .                        |                                                 |                           |             |             | 1          |           |                     |              |  |
| _                          |                                                 | 1                         |             | 1           | 1          |           |                     |              |  |
|                            |                                                 | •                         | •           | •           | •          |           |                     |              |  |

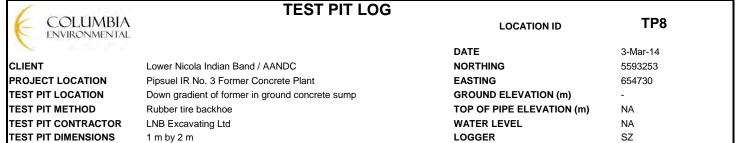



| IESI                       | PIT DIMENSIONS 1 m by 2 m                        |                           | LOGGE       | -K   |            |           |                     | SZ           |
|----------------------------|--------------------------------------------------|---------------------------|-------------|------|------------|-----------|---------------------|--------------|
|                            | SAMPLE DESCRIPTION                               | 1                         |             | 1    |            | SAMPLE    |                     | WELL DETAILS |
| ≥ _                        | 5 12 22 50 KM 110 K                              | 1.                        | 7           |      |            | J EE      |                     |              |
| 의<br>()                    |                                                  | , KE                      | USCS SYMBOL |      | % RECOVERY | ۵         | O.                  |              |
| L BE                       |                                                  | J. B. B.                  | SXI         | ĺ    | Š          | Щ.        | SPA                 |              |
| PTF<br>RF≱                 |                                                  | TEF                       | SO          | Ⅱ    | ZEC        | SAMPLE ID | AD(                 |              |
| DEPTH BELOW<br>SURFACE (m) | Soil Surface                                     | WATER LEVEL<br>(MEASURED) | US          | TYPE | % 5        | SAI       | HEADSPACE<br>(ppmv) |              |
|                            | SAND AND COBBLES                                 |                           |             |      |            |           |                     |              |
|                            | Brown damp coarse sand and gravel, with cobbles. |                           |             |      |            |           |                     |              |
| 1 -                        | • • • • • • • • • • • • • • • • • • • •          |                           |             |      |            |           |                     |              |
| 1 -                        |                                                  |                           | 1           |      |            |           |                     | 1            |
| I -                        |                                                  |                           |             | Grah | 100        | TP3-1     | 25                  |              |
| I -                        |                                                  |                           |             | 0.45 | .55        |           |                     |              |
| I -                        |                                                  |                           |             |      |            |           |                     | †            |
| 1 -                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
| 1 -                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
|                            |                                                  |                           |             |      |            |           |                     |              |
| 1.0                        | FAIR OF TEXT BIT AT 4.0                          | _                         |             |      |            |           |                     |              |
| I -                        | END OF TEST PIT AT 1.0 m                         |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| I -                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| 1 _                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
| I _                        |                                                  |                           |             |      |            |           |                     |              |
|                            |                                                  |                           |             |      |            |           |                     |              |
| 1                          |                                                  |                           |             |      |            |           |                     |              |
| I -                        |                                                  |                           |             |      |            |           |                     |              |
| 2.0                        |                                                  |                           |             |      |            |           |                     |              |
|                            |                                                  |                           |             |      |            |           |                     |              |
| I -                        |                                                  |                           |             |      |            |           |                     |              |
| I -                        |                                                  |                           |             |      |            |           |                     |              |
| I -                        |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| 1 -                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| 3.0                        |                                                  |                           |             |      |            |           |                     |              |
| I _                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
| I _                        |                                                  |                           |             |      |            |           |                     |              |
|                            |                                                  |                           |             |      |            |           |                     |              |
| 1 -                        |                                                  |                           |             |      |            |           |                     |              |
|                            |                                                  |                           |             |      |            |           |                     |              |
| I -                        |                                                  |                           |             |      |            |           |                     |              |
| I -                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
| I -                        |                                                  |                           |             |      |            |           |                     |              |
| I -                        |                                                  |                           |             |      |            |           |                     |              |
| 4.0                        |                                                  |                           |             |      |            |           |                     |              |
| 4.0                        |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           | 1           | ĺ    |            |           |                     |              |
| I -                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
| I -                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
| I –                        |                                                  |                           |             |      |            |           |                     |              |
| I –                        |                                                  |                           |             |      |            |           |                     |              |
| I _                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
| I -                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
|                            |                                                  |                           |             |      |            |           |                     |              |
| 5.0                        |                                                  |                           |             |      |            |           |                     |              |
|                            |                                                  |                           |             |      |            |           |                     |              |
|                            |                                                  |                           |             |      |            |           |                     |              |
| 1 -                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
| I -                        |                                                  |                           |             |      |            |           |                     |              |
| I -                        |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| 1 -                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
| 1 -                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| I –                        |                                                  |                           |             |      |            |           |                     |              |
| 6.0                        |                                                  |                           | 1           | ĺ    |            |           |                     |              |
| I _                        |                                                  |                           |             |      |            |           |                     |              |
| L -                        |                                                  | <u>L</u>                  | <u> </u>    | L    |            |           | <u> </u>            |              |
|                            |                                                  |                           | _           | _    | _          |           | _                   |              |




| TEST F                     | PIT DIMENSIONS 1 m by 2 m                                                                                                                                       | LOGGER SZ                 |             |      |            |                     | SZ                  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|------|------------|---------------------|---------------------|--|
|                            | SAMPLE DESCRIPTION                                                                                                                                              | SAI                       |             |      | SAMPLE     | SAMPLE WELL DETAILS |                     |  |
| DEPTH BELOW<br>SURFACE (m) | Coll Curfore                                                                                                                                                    | WATER LEVEL<br>(MEASURED) | USCS SYMBOL | TYPE | % RECOVERY | SAMPLE ID           | HEADSPACE<br>(ppmv) |  |
|                            | Soil Surface  SILTY SAND  Brown damp silty sand and wood waste, with a small amount of empty hydrocarbon containers,drums, and miscellaneous wastes at surface. | 3 &                       |             | F    | %          | Ø                   | ΙÜ                  |  |
| -<br>  -                   | SAND AND GRAVEL                                                                                                                                                 |                           |             | Grab | 100        | TP4-1               | 45                  |  |
| -                          | Brown damp coarse sand and gravel, with cobbles.                                                                                                                |                           |             |      |            |                     |                     |  |
| 1.0                        | SAND Medium grain brown sands                                                                                                                                   |                           |             |      |            |                     |                     |  |
| -<br>  -<br>  -            | END OF TEST PIT AT 1.4 m                                                                                                                                        |                           |             |      |            |                     |                     |  |
| 2.0                        |                                                                                                                                                                 |                           |             |      |            |                     |                     |  |
| -<br>  -<br>  -            |                                                                                                                                                                 |                           |             |      |            |                     |                     |  |
| 3.0                        |                                                                                                                                                                 |                           |             |      |            |                     |                     |  |
| -<br>-<br>-                |                                                                                                                                                                 |                           |             |      |            |                     |                     |  |
| -<br>-<br>-                |                                                                                                                                                                 |                           |             |      |            |                     |                     |  |
| 4.0                        |                                                                                                                                                                 |                           |             |      |            |                     |                     |  |
| -<br>  -<br>  -            |                                                                                                                                                                 |                           |             |      |            |                     |                     |  |
| 5.0                        |                                                                                                                                                                 |                           |             |      |            |                     |                     |  |
| -<br>  -                   |                                                                                                                                                                 |                           |             |      |            |                     |                     |  |
| 6.0                        |                                                                                                                                                                 |                           |             |      |            |                     |                     |  |
| L                          |                                                                                                                                                                 | 1                         |             |      |            | l                   | l                   |  |




|                            | F DIMENSIONS 1 m by 2 m LOGGER                  |                           |             |      |            |             |                     | SZ             |
|----------------------------|-------------------------------------------------|---------------------------|-------------|------|------------|-------------|---------------------|----------------|
|                            | SAMPLE DESCRIPTION                              |                           | 1           | 1    |            | SAMPLE      |                     | WELL DETAILS   |
| >                          | OTHER DESCRIPTION                               | 1                         | بِ          |      |            | J, 11711 LL |                     | TTELE DE IMILO |
| Ó E                        |                                                 | و (E                      | /BO         |      | ERY        | _           | S                   |                |
| I BE                       |                                                 | 필묎                        | S           |      | 000        | Hi<br>H     | ЗРА                 |                |
| DEPTH BELOW<br>SURFACE (m) |                                                 | WATER LEVEL<br>(MEASURED) | USCS SYMBOL | TYPE | % RECOVERY | SAMPLE ID   | HEADSPACE<br>(ppmv) |                |
| SUF                        | Soil Surface                                    | WA.                       | nsc         | Ĕ    | %          | SAN         | Ε<br>P E            |                |
|                            | SAND AND GRAVEL                                 |                           |             |      |            |             |                     |                |
| _                          | Brown damp silty sand and gravel, with cobbles. |                           |             |      |            |             |                     |                |
| 1 -                        | · · · · · · · · · · · · · · · · · · ·           |                           |             | ĺ    |            |             |                     |                |
| _                          |                                                 |                           |             |      |            |             |                     | 1              |
| _                          |                                                 |                           |             | Grah | 100        | TP5-1       | 5                   |                |
| -                          |                                                 |                           |             | Giab | 100        | 11 5-1      | 3                   |                |
| _                          |                                                 |                           |             |      |            |             |                     | 1              |
| _                          |                                                 |                           |             |      |            |             |                     |                |
| _                          |                                                 |                           |             |      |            |             |                     |                |
| _                          |                                                 |                           |             |      |            |             |                     |                |
| 1.0                        | END OF TEST PIT AT 0.9 m                        |                           |             |      |            |             |                     |                |
| _                          |                                                 |                           |             |      |            |             |                     |                |
|                            |                                                 |                           |             |      |            |             |                     |                |
|                            |                                                 |                           |             |      |            |             |                     |                |
|                            |                                                 |                           |             |      |            |             |                     |                |
| _                          |                                                 |                           |             |      |            |             |                     |                |
| I -                        |                                                 |                           |             | l    |            |             |                     |                |
| -                          |                                                 |                           |             |      |            |             |                     |                |
| I -                        |                                                 |                           |             |      |            |             |                     |                |
| 1 -                        |                                                 |                           |             | ĺ    |            |             |                     |                |
|                            |                                                 |                           |             |      |            |             |                     |                |
| 2.0                        |                                                 |                           |             |      |            |             |                     |                |
| 1 -                        |                                                 |                           |             | ĺ    |            |             |                     |                |
| I –                        |                                                 |                           |             |      |            |             |                     |                |
| I _                        |                                                 |                           |             |      |            |             |                     |                |
| 1                          |                                                 |                           |             | ĺ    |            |             |                     |                |
| 1 -                        |                                                 |                           |             | ĺ    |            |             |                     |                |
| _                          |                                                 |                           |             |      |            |             |                     |                |
| 1 -                        |                                                 |                           |             | ĺ    |            |             |                     |                |
| I -                        |                                                 |                           |             |      |            |             |                     |                |
| -                          |                                                 |                           |             |      |            |             |                     |                |
| 1                          |                                                 |                           |             | ĺ    |            |             |                     |                |
| 3.0                        |                                                 |                           |             |      |            |             |                     |                |
| I –                        |                                                 |                           |             |      |            |             |                     |                |
| 1 _                        |                                                 |                           |             | ĺ    |            |             |                     |                |
| I _                        |                                                 |                           |             | l    |            |             |                     |                |
| I -                        |                                                 |                           |             |      |            |             |                     |                |
|                            |                                                 |                           |             |      |            |             |                     |                |
| I -                        |                                                 |                           |             | l    |            |             |                     |                |
| 1 -                        |                                                 |                           |             |      |            |             |                     |                |
| I -                        |                                                 |                           |             |      |            |             |                     |                |
| 1 -                        |                                                 |                           |             | ĺ    |            |             |                     |                |
| 4.^-                       |                                                 |                           |             |      |            |             |                     |                |
| 4.0                        |                                                 |                           |             |      |            |             |                     |                |
| 1 -                        |                                                 |                           |             | ĺ    |            |             |                     |                |
| I -                        |                                                 |                           |             | l    |            |             |                     |                |
| I _                        |                                                 |                           |             | l    |            |             |                     |                |
| I _                        |                                                 |                           |             |      |            |             |                     |                |
| 1                          |                                                 |                           |             | ĺ    |            |             |                     |                |
|                            |                                                 |                           |             | l    |            |             |                     |                |
| _                          |                                                 |                           |             |      |            |             |                     |                |
| 1 -                        |                                                 |                           |             | ĺ    |            |             |                     |                |
| I -                        |                                                 |                           |             | l    |            |             |                     |                |
| 5.0                        |                                                 |                           |             | l    |            |             |                     |                |
| 3.0                        |                                                 |                           |             | l    |            |             |                     |                |
| -                          |                                                 |                           |             |      |            |             |                     |                |
| -                          |                                                 |                           |             | l    |            |             |                     |                |
| I -                        |                                                 |                           |             | l    |            |             |                     |                |
| 1 -                        |                                                 |                           |             | ĺ    |            |             |                     |                |
| 1 _                        |                                                 |                           |             | ĺ    |            |             |                     |                |
|                            |                                                 |                           |             | l    |            |             |                     |                |
| 1 -                        |                                                 |                           |             | ĺ    |            |             |                     |                |
| I -                        |                                                 |                           |             | l    |            |             |                     |                |
| -                          |                                                 |                           |             |      |            |             |                     |                |
| 6.0                        |                                                 |                           |             | l    |            |             |                     |                |
| 0.0                        |                                                 |                           |             |      |            |             |                     |                |
| I -                        |                                                 |                           |             | l    |            |             |                     |                |
| 1                          |                                                 |                           |             |      |            |             |                     |                |



| ILOII                      | F DIMENSIONS 1 m by 2 m LOGGER                  |                           |             |          |            |             |                     | SZ             |
|----------------------------|-------------------------------------------------|---------------------------|-------------|----------|------------|-------------|---------------------|----------------|
|                            | SAMPLE DESCRIPTION                              | 1                         | 1           | 1        |            | SAMPLE      |                     | WELL DETAILS   |
| >                          | OTHER DESCRIPTION                               | 1                         | بِ          |          |            | J, 11711 LL |                     | TTELE DE IMILO |
| Ö (E)                      |                                                 | 일                         | /BO         |          | ERY        | _           | S                   |                |
| 1 BE                       |                                                 | 필光                        | S<br>S      |          | Š          | щ.<br>Ш     | 3PA:                |                |
| PTH<br>3FA                 |                                                 | TER                       | USCS SYMBOL | Ж        | % RECOVERY | SAMPLE ID   | MV)                 |                |
| DEPTH BELOW<br>SURFACE (m) | Soil Surface                                    | WATER LEVEL<br>(MEASURED) | NSC         | TYPE     | %<br>R     | SAN         | HEADSPACE<br>(ppmv) |                |
|                            | SAND AND COBBLES                                |                           |             |          |            |             |                     |                |
|                            | Brown damp silty sand and gravel, with cobbles. |                           |             |          |            |             |                     |                |
| 1 7                        | · · · · · · · · · · · · · · · · · · ·           | Ī                         |             |          |            |             |                     |                |
| _                          |                                                 |                           |             |          |            |             |                     |                |
| _                          |                                                 |                           |             | Grah     | 100        | TP6-1       | 5                   |                |
| _                          |                                                 |                           |             | Giab     | 100        | 11 0-1      | 3                   |                |
| _                          |                                                 |                           |             |          |            |             |                     | 4              |
| _                          |                                                 |                           |             |          |            |             |                     |                |
| _                          |                                                 |                           |             |          |            |             |                     |                |
| _                          |                                                 |                           |             |          |            |             |                     |                |
| 1.0                        | END OF TEST PIT AT 0.9 m                        |                           |             |          |            |             |                     |                |
|                            |                                                 |                           |             |          |            |             |                     |                |
|                            |                                                 |                           |             |          |            |             |                     |                |
|                            |                                                 |                           |             |          |            |             |                     |                |
| 1 7                        |                                                 | Ī                         |             |          |            |             |                     |                |
| 1 7                        |                                                 |                           |             | l        |            |             |                     |                |
| 1 -                        |                                                 |                           |             | l        |            |             |                     |                |
| 1 -                        |                                                 |                           |             | l        |            |             |                     |                |
| 1 -                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| -                          |                                                 |                           |             | l        |            |             |                     |                |
|                            |                                                 | Ī                         |             |          |            |             |                     |                |
| 2.0                        |                                                 |                           |             | l        |            |             |                     |                |
| I -                        |                                                 |                           |             | l        |            |             |                     |                |
| 1 _                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
|                            |                                                 |                           |             |          |            |             |                     |                |
|                            |                                                 |                           |             | l        |            |             |                     |                |
| 1 7                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| 1 7                        |                                                 |                           |             | l        |            |             |                     |                |
| 1 7                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| 1 -                        |                                                 | 1                         |             | l        |            |             |                     | 1              |
| -                          |                                                 |                           |             | l        |            |             |                     |                |
|                            |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| 3.0                        |                                                 | Ī                         |             |          |            |             |                     |                |
| -                          |                                                 |                           |             | l        |            |             |                     |                |
| -                          |                                                 |                           |             | l        |            |             |                     |                |
| 1 _                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| I _                        |                                                 | 1                         |             | l        |            |             |                     | 1              |
| 1 7                        |                                                 | 1                         |             | l        |            |             |                     | 1              |
| 1 7                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| 1 7                        |                                                 | 1                         |             | l        |            |             |                     | 1              |
| 1 7                        |                                                 | 1                         |             | l        |            |             |                     | 1              |
| -                          |                                                 |                           |             | l        |            |             |                     |                |
| 4.0                        |                                                 |                           |             | l        |            |             |                     |                |
| 4.0                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| 1 -                        |                                                 | 1                         |             | l        |            |             |                     | 1              |
| -                          |                                                 |                           |             | l        |            |             |                     |                |
| 1 -                        |                                                 |                           |             | l        |            |             |                     |                |
| 1 -                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| 1 _                        |                                                 |                           |             | l        |            |             |                     |                |
|                            |                                                 |                           |             | l        |            |             |                     |                |
| 1 7                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| 1 7                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| 1 7                        |                                                 | 1                         |             | l        |            |             |                     | 1              |
| 5.0                        |                                                 | 1                         |             | l        |            |             |                     | 1              |
|                            |                                                 | 1                         |             | l        |            |             |                     | 1              |
| -                          |                                                 |                           |             | l        |            |             |                     |                |
| 1 -                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| 1 -                        |                                                 | 1                         |             | l        |            |             |                     | 1              |
| 1 -                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| I -                        |                                                 | 1                         |             | l        |            |             |                     | 1              |
| 1 4                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| 1 _                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| 1 7                        |                                                 | 1                         |             | l        |            |             |                     | 1              |
| 1 7                        |                                                 | ĺ                         |             | ĺ        |            |             |                     |                |
| 6.0                        |                                                 | 1                         |             | l        |            |             |                     | 1              |
| 5.0                        |                                                 |                           |             | l        |            |             |                     |                |
| 1 -                        |                                                 | 1                         |             | l        |            |             |                     | 1              |
|                            |                                                 | 1                         | <u> </u>    | <u> </u> |            |             |                     | 1              |



| TEST F                     | PIT DIMENSIONS 1 m by 2 m LOGGER                 |                           |             |      |            | SZ        |                     |              |
|----------------------------|--------------------------------------------------|---------------------------|-------------|------|------------|-----------|---------------------|--------------|
|                            | SAMPLE DESCRIPTION                               |                           |             |      |            | SAMPLE    |                     | WELL DETAILS |
| DEPTH BELOW<br>SURFACE (m) |                                                  | WATER LEVEL<br>(MEASURED) | USCS SYMBOL | TYPE | % RECOVERY | SAMPLE ID | HEADSPACE<br>(ppmv) |              |
| <u>8</u> 8                 | Soil Surface SAND AND GRAVEL                     | ≥ €                       | ñ           |      | %          | δ.        | ₩ 5                 |              |
| -                          | Brown damp coarse sand and gravel, with cobbles. |                           |             |      |            |           |                     |              |
| _                          |                                                  |                           |             |      |            |           |                     |              |
| _                          |                                                  |                           |             | Grab | 100        | TP7-1     | 5                   |              |
| _                          |                                                  |                           |             |      |            |           |                     |              |
| _                          |                                                  |                           |             |      |            |           |                     |              |
|                            |                                                  |                           |             |      |            |           |                     |              |
| 1.0                        | END OF TEST PIT AT 1.0 m                         |                           |             |      |            |           |                     |              |
| -                          | END OF TEOTY IN THE                              |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| _                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
|                            |                                                  |                           |             |      |            |           |                     |              |
| 2.0                        |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| _                          |                                                  |                           |             |      |            |           |                     |              |
| 3.0                        |                                                  |                           |             |      |            |           |                     |              |
|                            |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
|                            |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| 4.0                        |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| _                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| 5.0                        |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
| -                          |                                                  |                           |             |      |            |           |                     |              |
|                            |                                                  |                           |             |      |            |           |                     |              |
| 6.0                        |                                                  |                           |             |      |            |           |                     |              |
|                            |                                                  |                           |             |      |            |           |                     |              |



| IESII                      | PIT DIMENSIONS 1 m by 2 m                            |                           | SZ          |      |            |            |                     |                |
|----------------------------|------------------------------------------------------|---------------------------|-------------|------|------------|------------|---------------------|----------------|
|                            | SAMPLE DESCRIPTION                                   | 1                         |             | 1    |            | SAMPLE     |                     | WELL DETAILS   |
| >                          | OTHER DECOME HOLE                                    | 1                         | ب           |      |            | 37 WYII EE |                     | TTELE DE IMILO |
| Ö Œ                        |                                                      | J (c                      | /BO         |      | ERY        | _          | E E                 |                |
| , GE                       |                                                      | J.E.                      | SYN         |      | Š          | щ.<br>Ш    | PA                  |                |
| PTH<br>3FA                 |                                                      | TER                       | USCS SYMBOL | Ж    | % RECOVERY | SAMPLE ID  | ADS<br>mv)          |                |
| DEPTH BELOW<br>SURFACE (m) | Soil Surface                                         | WATER LEVEL<br>(MEASURED) | NSC         | TYPE | %<br>F     | SAN        | HEADSPACE<br>(ppmv) |                |
|                            | SAND AND GRAVEL                                      |                           |             |      |            |            |                     |                |
| -                          | Brown damp silty sand and gravel, with some cobbles. |                           |             |      |            |            |                     |                |
| I -                        | · · · · · · · · · · · · · · · · · · ·                |                           | 1           |      |            |            |                     |                |
| _                          |                                                      |                           |             |      |            |            |                     | 1              |
| _                          |                                                      |                           |             | Grah | 100        | TP8-1      | 15                  |                |
| _                          |                                                      |                           |             | Ciab | 100        | 11 0 1     | 13                  |                |
| _                          |                                                      |                           |             |      |            |            |                     | 1              |
| _                          |                                                      |                           |             |      |            |            |                     |                |
| _                          |                                                      | 4                         |             |      |            |            |                     |                |
| _                          | END OF TEST PIT AT 0.8 m                             |                           |             |      |            |            |                     |                |
| 1.0                        |                                                      |                           |             |      |            |            |                     |                |
| _                          |                                                      |                           |             |      |            |            |                     |                |
|                            |                                                      |                           |             |      |            |            |                     |                |
| I -                        |                                                      |                           | 1           | ĺ    |            |            |                     |                |
| I -                        |                                                      |                           |             | l    |            |            |                     |                |
| _                          |                                                      |                           |             | l    |            |            |                     |                |
| -                          |                                                      |                           |             | l    |            |            |                     |                |
| I –                        |                                                      |                           |             | l    |            |            |                     |                |
| -                          |                                                      |                           |             | l    |            |            |                     |                |
| I –                        |                                                      |                           | 1           | ĺ    |            |            |                     |                |
| I –                        |                                                      |                           | 1           | ĺ    |            |            |                     |                |
| 2.0                        |                                                      |                           | 1           |      |            |            |                     |                |
| _                          |                                                      |                           |             | l    |            |            |                     |                |
| Ι _                        |                                                      |                           | 1           | ĺ    |            |            |                     |                |
| I -                        |                                                      |                           | 1           | ĺ    |            |            |                     |                |
| _                          |                                                      |                           |             | l    |            |            |                     |                |
| I -                        |                                                      |                           | 1           | ĺ    |            |            |                     |                |
| I –                        |                                                      |                           |             | l    |            |            |                     |                |
| I -                        |                                                      |                           |             | l    |            |            |                     |                |
| -                          |                                                      |                           |             | l    |            |            |                     |                |
| I -                        |                                                      |                           |             | l    |            |            |                     |                |
| I –                        |                                                      |                           | 1           | ĺ    |            |            |                     |                |
| 3.0                        |                                                      |                           | 1           | ĺ    |            |            |                     |                |
| I _                        |                                                      |                           |             | l    |            |            |                     |                |
| I -                        |                                                      |                           | 1           | ĺ    |            |            |                     |                |
|                            |                                                      |                           |             | l    |            |            |                     |                |
| _                          |                                                      |                           |             | l    |            |            |                     |                |
| I -                        |                                                      |                           |             | l    |            |            |                     |                |
| I -                        |                                                      |                           | 1           | ĺ    |            |            |                     |                |
| -                          |                                                      |                           |             | l    |            |            |                     |                |
| -                          |                                                      |                           |             | l    |            |            |                     |                |
| 1 -                        |                                                      |                           | 1           | ĺ    |            |            |                     |                |
|                            |                                                      |                           |             | l    |            |            |                     |                |
| 4.0                        |                                                      |                           |             | l    |            |            |                     |                |
| _                          |                                                      |                           |             | l    |            |            |                     |                |
| I                          |                                                      |                           | 1           | ĺ    |            |            |                     |                |
| _                          |                                                      |                           |             | l    |            |            |                     |                |
| I -                        |                                                      |                           |             | l    |            |            |                     |                |
| I -                        |                                                      |                           | 1           | ĺ    |            |            |                     |                |
| I –                        |                                                      |                           |             | l    |            |            |                     |                |
| I -                        |                                                      |                           | 1           | ĺ    |            |            |                     |                |
| -                          |                                                      |                           |             | l    |            |            |                     |                |
| -                          |                                                      |                           |             | l    |            |            |                     |                |
| I                          |                                                      |                           | 1           | ĺ    |            |            |                     |                |
| 5.0                        |                                                      |                           |             | l    |            |            |                     |                |
| I –                        |                                                      |                           |             | l    |            |            |                     |                |
| I _                        |                                                      |                           |             | l    |            |            |                     |                |
|                            |                                                      |                           |             | l    |            |            |                     |                |
| _                          |                                                      |                           |             | l    |            |            |                     |                |
| I -                        |                                                      | 1                         | [           | ĺ    |            |            |                     |                |
| I –                        |                                                      |                           |             | l    |            |            |                     |                |
| I –                        |                                                      |                           |             | l    |            |            |                     |                |
| 1 -                        |                                                      |                           | 1           | ĺ    |            |            |                     |                |
| I –                        |                                                      |                           |             | l    |            |            |                     |                |
| -                          |                                                      |                           |             | l    |            |            |                     |                |
| 6.0                        |                                                      |                           |             | l    |            |            |                     |                |
|                            |                                                      |                           |             | l    |            |            |                     |                |
| L <sup>-</sup>             |                                                      | 1                         | L           | L    | L          | <u></u>    | <u></u>             |                |
| _                          |                                                      |                           |             |      |            |            |                     |                |



LOCATION ID

MW14-1

4-Mar-14

5556862

CLIENT PROJECT LOCATION BOREHOLE LOCATION DRILL METHOD

Lower Nicola Indian Band / AANDC Nicola Mameet Reserve No. 1- Lot 265 Down gradient of Peter Bros. Asphalt Plant Truck Mounted Solid Stem Auger/Air Rotary

**EASTING GROUND ELEVATION (masl)** TOP OF PIPE ELEVATION (masl)

DATE

**NORTHING** 

654327 606.425 (Approx) 606.425 (Approx)

DRILLING CONTRACTOR BOREHOLE DIAMETER

Blue Max Environmental Drilling Inc. 102 mm (4")

WATER LEVEL, March 7, 2014 (mbsg)

586.25

LOGGER SZ

| BOILE                      | HOLE DIAMETER 102 mm (4")                                                       |                           | GER         |      |            |           |                     | SZ              |                             |
|----------------------------|---------------------------------------------------------------------------------|---------------------------|-------------|------|------------|-----------|---------------------|-----------------|-----------------------------|
| _                          | SAMPLE DESCRIPTION                                                              |                           |             |      |            | SAMPLE    |                     | ٧               | ELL DETAILS                 |
| DEPTH BELOW<br>SURFACE (m) | Soil Surface                                                                    | WATER LEVEL<br>(MEASURED) | USCS SYMBOL | TYPE | % RECOVERY | SAMPLE ID | HEADSPACE<br>(ppmv) |                 | Flush Mount                 |
|                            | CRUSHED GRAVEL (ROAD BASE) - Angular crushed gravels and sands                  |                           |             |      | <10        | None      |                     |                 | ysr ysr                     |
| _                          | SAND AND GRAVEL                                                                 |                           |             |      | 110        | None      |                     |                 |                             |
| _                          | Medium grained sands and gravels. Well graded with some cobbles and trace silts |                           |             |      |            |           |                     | ,               |                             |
| 1.0                        |                                                                                 |                           |             |      |            |           |                     | - s/            | M E                         |
| _                          |                                                                                 |                           |             | Grab | 100        | BH1-1     | 25                  | i.j             | 00                          |
| -                          |                                                                                 |                           |             |      |            |           |                     | <u>i</u> e      | 90 (0                       |
| 2.0                        |                                                                                 |                           |             |      |            |           |                     | Bentonite Chips | je (M                       |
| _                          |                                                                                 |                           |             |      |            |           |                     | Be              | is in the second            |
| _                          |                                                                                 |                           |             | Cash | 00         | BH1-2     | 15                  | =               | PVC solid riser pipe (50mm) |
| 3.0                        |                                                                                 |                           |             | Grab | 80         | БП1-2     | 15                  | cki /           | ပို                         |
| 3.0                        |                                                                                 |                           |             |      |            |           |                     | - Be            | ₫ 6                         |
|                            |                                                                                 |                           |             |      |            |           |                     | Slough/Backfill |                             |
| _                          |                                                                                 |                           |             |      |            |           |                     | க்              | BB BB                       |
| 4.0                        |                                                                                 |                           |             | Grab | 100        | BH1-3     | 10                  |                 | 77.                         |
| -                          |                                                                                 |                           |             |      |            |           |                     |                 |                             |
|                            |                                                                                 |                           |             |      |            |           |                     | ×               | <i>M M</i>                  |
| 5.0                        | COBBLES                                                                         |                           |             |      | <10        | None      |                     | Bentonite Chips |                             |
| _                          | Cobbles with some medium to coarse sands                                        |                           |             |      |            |           |                     | nite            | 44                          |
| -                          |                                                                                 |                           |             |      | 400        | D114.4    | 4-                  | utoi            | 88 88                       |
| 6.0                        | SAND AND GRAVEL                                                                 |                           |             | Grab | 100        | BH1-4     | 15                  | Be              | BB BB                       |
| _                          | Medium grained sands and gravels. Well graded with some cobbles and trace silts |                           |             |      |            |           |                     |                 |                             |
| _                          |                                                                                 |                           |             |      |            |           |                     |                 |                             |
| 7.0                        |                                                                                 |                           |             |      |            |           |                     | ΥĘ              |                             |
|                            |                                                                                 |                           |             |      |            |           |                     | Slough/Backfill | 77 77                       |
|                            |                                                                                 |                           |             |      |            |           |                     | ugh             | 000                         |
| 8.0                        |                                                                                 |                           |             |      |            |           |                     | Slo             | Ø Ø                         |
| 6.0                        |                                                                                 |                           |             |      |            |           |                     |                 |                             |
|                            |                                                                                 |                           |             | Grab | 100        | BH1-5     | 10                  |                 | 44                          |
|                            | COBBLES                                                                         |                           |             |      |            |           |                     |                 |                             |
| 9.0                        | Cobbles and gravels with little to no sands or silts                            |                           |             |      |            |           |                     |                 |                             |
| _                          |                                                                                 |                           |             |      | <10        | None      |                     |                 |                             |
|                            |                                                                                 |                           |             |      |            |           |                     |                 |                             |
| 10.0                       |                                                                                 |                           |             |      |            |           |                     |                 | 888 888                     |
| -                          |                                                                                 |                           |             |      |            |           |                     |                 |                             |
|                            |                                                                                 |                           |             |      |            |           |                     |                 | 000                         |
| 11.0                       |                                                                                 |                           |             |      |            |           |                     |                 | 000                         |
| _                          |                                                                                 |                           |             |      |            |           |                     |                 | Ø Ø                         |
| -                          |                                                                                 |                           |             |      |            |           |                     |                 | <b>64 64</b>                |
| 12.0                       |                                                                                 |                           |             |      |            |           |                     |                 |                             |
| _                          |                                                                                 |                           |             |      |            |           |                     |                 | (3) (3)                     |
| _                          |                                                                                 |                           |             |      |            |           |                     |                 |                             |
| 13.0                       |                                                                                 |                           |             |      |            |           |                     |                 |                             |
| _                          |                                                                                 |                           |             |      |            |           |                     |                 | <del>#</del>                |
| -                          |                                                                                 |                           |             |      |            |           |                     |                 |                             |
| 14.0                       |                                                                                 |                           |             |      |            |           |                     |                 |                             |
|                            |                                                                                 |                           |             |      |            |           |                     |                 |                             |
|                            |                                                                                 |                           |             |      |            |           |                     |                 |                             |
| 1F 0                       |                                                                                 |                           |             |      |            |           |                     |                 | <b>55</b>                   |
| 15.0                       |                                                                                 |                           |             |      |            |           |                     |                 |                             |
|                            | SAND                                                                            |                           |             |      |            |           |                     |                 | 88 88                       |



**LOCATION ID** 

MW14-1 Cont...

CLIENT
PROJECT LOCATION
BOREHOLE LOCATION
DRILL METHOD

DRILLING CONTRACTOR

BOREHOLE DIAMETER

Lower Nicola Indian Band / AANDC Nicola Mameet Reserve No. 1- Lot 265 Down gradient of Peter Bros. Asphalt Plant Truck Mounted Solid Stem Auger/Air Rotary Blue Max Environmental Drilling Inc.

102 mm (4")

 DATE
 4-Mar-14

 NORTHING
 5556862

 EASTING
 654327

 GROUND ELEVATION (masl)
 606.425 (Approx)

**TOP OF PIPE ELEVATION (masl)** 606.425 (Approx) **WATER LEVEL, March 7, 2014 (mbsg)** 586.25

LOGGER SZ

|                            | HOLE DIAMETER 102 mm (4")                                                                                      | LUU                             | GER         |      |            |           |                     | SZ                                |
|----------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|------|------------|-----------|---------------------|-----------------------------------|
|                            | SAMPLE DESCRIPTION                                                                                             |                                 |             |      |            | SAMPLE    |                     | WELL DETAILS                      |
| DEPTH BELOW<br>SURFACE (m) | Soil Surface                                                                                                   | WATER LEVEL<br>(MEASURED)       | USCS SYMBOL | TYPE | % RECOVERY | SAMPLE ID | HEADSPACE<br>(ppmv) |                                   |
| -<br>  -                   | SAND Medium to fine grain sand                                                                                 |                                 |             | Grab | 100        | BH1-6     | 5                   | Sand                              |
| 17.0                       | COBBLES Cobbles and gravels                                                                                    |                                 |             |      | <10        | None      |                     | Bentonite Chips 10/20 Silica Sand |
| 19.0                       | SAND - Medium to fine grain sand                                                                               |                                 |             |      |            |           |                     | Slough                            |
| -<br>  -                   |                                                                                                                | , 2014)                         |             | Grab | 100        | BH1-7     | 15                  | Bentonite Chips                   |
| 21.0                       | SAND AND GRAVEL  Medium grained sands and gravels. Well graded with some cobbles and trace silts  Wet at 21.3m | 20.17m (Measured March 7, 2014) |             |      |            |           |                     | 10/20 Silica Sand B               |
| <u> </u>                   | END BOREHOLE AT 22.25m                                                                                         | 17m (M                          |             |      |            |           |                     | 10/20 Si                          |
| 23.0                       |                                                                                                                | 20.                             |             |      |            |           |                     | 5' slot F                         |
| 24.0                       |                                                                                                                |                                 |             |      |            |           |                     |                                   |
| 25.0                       |                                                                                                                |                                 |             |      |            |           |                     |                                   |
| 26.0                       |                                                                                                                |                                 |             |      |            |           |                     |                                   |
| 27.0                       |                                                                                                                |                                 |             |      |            |           |                     |                                   |
| 28.0                       |                                                                                                                |                                 |             |      |            |           |                     |                                   |
| 29.0                       |                                                                                                                |                                 |             |      |            |           |                     |                                   |
| _                          |                                                                                                                |                                 |             |      |            |           |                     |                                   |
| 30.0                       |                                                                                                                |                                 |             |      |            |           |                     |                                   |



**LOCATION ID** 

BH2

CLIENT
PROJECT LOCATION
BOREHOLE LOCATION
DRILL METHOD

DRILLING CONTRACTOR

BOREHOLE DIAMETER

Lower Nicola Indian Band / AANDC
Nicola Mameet Reserve No. 1- Lot 265
Down gradient of Warehouse and Former Garage
Truck Mounted Solid Stem Auger/Air Rotary
Blue Max Environmental Drilling Inc.

102 mm (4")

 DATE
 5-Mar-14

 NORTHING
 5556918

 EASTING
 654371

 GROUND ELEVATION (masl)
 610 (Approx)

 TOP OF PIPE ELEVATION (masl)
 610 (Approx)

WATER LEVEL, March 7, 2014 (mbsg) N/A LOGGER SZ

|                            | SAMPLE DESCRIPTION                                                                               | T .                       | GER         |      |            | SAMPLE    |                     | SZ W            | ELL DETAILS  |
|----------------------------|--------------------------------------------------------------------------------------------------|---------------------------|-------------|------|------------|-----------|---------------------|-----------------|--------------|
| WC (r                      | SAIVIT LE DESURIT HUIN                                                                           |                           | 75          |      | >-         | JAIVIPLE  |                     | VV              | LLL DE IAILO |
| DEPTH BELOW<br>SURFACE (m) | Soil Surface                                                                                     | WATER LEVEL<br>(MEASURED) | USCS SYMBOL | TYPE | % RECOVERY | SAMPLE ID | HEADSPACE<br>(ppmv) |                 |              |
| -                          | SAND AND GRAVEL  Medium grained sands and gravels. Well graded with some cobbles and trace silts |                           |             |      |            |           |                     |                 |              |
| 1.0                        | SANDY SILT Brown moist silts and fine sands                                                      |                           |             | Grab | 100        | BH2-1     | 10                  |                 |              |
| 2.0                        |                                                                                                  |                           |             |      |            |           |                     | hips            |              |
| 3.0                        | SAND                                                                                             | _                         |             |      |            |           |                     | Bentonite Chips |              |
| 4.0                        | Brown moist uniform fine sands.                                                                  |                           |             | Grab | 100        | BH2-2     | 25                  | _ <u>_</u>      |              |
| -                          |                                                                                                  |                           |             |      |            |           |                     | kfill           |              |
| 5.0                        |                                                                                                  |                           |             |      |            |           |                     | Slough/Backfill |              |
| 6.0                        | SAND AND GRAVEL Medium grained sands and gravels. Trace silts                                    |                           |             | Grab | 100        | BH2-3     | 35                  | 0,              |              |
| 7.0                        |                                                                                                  |                           |             |      |            |           |                     |                 |              |
| _<br>_<br>_                | SILTY SAND  Brown moist fine sands and silt.                                                     |                           |             | Grab | 100        | BH2-4     | 15                  |                 |              |
| 8.0                        |                                                                                                  |                           |             |      |            |           |                     |                 |              |
| 9.0                        |                                                                                                  |                           |             |      |            |           |                     |                 |              |
| 10.0                       |                                                                                                  |                           |             |      |            |           |                     |                 |              |
| 11.0                       |                                                                                                  |                           |             | Grah | 100        | BH2-5     | 0                   |                 |              |
| 12.0                       |                                                                                                  |                           |             | Glab | 100        | DI 12-3   |                     |                 |              |
| _<br>_                     |                                                                                                  |                           |             |      |            |           |                     |                 |              |
| 13.0                       |                                                                                                  |                           |             |      |            |           |                     |                 |              |
| 14.0                       |                                                                                                  |                           |             |      |            |           |                     |                 |              |
| 15.0                       |                                                                                                  |                           |             |      |            |           |                     |                 |              |
|                            |                                                                                                  |                           |             |      |            |           |                     |                 |              |



LOCATION ID

BH2 Cont...

CLIENT
PROJECT LOCATION
BOREHOLE LOCATION
DRILL METHOD

Lower Nicola Indian Band / AANDC

Nicola Mameet Reserve No. 1- Lot 265

Down gradient of Warehouse and Former Garage

Truck Mounted Solid Stem Auger/Air Rotary

 DATE
 4-Mar-14

 NORTHING
 5556918

 EASTING
 654371

 GROUND ELEVATION (masl)
 610 (Approx)

 TOP OF PIPE ELEVATION (masl)
 610 (Approx)

DRILLING CONTRACTOR Blue Max Environmental Drilling Inc.
BOREHOLE DIAMETER 102 mm (4")

WATER LEVEL, March 7, 2014 (mbsg) 586.25 LOGGER SZ

|                            | IOLE DIAMETER 102 IIIII (4 )                                                              |                           | GLK         |      |            |           |                     | 32                                    |
|----------------------------|-------------------------------------------------------------------------------------------|---------------------------|-------------|------|------------|-----------|---------------------|---------------------------------------|
|                            | SAMPLE DESCRIPTION                                                                        |                           |             |      |            | SAMPLE    |                     | WELL DETAILS                          |
| ≥                          |                                                                                           | 1.                        | ٦           |      |            | · · · · · |                     |                                       |
| DEPTH BELOW<br>SURFACE (m) |                                                                                           | WATER LEVEL<br>(MEASURED) | USCS SYMBOL |      | % RECOVERY | 0         | HEADSPACE<br>(ppmv) |                                       |
| E B                        |                                                                                           | 田屋                        | }           |      | Ŏ.         | ш         | PA                  |                                       |
| ΕŒ                         |                                                                                           | FR<br>ASL                 | SS          | ய    | EC         | 且         | (DS                 |                                       |
| F X                        | Soil Surface                                                                              | VAT<br>ME,                | SC          | TYPE | Α.         | SAMPLE ID | 1EA<br>ppn          |                                       |
|                            | 30ii 3diiace                                                                              | >=                        |             |      | 0,         | U)        | )                   | /////                                 |
| _                          |                                                                                           |                           |             |      |            |           |                     | 44444                                 |
| _                          | SAND                                                                                      |                           |             |      |            |           |                     | 8888888                               |
| _                          | Brown damp uniform medium grain sands.                                                    |                           |             | Grab | 100        | BH2-6     | 15                  | 8999999                               |
| 16.0                       |                                                                                           |                           |             |      |            |           |                     | 8888888                               |
|                            |                                                                                           |                           |             |      |            |           |                     | <b>2</b> €133333                      |
|                            |                                                                                           |                           |             |      |            |           |                     | 000000                                |
| _                          |                                                                                           |                           |             |      |            |           |                     | <b>■</b> 933333                       |
| 47.0                       |                                                                                           |                           |             |      |            |           |                     | · · · · · · · · · · · · · · · · · · · |
| 17.0                       |                                                                                           |                           |             |      |            |           |                     | Slough/Backfill                       |
| _                          |                                                                                           |                           |             |      |            |           |                     | ਲ ******                              |
| _                          |                                                                                           |                           |             |      |            |           |                     | <u> </u>                              |
|                            |                                                                                           |                           |             |      |            |           |                     | <u>σ</u>                              |
| 18.0                       |                                                                                           |                           |             |      |            |           |                     | 8888888                               |
|                            |                                                                                           |                           |             |      |            |           |                     |                                       |
| _                          | SANDY SILT                                                                                |                           |             |      |            |           |                     |                                       |
| _                          | Brown moist silts with some fine sands                                                    |                           |             | Grab | 100        | BH2-7     | 5                   |                                       |
| 40.0                       | Drown moist siits with some line sands                                                    |                           |             | Giab | 100        | DI IZ I   | 3                   | (/•///)                               |
| 19.0                       |                                                                                           |                           |             |      |            |           |                     |                                       |
| 1 -                        |                                                                                           | 1                         |             |      |            |           |                     | sd /////                              |
| 1 _                        |                                                                                           | 1                         |             |      |            |           |                     | Bentonite Chips                       |
|                            |                                                                                           |                           |             |      |            |           |                     | o. /////                              |
| 20.0                       |                                                                                           |                           |             |      |            |           |                     | ii (////                              |
|                            |                                                                                           |                           |             |      |            |           |                     | g /////                               |
| _                          |                                                                                           |                           |             |      |            |           |                     | 8 /////                               |
| _                          |                                                                                           |                           |             |      |            |           |                     |                                       |
| I –                        |                                                                                           |                           |             |      |            |           |                     |                                       |
| 21.0                       |                                                                                           |                           |             |      |            |           |                     |                                       |
| <u> </u>                   |                                                                                           |                           |             |      |            |           |                     |                                       |
|                            | BEDROCK                                                                                   |                           |             |      |            |           |                     |                                       |
|                            | Uniform rock chips expelled from cyclone and continuity of unit suggest bedrock as oppoed |                           |             |      |            |           |                     |                                       |
| 22.0                       | to cobbles.                                                                               |                           |             |      |            |           |                     |                                       |
|                            | No water encountered in borehole.                                                         |                           |             |      |            |           |                     |                                       |
| _                          | No water encountered in borenoie.                                                         |                           |             |      |            |           |                     |                                       |
| _                          | Not completed as a monitoring well.                                                       |                           |             |      |            |           |                     |                                       |
| _                          |                                                                                           |                           |             |      |            |           |                     |                                       |
| 23.0                       |                                                                                           |                           |             |      |            |           |                     | /////                                 |
|                            |                                                                                           |                           |             |      |            |           |                     |                                       |
| _                          |                                                                                           |                           |             |      |            |           |                     |                                       |
| _                          |                                                                                           |                           |             |      |            |           |                     |                                       |
| 24.0                       |                                                                                           |                           |             |      |            |           |                     |                                       |
| 24.0                       |                                                                                           |                           |             |      |            |           |                     |                                       |
| _                          |                                                                                           |                           |             |      |            |           |                     |                                       |
| _                          |                                                                                           |                           |             |      |            |           |                     |                                       |
| 1 _                        |                                                                                           | 1                         |             |      |            |           |                     | (/////                                |
| 25.0                       |                                                                                           | ĺ                         | 1           |      |            |           |                     | //////                                |
|                            |                                                                                           | ĺ                         | 1           |      |            |           |                     | //////                                |
| 1 -                        |                                                                                           | 1                         |             |      |            |           |                     | //////                                |
| 1 -                        |                                                                                           | 1                         |             |      |            |           |                     | //////                                |
|                            |                                                                                           | ĺ                         | 1           |      |            |           |                     | /////                                 |
| 26.0                       |                                                                                           | ĺ                         | 1           |      |            |           |                     | //////                                |
| 1 -                        |                                                                                           | 1                         |             |      |            |           |                     | //////                                |
| 1 _                        |                                                                                           | 1                         |             |      |            |           |                     | //////                                |
| 1                          |                                                                                           | ĺ                         | 1           |      |            |           |                     | /////                                 |
| 27.0                       |                                                                                           | 1                         |             |      |            |           |                     | //////                                |
|                            |                                                                                           | 1                         |             |      |            |           |                     | //////                                |
| 1 -                        |                                                                                           | ĺ                         | 1           |      |            |           |                     | //////                                |
| 1 -                        |                                                                                           | 1                         |             |      |            |           |                     | //////                                |
| 1 -                        |                                                                                           | 1                         |             |      |            |           |                     | /////                                 |
| 28.0                       |                                                                                           | 1                         |             |      |            |           |                     | /////                                 |
| I _                        |                                                                                           | ]                         | 1           |      |            |           |                     |                                       |
| 1 -                        | END BOREHOLE AT 28.3m                                                                     | 1                         |             |      |            |           |                     |                                       |
| I -                        |                                                                                           | ĺ                         | 1           |      |            |           |                     |                                       |
| 29.0                       |                                                                                           | 1                         |             |      |            |           |                     |                                       |
| 23.0                       |                                                                                           | 1                         |             |      |            |           |                     |                                       |
| 1 -                        |                                                                                           | 1                         |             |      |            |           |                     |                                       |
| 1 _                        |                                                                                           | 1                         |             |      |            |           |                     |                                       |
| 1 -                        |                                                                                           | 1                         |             |      |            |           |                     |                                       |
| 30.0                       |                                                                                           | 1                         |             |      |            |           |                     |                                       |
| 50.0                       |                                                                                           | 1                         |             |      |            |           |                     |                                       |
| 1 -                        |                                                                                           | 1                         |             |      |            |           |                     |                                       |
| L                          |                                                                                           | 1                         |             |      |            |           |                     |                                       |



BH3/MW14-2 **LOCATION ID** 

CLIENT Lower Nicola Indian Band / AANDC PROJECT LOCATION Nicola Mameet Reserve No. 1- Lot 265 BOREHOLE LOCATION

Down gradient of Former Tank Nest at Mojos Gas Station

DRILL METHOD Truck Mounted Solid Stem Auger/Air Rotary

DRILLING CONTRACTOR Blue Max Environmental Drilling Inc.

BOREHOLE DIAMETER 102 mm (4")

DATE 6-Mar-14 **NORTHING** 5556862 **EASTING** 654367

**GROUND ELEVATION (masl)** 607.03 (Approx) TOP OF PIPE ELEVATION (masl) 607.03 (Approx)

WATER LEVEL, March 7, 2014 (mbsg) 586.34 SZ

|                            | SAMPLE DESCRIPTION                                                                                                                                        |                           |             |      |            | SAMPLE    |                     | WE              | LL DET | AILS                        |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|------|------------|-----------|---------------------|-----------------|--------|-----------------------------|
| DEPTH BELOW<br>SURFACE (m) | Soil Surface                                                                                                                                              | WATER LEVEL<br>(MEASURED) | USCS SYMBOL | TYPE | % RECOVERY | SAMPLE ID | HEADSPACE<br>(ppmv) | _               |        | Flush Mount                 |
| 1.0                        | CRUSHED GRAVEL & ASPHALT - Angular crushed gravels and sands  SAND AND GRAVEL  Fine grainsands and gravels. Well graded with some cobbles and trace silts |                           |             | Grab | 100        | BH3-1     | 35                  |                 |        |                             |
| 2.0                        | SANDY SILT  Brown moist silt with fine sands                                                                                                              |                           |             | Grab | 100        | BH3-2     | 15                  | Bentonite Chips |        | PVC solid riser pipe (50mm) |
| -                          | SAND, GRAVEL & COBBLES                                                                                                                                    | _                         |             |      |            |           |                     | Ber             |        | VC solid rise               |
| 4.0                        | Gravel and cobbles with some coarse sands Increasing sand content with depth.                                                                             |                           |             | Grab | 100        | BH3-3     | 5                   | Slough/Backfill |        | <u>ē</u>                    |
| 5.0                        |                                                                                                                                                           |                           |             |      |            |           |                     | Slor            |        |                             |
| 6.0                        |                                                                                                                                                           |                           |             |      |            |           |                     | Bentonite Chips |        |                             |
| 7.0                        |                                                                                                                                                           |                           |             |      |            |           |                     | Bento           |        |                             |
| -<br>-<br>8.0              |                                                                                                                                                           |                           |             | Grab | 100        | BH3-4     | 15                  | Slough/Backfill |        |                             |
| 9.0                        |                                                                                                                                                           |                           |             |      |            |           |                     | Slo             |        |                             |
| 10.0                       | COBBLES  Cobbles and gravels                                                                                                                              |                           |             |      | <10        | N/A       |                     |                 |        |                             |
| 11.0                       |                                                                                                                                                           |                           |             |      |            |           |                     |                 |        |                             |
| 12.0                       | GRAVELS & SANDS  Uniform small gravels with some fine sands and occasional cobbles                                                                        |                           |             | Grab | 100        | BH3-5     | 10                  |                 |        |                             |
| 13.0                       | COPPLES                                                                                                                                                   |                           |             |      | -40        | B1/A      |                     |                 |        |                             |
| 14.0                       | COBBLES  No sample return                                                                                                                                 |                           |             |      | <10        | N/A       |                     |                 |        |                             |
| 15.0                       |                                                                                                                                                           |                           |             |      |            |           |                     |                 |        |                             |
|                            | SAND                                                                                                                                                      |                           |             |      |            |           |                     |                 |        |                             |



LOCATION ID BH-3/MW14-2

CLIENT Lower Nicola Indian Band / AANDC
PROJECT LOCATION Nicola Mameet Reserve No. 1- Lot 265
BOREHOLE LOCATION Down gradient of Former Tank Nest at I

Down gradient of Former Tank Nest at Mojos Gas Station

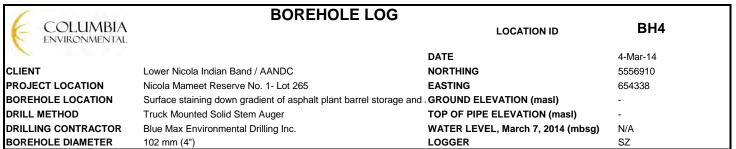
DRILL METHOD Truck Mounted Solid Stem Auger/Air Rotary

DRILLING CONTRACTOR
BOREHOLE DIAMETER

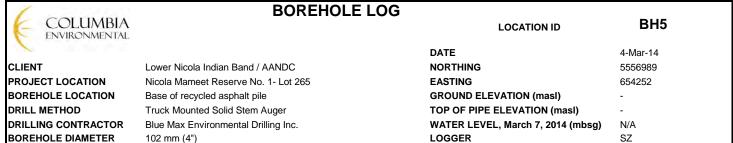
BULLING Environmental Drilling Inc.
102 mm (4")

 DATE
 6-Mar-14

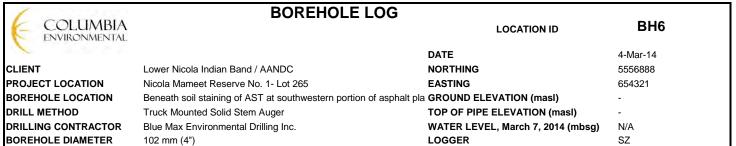
 NORTHING
 5556862


 EASTING
 654367

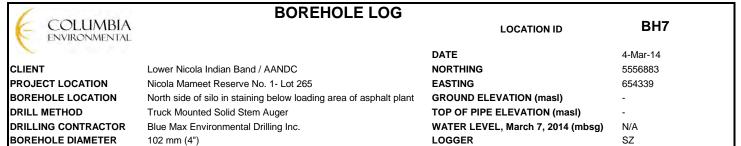
 GROUND ELEVATION (masl)
 607.03 (A)


GROUND ELEVATION (masl) 607.03 (Approx) TOP OF PIPE ELEVATION (masl) 607.03 (Approx)

WATER LEVEL, March 7, 2014 (mbsg) 586.34 LOGGER SZ


|                            | NOLE DIAMETER 102 MM (4")                                        |                                 | GER         |      |            | CAMPIE    |                     | SZ WELL DETAILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|------------------------------------------------------------------|---------------------------------|-------------|------|------------|-----------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ≥ _                        | SAMPLE DESCRIPTION                                               | ┨.                              | ٦           |      |            | SAMPLE    |                     | WELL DETAILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DEPTH BELOW<br>SURFACE (m) | Soil Surface                                                     | WATER LEVEL<br>(MEASURED)       | USCS SYMBOL | TYPE | % RECOVERY | SAMPLE ID | HEADSPACE<br>(ppmv) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| =                          | SAND Medium to fine grain sand                                   |                                 |             | Grab | 100        | BH3-6     | 5                   | Pu Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16.0                       | SAND AND GRAVEL                                                  |                                 |             |      |            |           |                     | S Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _                          | Medium grained sands and gravels. Well graded with many cobbles. |                                 |             |      |            |           |                     | Silicia<br>Silicia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                          |                                                                  |                                 |             |      |            |           |                     | 10/20 Silica Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17.0                       |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                          |                                                                  |                                 |             |      |            |           |                     | <b>9</b> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _                          |                                                                  |                                 |             |      |            |           |                     | sdih                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18.0                       |                                                                  |                                 |             |      |            |           |                     | S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _                          |                                                                  |                                 |             |      |            |           |                     | Bentonite Chips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                                  |                                 |             |      |            |           |                     | Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19.0                       |                                                                  |                                 |             |      |            |           |                     | pug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _                          |                                                                  |                                 |             |      |            |           |                     | 10/20 Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20.0                       |                                                                  |                                 |             |      |            |           |                     | 10/,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _                          |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                          |                                                                  | $\blacksquare$                  |             |      |            |           |                     | sdiri:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 21.0                       |                                                                  | 2014                            |             |      |            |           |                     | Bentonite Chips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                          |                                                                  | h 7, 2                          |             |      |            |           |                     | notus   Simple   Simp |
|                            |                                                                  | 20.69m (Measured March 7, 2014) |             | Grab | 70         | BH3-7     | 0                   | Ba Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22.0                       | Wet at 22m                                                       | red                             |             |      |            |           |                     | mu (mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                            |                                                                  | easn                            |             |      |            |           |                     | San (50r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 23.0                       |                                                                  | Ĭ,                              |             |      |            |           |                     | illica<br>reen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23.0                       |                                                                  | .69n                            |             |      |            |           |                     | 10/20 Silica Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _                          |                                                                  | 7                               |             |      |            |           |                     | 10 Jt PV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 24.0                       | END BOREHOLE AT 23.75m                                           |                                 |             |      |            |           |                     | 5' slot PVC screen (50mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| _                          |                                                                  |                                 |             |      |            |           |                     | Slough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _                          |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25.0                       |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                          |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26.0                       |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27.0                       |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                          |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                          |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28.0                       |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                          |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 29.0                       |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30.0                       |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30.0                       |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                                  |                                 |             |      |            |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |




| DOILL                      | HOLE DIAMETER 102 mm (4°)                                                       |                           | GER         |          |            |           |                     | SZ           |
|----------------------------|---------------------------------------------------------------------------------|---------------------------|-------------|----------|------------|-----------|---------------------|--------------|
|                            | SAMPLE DESCRIPTION                                                              |                           |             |          |            | SAMPLE    |                     | WELL DETAILS |
| DEPTH BELOW<br>SURFACE (m) | Coil Surface                                                                    | WATER LEVEL<br>(MEASURED) | USCS SYMBOL | TYPE     | % RECOVERY | SAMPLE ID | HEADSPACE<br>(ppmv) |              |
| _ O O                      | Soil Surface SAND AND GRAVEL                                                    | <i>&gt;</i> €             |             | <u> </u> | %          | S         | 18                  |              |
| -                          | Medium grained sands and gravels. Well graded with some cobbles and trace silts |                           |             |          |            |           |                     |              |
| _                          | Staining and odourous to 30 cm                                                  |                           |             |          |            |           |                     |              |
|                            |                                                                                 |                           |             |          |            |           |                     |              |
|                            |                                                                                 |                           |             |          |            |           |                     |              |
| _                          |                                                                                 |                           |             |          |            |           |                     |              |
| _                          |                                                                                 |                           |             | Grab     | 100        | BH4-1     | 25                  |              |
| -                          |                                                                                 |                           |             |          |            |           |                     |              |
| 1.0                        |                                                                                 |                           |             |          |            |           |                     |              |
| 1.0                        |                                                                                 |                           |             |          |            |           |                     |              |
| -                          |                                                                                 |                           |             |          |            |           |                     |              |
|                            |                                                                                 |                           |             |          |            |           |                     |              |
| _                          |                                                                                 |                           |             |          |            |           |                     |              |
| _                          | END BOREHOLE AT 1.5 m                                                           |                           |             |          |            |           |                     |              |
| -                          | END BOREHOLE AT 1.3 III                                                         |                           |             |          |            |           |                     |              |
| -                          |                                                                                 |                           |             |          |            |           |                     |              |
|                            |                                                                                 |                           |             |          |            |           |                     |              |
| 2.0                        |                                                                                 |                           |             |          |            |           |                     |              |
| -                          |                                                                                 |                           |             |          |            |           |                     |              |
| _                          |                                                                                 |                           |             |          |            |           |                     |              |
|                            |                                                                                 |                           |             |          |            |           |                     |              |
| _                          |                                                                                 |                           |             |          |            |           |                     |              |
|                            |                                                                                 |                           |             |          |            |           |                     |              |
| _                          |                                                                                 |                           |             |          |            |           |                     |              |
| _                          |                                                                                 |                           |             |          |            |           |                     |              |
| -                          |                                                                                 |                           |             |          |            |           |                     |              |
| 3.0                        |                                                                                 |                           |             |          |            |           |                     |              |
| 0.0                        |                                                                                 |                           |             |          |            |           |                     |              |
|                            |                                                                                 |                           |             |          |            |           |                     |              |
| _                          |                                                                                 |                           |             |          |            |           |                     |              |
| _                          |                                                                                 |                           |             |          |            |           |                     |              |
| -                          |                                                                                 |                           |             |          |            |           |                     |              |
| _                          |                                                                                 |                           |             |          |            |           |                     |              |
|                            |                                                                                 |                           |             |          |            |           |                     |              |
|                            |                                                                                 |                           |             |          |            |           |                     |              |
| 4.0                        |                                                                                 |                           |             |          |            |           |                     |              |
| -                          |                                                                                 |                           |             |          |            |           |                     |              |
| -                          |                                                                                 |                           |             |          |            |           |                     |              |
| _                          |                                                                                 |                           |             |          |            |           |                     |              |
|                            |                                                                                 |                           |             |          |            |           |                     |              |
| _                          |                                                                                 |                           |             |          |            |           |                     |              |
| -                          |                                                                                 |                           |             |          |            |           |                     |              |
| -                          |                                                                                 |                           |             |          |            |           |                     |              |
| _                          |                                                                                 |                           |             |          |            |           |                     |              |
| 5.0                        |                                                                                 |                           |             |          |            |           |                     |              |
|                            |                                                                                 |                           |             |          |            |           |                     |              |
| -                          |                                                                                 |                           |             |          |            |           |                     |              |
| -                          |                                                                                 |                           |             |          |            |           |                     |              |
| -                          |                                                                                 |                           |             |          |            |           |                     |              |
|                            |                                                                                 |                           |             |          |            |           |                     |              |
|                            |                                                                                 |                           |             |          |            |           |                     |              |
| 1 7                        |                                                                                 |                           |             |          |            |           |                     |              |
|                            |                                                                                 |                           |             |          |            |           |                     |              |
| 6.0                        |                                                                                 |                           |             |          |            |           |                     |              |




| BORE                       | HOLE DIAMETER 102 mm (4")                                                       | LOG                       | GER         |      |            |             |                     | SZ           |
|----------------------------|---------------------------------------------------------------------------------|---------------------------|-------------|------|------------|-------------|---------------------|--------------|
|                            | SAMPLE DESCRIPTION                                                              | 1                         |             |      |            | SAMPLE      |                     | WELL DETAILS |
| ≥ _                        | Oran LE DECOMI HOM                                                              | 1.                        | ٦           |      | _          | J, 11411 LL |                     | WELL DE MILO |
| DEPTH BELOW<br>SURFACE (m) |                                                                                 | WATER LEVEL<br>(MEASURED) | USCS SYMBOL |      | % RECOVERY | Δ           | HEADSPACE<br>(ppmv) |              |
| 4 BE                       |                                                                                 | R LE                      | SYI         |      | ò          | SAMPLE ID   | SPA                 |              |
| IP T                       |                                                                                 | TEF                       | SCS         | TYPE | REC        | ₽           | J AD                |              |
| S E                        | Soil Surface                                                                    | ≩ξ                        | š           | ≱    | %          | Š           | H @                 |              |
| _                          | SAND AND GRAVEL                                                                 |                           |             |      |            |             |                     |              |
| _                          | Medium grained sands and gravels. Well graded with some cobbles and trace silts |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      | 400        | D. 15.4     | 4-                  |              |
| _                          |                                                                                 |                           |             | Grab | 100        | BH5-1       | 15                  |              |
| _                          |                                                                                 |                           |             |      |            |             |                     | 4            |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| 1.0                        |                                                                                 |                           |             |      |            |             |                     |              |
| 1.0                        |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| 1 -                        |                                                                                 |                           |             |      |            |             |                     |              |
| 1 -                        | END BOREHOLE AT 1.5 m                                                           | 1                         |             |      |            |             |                     |              |
| 1 -                        | 2.13 23.12.1322.11 1.0 111                                                      |                           |             |      |            |             |                     |              |
| 1 -                        |                                                                                 |                           |             |      |            |             |                     |              |
| 1 -                        |                                                                                 |                           |             |      |            |             |                     |              |
| 2.0                        |                                                                                 |                           |             |      |            |             |                     |              |
|                            |                                                                                 |                           |             |      |            |             |                     |              |
|                            |                                                                                 |                           |             |      |            |             |                     |              |
|                            |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
|                            |                                                                                 |                           |             |      |            |             |                     |              |
| 3.0                        |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| -                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| -                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| 4.0                        |                                                                                 |                           |             |      |            |             |                     |              |
|                            |                                                                                 |                           |             |      |            |             |                     |              |
| I -                        |                                                                                 |                           |             |      |            |             |                     |              |
|                            |                                                                                 |                           |             |      |            |             |                     |              |
|                            |                                                                                 |                           |             |      |            |             |                     |              |
|                            |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 |                           |             |      |            |             |                     |              |
| _                          |                                                                                 | 1                         | 1           |      |            |             |                     |              |
| 1 -                        |                                                                                 |                           |             |      |            |             |                     |              |
| 1 -                        |                                                                                 |                           |             |      |            |             |                     |              |
| 5.0                        |                                                                                 | 1                         | 1           |      |            |             |                     |              |
| 5.0                        |                                                                                 |                           |             |      |            |             |                     |              |
| 1 -                        |                                                                                 |                           |             |      |            |             |                     |              |
| -                          |                                                                                 | 1                         | 1           |      |            |             |                     |              |
| 1 -                        |                                                                                 |                           |             |      |            |             |                     |              |
| -                          |                                                                                 | 1                         | 1           |      |            |             |                     |              |
| 1 -                        |                                                                                 |                           |             |      |            |             |                     |              |
| -                          |                                                                                 |                           |             |      |            |             |                     |              |
| 1 -                        |                                                                                 |                           |             |      |            |             |                     |              |
| 1 -                        |                                                                                 |                           |             |      |            |             |                     |              |
| 6.0                        |                                                                                 |                           |             |      |            |             |                     |              |
| <u> </u>                   |                                                                                 | •                         |             | •    |            |             |                     |              |



| BUKE                       | HOLE DIAMETER 102 mm (4")                                                       | LOG                       | GER         |          |            |           |                     | SZ            |
|----------------------------|---------------------------------------------------------------------------------|---------------------------|-------------|----------|------------|-----------|---------------------|---------------|
|                            | SAMPLE DESCRIPTION                                                              | T -                       |             |          |            | SAMPLE    |                     | WELL DETAILS  |
| >                          | ONIVII LE DECOMI HON                                                            | 1                         | _           | <u> </u> |            | JAWII LE  |                     | WELL DE INILO |
| DEPTH BELOW<br>SURFACE (m) |                                                                                 | WATER LEVEL<br>(MEASURED) | USCS SYMBOL |          | % RECOVERY | _         | HEADSPACE<br>(ppmv) |               |
| B B                        |                                                                                 | E E                       | Σ           |          | )<br>SE    |           | PAC                 |               |
| ΗŒ                         |                                                                                 | ER                        | o,          | ш        | S          | 7         | S S                 |               |
| P X                        | Soil Surface                                                                    | VAT<br>ME/                | SC          | TYPE     | % R        | SAMPLE ID | HEA<br>Ppm          | 1             |
|                            | SAND AND GRAVEL                                                                 | > =                       |             |          | 0,         | (V)       | 12                  |               |
| I -                        | SAND AND GRAVEL                                                                 |                           |             |          |            |           |                     |               |
| _                          | Medium grained sands and gravels. Well graded with some cobbles and trace silts |                           |             |          |            |           |                     |               |
| _                          | Staining and odourous to 20 cm                                                  |                           |             |          |            |           |                     |               |
| l _                        |                                                                                 |                           |             |          |            |           |                     |               |
|                            |                                                                                 |                           |             | Grab     | 100        | BH6-1     | 10                  |               |
|                            |                                                                                 |                           |             |          |            |           |                     |               |
| _                          |                                                                                 |                           |             |          |            |           |                     | 1             |
| _                          |                                                                                 |                           |             |          |            |           |                     |               |
| _                          |                                                                                 |                           |             |          |            |           |                     |               |
| l –                        |                                                                                 |                           |             |          |            |           |                     |               |
| 1.0                        |                                                                                 |                           |             |          |            |           |                     |               |
| _                          |                                                                                 |                           |             |          |            |           |                     |               |
| l _                        |                                                                                 |                           |             |          |            |           |                     |               |
| I -                        |                                                                                 |                           |             | 1        | 1          |           |                     | 1             |
| 1 -                        |                                                                                 | 1                         |             |          |            |           |                     | 1             |
| I -                        |                                                                                 |                           |             | 1        | 1          |           |                     | 1             |
| I -                        | END BOREHOLE AT 1.5 m                                                           | 1                         |             | 1        | 1          |           |                     | 1             |
| 1 -                        | END DONEHOLE AT 1.0 III                                                         | 1                         |             |          |            |           |                     |               |
| -                          |                                                                                 |                           |             | 1        |            |           |                     | 1             |
| I –                        |                                                                                 |                           |             | 1        |            |           |                     | 1             |
| I _                        |                                                                                 |                           |             | 1        |            |           |                     | 1             |
| 2.0                        |                                                                                 |                           |             | 1        |            |           |                     | 1             |
|                            |                                                                                 |                           |             |          |            |           |                     |               |
|                            |                                                                                 |                           |             |          |            |           |                     |               |
| _                          |                                                                                 |                           |             |          |            |           |                     |               |
| I -                        |                                                                                 |                           |             |          |            |           |                     |               |
| _                          |                                                                                 |                           |             |          |            |           |                     |               |
| _                          |                                                                                 |                           |             |          |            |           |                     |               |
| _                          |                                                                                 |                           |             |          |            |           |                     |               |
|                            |                                                                                 |                           |             |          |            |           |                     |               |
|                            |                                                                                 |                           |             |          |            |           |                     |               |
| 1 -                        |                                                                                 |                           |             | 1        |            |           |                     | 1             |
| 1 -                        |                                                                                 | 1                         |             |          |            |           |                     |               |
| 3.0                        |                                                                                 |                           |             | 1        |            |           |                     | 1             |
| 3.0                        |                                                                                 |                           |             | 1        |            |           |                     | 1             |
| I -                        |                                                                                 |                           |             | 1        |            |           |                     | 1             |
| 1 _                        |                                                                                 | 1                         |             |          |            |           |                     | 1             |
| I _                        |                                                                                 |                           |             |          |            |           |                     | 1             |
| 1 -                        |                                                                                 | 1                         |             |          |            |           |                     | 1             |
| I -                        |                                                                                 |                           |             |          |            |           |                     | 1             |
| I -                        |                                                                                 |                           |             |          |            |           |                     | 1             |
| I -                        |                                                                                 |                           |             |          |            |           |                     | 1             |
| -                          |                                                                                 |                           |             |          |            |           |                     | 1             |
| -                          |                                                                                 |                           |             | 1        | 1          | 1         |                     | 1             |
| I –                        |                                                                                 |                           |             |          |            |           |                     | 1             |
| 4.0                        |                                                                                 | 1                         |             |          |            |           |                     | 1             |
|                            |                                                                                 |                           |             |          |            |           |                     | 1             |
| 1                          |                                                                                 | 1                         |             |          |            |           |                     | 1             |
| I -                        |                                                                                 |                           |             |          |            |           |                     | 1             |
| 1 -                        |                                                                                 | 1                         |             |          |            |           |                     | 1             |
| 1 -                        |                                                                                 |                           |             |          |            |           |                     | 1             |
| -                          |                                                                                 |                           |             | 1        | 1          | 1         |                     | 1             |
| I -                        |                                                                                 |                           |             |          |            |           |                     | 1             |
| 1 _                        |                                                                                 | 1                         |             |          |            |           |                     | 1             |
| <b>I</b> .                 |                                                                                 |                           |             |          |            |           |                     | 1             |
| I -                        |                                                                                 |                           |             |          |            |           |                     | 1             |
| I -                        |                                                                                 |                           |             |          |            |           |                     | 1             |
| 5.0                        |                                                                                 | 1                         |             |          |            |           |                     | 1             |
| 5.0                        |                                                                                 |                           |             |          |            |           |                     | 1             |
| 1 -                        |                                                                                 | 1                         |             |          |            |           |                     | 1             |
| -                          |                                                                                 |                           |             | 1        | 1          | 1         |                     | 1             |
| 1 _                        |                                                                                 |                           |             | 1        | 1          | 1         |                     | 1             |
| 1                          |                                                                                 | 1                         |             |          |            |           |                     | 1             |
| I -                        |                                                                                 |                           |             |          |            |           |                     | 1             |
| 1 -                        |                                                                                 | 1                         |             |          |            |           |                     | 1             |
| 1 -                        |                                                                                 |                           |             |          |            |           |                     | 1             |
| I -                        |                                                                                 |                           |             | 1        | 1          | 1         |                     | 1             |
| 1 -                        |                                                                                 | 1                         |             |          |            |           |                     | 1             |
| I _                        |                                                                                 |                           |             |          |            |           |                     | 1             |
| 6.0                        |                                                                                 |                           | <u>L</u>    | L        | L          |           |                     | <u> </u>      |
|                            |                                                                                 |                           | _           | _        | _          |           | _                   |               |



| BOILE                      | IOLE DIAMETER 102 mm (4")                                                                                         | LUG                       | GLK         |      |            |           |                     | SZ           |
|----------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|------|------------|-----------|---------------------|--------------|
|                            | SAMPLE DESCRIPTION                                                                                                |                           |             |      |            | SAMPLE    |                     | WELL DETAILS |
| DEPTH BELOW<br>SURFACE (m) | 0.40 (                                                                                                            | WATER LEVEL<br>(MEASURED) | USCS SYMBOL | TYPE | % RECOVERY | SAMPLE ID | HEADSPACE<br>(ppmv) |              |
| S                          | Soil Surface                                                                                                      | ≩ξ                        | š           | Ĕ    | %          | /S        | ਝੌਂ ਦ               |              |
| -                          | SAND AND GRAVEL                                                                                                   |                           |             |      |            |           |                     |              |
| I -                        | Medium grained sands and gravels. Well graded with some cobbles and trace silts<br>Staining and odourous to 30 cm |                           |             |      |            |           |                     |              |
| -                          | Staining and ododrous to 50 cm                                                                                    |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     | 1            |
|                            |                                                                                                                   |                           |             | Grab | 100        | BH7-1     | 35                  |              |
|                            |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1.0                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| _                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        | END BOREHOLE AT 1.5 m                                                                                             | 1                         |             |      |            |           |                     |              |
|                            | •                                                                                                                 |                           |             |      |            |           |                     |              |
| 1 ]                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| _                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| 2.0                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| _                          |                                                                                                                   |                           |             |      |            |           |                     |              |
|                            |                                                                                                                   |                           |             |      |            |           |                     |              |
| _                          |                                                                                                                   |                           |             |      |            |           |                     |              |
|                            |                                                                                                                   |                           |             |      |            |           |                     |              |
| _                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| _                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| _                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| 3.0                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 5.0                        |                                                                                                                   |                           |             |      |            |           |                     |              |
|                            |                                                                                                                   |                           |             |      |            |           |                     |              |
|                            |                                                                                                                   |                           |             |      |            |           |                     |              |
| I -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| 4.0                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| _                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| _                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| _                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| _                          |                                                                                                                   |                           |             |      |            |           |                     |              |
|                            |                                                                                                                   |                           |             |      |            |           |                     |              |
|                            |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 ]                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| 5.0                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
|                            |                                                                                                                   |                           |             |      |            |           |                     |              |
|                            |                                                                                                                   |                           |             |      |            |           |                     |              |
|                            |                                                                                                                   |                           |             |      |            |           |                     |              |
|                            |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| 6.0                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 0.0                        |                                                                                                                   | 1                         |             |      |            | i         | <u> </u>            | 1            |



| BORE                       | HOLE DIAMETER 102 mm (4")                                                                                         | LOG                       | GER         |      |            |           |                     | SZ           |
|----------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|------|------------|-----------|---------------------|--------------|
|                            | SAMPLE DESCRIPTION                                                                                                | 1                         |             |      |            | SAMPLE    |                     | WELL DETAILS |
| WC (F                      |                                                                                                                   | ٦,                        | Ď.          |      | ≿          |           |                     |              |
| DEPTH BELOW<br>SURFACE (m) |                                                                                                                   | WATER LEVEL<br>(MEASURED) | USCS SYMBOL |      | % RECOVERY | □         | HEADSPACE<br>(ppmv) |              |
| oπ<br>3FAC                 |                                                                                                                   | TER                       | SS          | Ж    | (ECC       | SAMPLE ID | ADSF                |              |
| DEF                        | Soil Surface                                                                                                      | WA:                       | nsc         | TYPE | % F        | SAN       | HE/                 |              |
| 1 -                        | SAND AND GRAVEL                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        | Medium grained sands and gravels. Well graded with some cobbles and trace silts<br>Staining and odourous to 10 cm |                           |             |      |            |           |                     |              |
| 1 -                        | Staining and Odourous to 10 cm                                                                                    |                           |             |      |            |           |                     | -            |
| 1 -                        |                                                                                                                   |                           |             | Grab | 100        | BH8-1     | 25                  |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| _                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1.0                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| _                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        | END BOREHOLE AT 1.5 m                                                                                             | 1                         |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 2.0                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| _                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   | 1                         |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   | 1                         |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   | 1                         |             |      |            |           |                     |              |
| 3.0                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   | 1                         |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 4.0                        |                                                                                                                   | 1                         |             |      |            |           |                     |              |
| 4.0                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   | 1                         |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 5.0                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 5.0                        |                                                                                                                   | 1                         |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| -                          |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 1 -                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 6.0                        |                                                                                                                   |                           |             |      |            |           |                     |              |
| 6.0                        |                                                                                                                   |                           |             |      |            |           |                     | 1            |



LOCATION ID BH9/MW14-3

 DATE
 7-Mar-14

 NORTHING
 5553218

 EASTING
 654746

GROUND ELEVATION (masl) TOP OF PIPE ELEVATION (masl) WATER LEVEL, March 7, 2014 (mbsg) LOGGER SZ

CLIENT Lower Nicola Indian Band / AANDC
PROJECT LOCATION Pipsuel IR No. 3 Former Concrete Plant
BOREHOLE LOCATION Down gradient of Former Tank Nest at Mojos Gas Station

DRILL METHOD Truck Mounted Solid Stem Auger/Air Rotary
DRILLING CONTRACTOR Blue Max Environmental Drilling Inc.

BOREHOLE DIAMETER 102 mm (4")

| DOILL                      | HOLE DIAMETER 102 mm (4")                       | LOG                                      | OLIC        |      |            |           |                     | SZ                                       |
|----------------------------|-------------------------------------------------|------------------------------------------|-------------|------|------------|-----------|---------------------|------------------------------------------|
| _                          | SAMPLE DESCRIPTION                              |                                          |             |      |            | SAMPLE    |                     | WELL DETAILS                             |
| DEPTH BELOW<br>SURFACE (m) | Soil Surface                                    | WATER LEVEL<br>(MEASURED)                | USCS SYMBOL | TYPE | % RECOVERY | SAMPLE ID | HEADSPACE<br>(ppmv) | Ogic-up                                  |
| _                          | SAND AND GRAVEL                                 |                                          |             |      |            |           |                     | S S                                      |
| _                          | Brown damp silty sand and gravel, with cobbles. |                                          |             |      |            |           |                     | , <b>1</b>                               |
| 1.0                        |                                                 |                                          |             | Grab | 80         | BH9-1     | 10                  | ğ                                        |
| 1.0                        |                                                 |                                          |             |      |            |           |                     | Bentonite Chips                          |
|                            |                                                 |                                          |             |      |            |           |                     | to line line line                        |
| 2.0                        |                                                 |                                          |             |      |            |           |                     | Bei                                      |
| 2.0                        |                                                 |                                          |             |      |            |           |                     | ) ° (50 °                                |
|                            |                                                 |                                          |             |      |            |           |                     | San San                                  |
| 3.0                        | SAND AND COBBLES                                |                                          |             | Grab | 100        | BH9-2     | 5                   | liser liser                              |
| 3.0                        | Medium grain brown sand and cobbles             |                                          |             |      |            |           |                     | 10/20 Silica Sand Beni                   |
|                            |                                                 |                                          |             |      |            |           |                     | 10/2<br>C sc                             |
|                            |                                                 |                                          |             |      |            |           |                     | S 9 5                                    |
| 4.0                        |                                                 |                                          |             |      |            |           |                     | Bentonite Chips                          |
|                            |                                                 |                                          |             |      |            |           |                     | ig i |
|                            |                                                 |                                          |             |      |            |           |                     | l g 🔯                                    |
| 5.0                        |                                                 |                                          |             |      |            |           |                     |                                          |
|                            |                                                 |                                          |             |      |            |           |                     | PE O                                     |
| 1                          |                                                 |                                          |             |      |            |           |                     | 10/20 Sand                               |
| 6.0                        |                                                 |                                          |             |      |            |           |                     | 10/2                                     |
| _                          |                                                 |                                          |             | Grab | 100        | BH9-3     | 15                  |                                          |
|                            |                                                 |                                          |             |      |            |           |                     | ] g/ [] []                               |
| 7.0                        |                                                 |                                          |             |      |            |           |                     | Chip                                     |
| _                          |                                                 |                                          |             |      |            |           |                     | ig iii                                   |
|                            | FINE SAND AND GRAVEL                            |                                          |             |      |            |           |                     | Sento H                                  |
| 8.0                        | Fine grain brown sandand gravel with cobbles    | _                                        |             |      |            |           |                     | m m                                      |
| _                          | Wet at 8.3 m                                    | <u>4</u><br>▲                            |             | Grab | 100        | BH9-4     | 5                   | San (mm                                  |
| 1 _                        |                                                 | I<br>m (Measured March 8, 2014) <b>→</b> |             |      |            |           |                     | gh 10/20 Silica Sand Bentonite Chips     |
| 9.0                        |                                                 | , 8<br>,                                 |             |      |            |           |                     | s oz                                     |
| _                          |                                                 | larc                                     |             |      |            |           |                     | 10/2<br>sol                              |
| _                          |                                                 | ed N                                     |             |      |            |           |                     | N N N                                    |
| 10.0                       |                                                 | asur                                     |             |      |            |           |                     | S C                                      |
| _                          | END BOREHOLE AT 10.0 m                          | (Me                                      |             |      |            |           |                     | Slough<br>5' slo                         |
| -                          |                                                 | em<br>9                                  |             |      |            |           |                     | 0,                                       |
| 11.0                       |                                                 | 8.26                                     |             |      |            |           |                     |                                          |
| _                          |                                                 |                                          |             |      |            |           |                     |                                          |
| _                          |                                                 |                                          |             |      |            |           |                     |                                          |
| 12.0                       |                                                 |                                          |             |      |            |           |                     |                                          |
| -                          |                                                 |                                          |             |      |            |           |                     |                                          |
| -                          |                                                 |                                          |             |      |            |           |                     |                                          |
| 13.0                       |                                                 |                                          |             |      |            |           |                     |                                          |
| 1 -                        |                                                 |                                          |             |      |            |           |                     |                                          |
| 1 -                        |                                                 |                                          |             |      |            |           |                     |                                          |
| 14.0                       |                                                 |                                          |             |      |            |           |                     |                                          |
|                            |                                                 |                                          |             |      |            |           |                     |                                          |
| 1 -                        |                                                 |                                          |             |      |            |           |                     |                                          |
| 15.0                       |                                                 |                                          |             |      |            |           |                     |                                          |
| _                          |                                                 |                                          |             |      |            |           |                     |                                          |
|                            |                                                 |                                          |             |      |            |           |                     |                                          |

# APPENDIX D ANALYTICAL TABLES



Table 1: Metals Concentrations in soil

| Sample ID             |      |                         |         |         |         |          | TP1-1            | TP2-1          | TP3-1           | TP4-1          | TP5-1     | TP7-1     | TP8-1     | BH1-1     | BH2-1     | BHDUP3       | BH3-3     |
|-----------------------|------|-------------------------|---------|---------|---------|----------|------------------|----------------|-----------------|----------------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|
| Sample Date           |      |                         |         |         |         |          | 03-Mar-14        | 03-Mar-14      | 03-Mar-14       | 03-Mar-14      | 03-Mar-14 | 03-Mar-14 | 03-Mar-14 | 04-Mar-14 | 05-Mar-14 | 05-Mar-14    | 06-Mar-14 |
| Sample Type           |      |                         |         |         |         |          | Discrete         | Discrete       | Discrete        | Discrete       | Discrete  | Discrete  | Discrete  | Discrete  | Discrete  | Duplicate of | Discrete  |
| Sample Depth (m)      |      |                         |         |         |         |          | 0.3-0.6          | 0.3-0.6        | 0.3-0.6         | 0.3-0.6        | 0.3-0.6   | 0.3-0.6   | 0.3-0.6   | 1.0-1.5   | 0.7-1.5   | BH2-1        | 2.7-3.5   |
| Field Grainsize       |      |                         |         |         |         |          | Coarse           | Coarse         | Coarse          | Coarse         | Coarse    | Coarse    | Coarse    | Coarse    | Coarse    | Coarse       | Coarse    |
| Physical Properties   | MDL  | Background <sup>a</sup> | CCME RL | CCME CL | CCME IL | Units    |                  |                |                 |                |           |           |           |           |           |              |           |
| Moisture              | 0.3  |                         | nc      | nc      | nc      | %        | 13.1             | 4.9            | 5.2             | 5.2            | -         | 3.4       | 9.4       | 4.3       | 18.1      | 18.8         | 3.6       |
| pH                    | 0.01 |                         | 6 to 8  | 6 to 8  | 6 to 8  | pH Units | 8.3              | 8.4            | 8.6             | 8.2            | 7.6       | 8.1       | 9.1       | 9.3       | 8.7       | 8.7          | 8.9       |
| Total Metals by ICPMS |      |                         |         |         |         |          |                  |                |                 |                |           |           |           |           |           |              |           |
| Antimony (Sb)         | 0.1  | 4                       | 20      | 40      | 40      | mg/kg    | 0.3              | 0.4            | 0.4             | 0.4            | 0.3       | 0.3       | 0.4       | 0.3       | 0.5       | 0.4          | 0.3       |
| Arsenic (As)          | 0.4  | 25                      | 12      | 12      | 12      | mg/kg    | 3.1              | 3.5            | 2.9             | 2.9            | 3.5       | 2.8       | 2.7       | 3.1       | 3.6       | 3.5          | 3.2       |
| Barium (Ba)           | 1    | 350                     | 500     | 2000    | 2000    | mg/kg    | 93               | 110            | 85              | 96             | 112       | 163       | 73        | 78        | 152       | 151          | 74        |
| Beryllium (Be)        | 0.1  | 2                       | 4       | 8       | 8       | mg/kg    | 0.4              | 0.5            | 0.5             | 0.5            | 0.5       | 0.5       | 0.4       | 0.4       | 0.6       | 0.5          | 0.4       |
| Cadmium (Cd)          | 0.04 | 0.55                    | 10      | 22      | 22      | mg/kg    | 0.13             | 0.14           | 0.12            | 0.12           | 0.14      | 0.14      | 0.12      | 0.08      | 0.16      | 0.14         | 0.07      |
| Chromium (Cr)         | 1    | 150                     | 64      | 87      | 87      | mg/kg    | 24.3             | 33.8           | 28.2            | 28.5           | 33.8      | 27.8      | 23.4      | 33.6      | 31        | 30.7         | 25.1      |
| Cobalt (Co)           | 0.1  | 30                      | 50      | 300     | 300     | mg/kg    | 11.9             | 13.3           | 12.3            | 12.8           | 12.9      | 11.3      | 12.2      | 10.4      | 12.4      | 12.2         | 11.3      |
| Copper (Cu)           | 0.2  | 75                      | 63      | 91      | 91      | mg/kg    | 59.8             | 60.7           | 46.6            | 47             | 53.3      | 48        | 52        | 37.9      | 82        | 81.9         | 41.7      |
| Iron (Fe)             | 20   | nc                      | nc      | nc      | nc      | mg/kg    | 31200            | 37400          | 34000           | 34500          | 35600     | 32100     | 30100     | 28900     | 32900     | 31900        | 32200     |
| Lead (Pb)             | 0.2  | 15                      | 140     | 260     | 600     | mg/kg    | 4.7              | 3.7            | 2.9             | 2.7            | 3.2       | 3.8       | 2.7       | 2.7       | 4.6       | 4.3          | 2.6       |
| Mercury (Hg)          | 0.05 | 0.25                    | 6.6     | 24      | 50      | mg/kg    | <0.05            | <0.05          | <0.05           | 0.07           | <0.05     | <0.05     | <0.05     | < 0.05    | < 0.05    | < 0.05       | <0.05     |
| Molybdenum (Mo)       | 0.1  | 1                       | 10      | 40      | 40      | mg/kg    | 0.6              | 0.8            | 0.5             | 0.6            | 0.6       | 0.9       | 0.5       | 0.9       | 0.9       | 0.9          | 1.1       |
| Nickel (Ni)           | 0.4  | 75                      | 50      | 50      | 50      | mg/kg    | 24.7             | 28.1           | 29.6            | 28.4           | 26.1      | 23.9      | 21.9      | 18.3      | 23.7      | 23.2         | 21        |
| Selenium (Se)         | 0.5  | 4                       | 1       | 2.9     | 2.9     | mg/kg    | <0.5             | <0.5           | <0.5            | <0.5           | <0.5      | <0.5      | <0.5      | <0.5      | 0.5       | 0.5          | <0.5      |
| Silver (Ag)           | 0.2  | 1                       | 20      | 40      | 40      | mg/kg    | <0.2             | <0.2           | <0.2            | <0.2           | <0.2      | <0.2      | <0.2      | <0.2      | <0.2      | <0.2         | <0.2      |
| Thallium (TI)         | 0.1  | nc                      | 1       | 1       | 1       | mg/kg    | <0.1             | <0.1           | <0.1            | <0.1           | <0.1      | <0.1      | <0.1      | <0.1      | <0.1      | <0.1         | <0.1      |
| Tin (Sn)              | 0.2  | 4                       | 50      | 300     | 300     | mg/kg    | 0.4              | 0.5            | 0.4             | 0.4            | 0.4       | 0.4       | 0.4       | 0.4       | 0.6       | 0.6          | 0.5       |
| Uranium (U)           | 0.1  | nc                      | 23      | 33      | 300     | mg/kg    | 0.5              | 0.6            | 0.4             | 0.4            | 0.6       | 0.6       | 0.5       | 0.4       | 0.9       | 0.9          | 0.3       |
| Vanadium (V)          | 0.4  | 150                     | 130     | 130     | 130     | mg/kg    | 84.7             | 107            | 93.2            | 98.6           | 89.3      | 83.9      | 80.1      | 70.3      | 91.3      | 88           | 80.2      |
| Zinc (Zn)             | 2    | 100                     | 200     | 360     | 360     | mg/kg    | 55               | 66             | 54              | 52             | 70        | 78        | 58        | 49        | 56        | 54           | 53        |
| Aluminum (AI)         | 20   | nc                      | nc      | nc      | nc      | mg/kg    | 13000            | 15400          | 13400           | 12700          | 15700     | 16100     | 13300     | 12600     | 16300     | 15900        | 13600     |
| Bismuth (Bi)          | 0.1  | nc                      | nc      | nc      | nc      | mg/kg    | <0.1             | <0.1           | <0.1            | <0.1           | <0.1      | <0.1      | <0.1      | <0.1      | <0.1      | <0.1         | <0.1      |
| Boron (B)             | 2    | nc                      | nc      | nc      | nc      | mg/kg    | 6                | 3              | 4               | 4              | 3         | 3         | 3         | 2         | 4         | 4            | 3         |
| Calcium (Ca)          | 100  | nc                      | nc      | nc      | nc      | mg/kg    | 10400            | 8500           | 9420            | 8910           | 8210      | 7710      | 13200     | 13300     | 33300     | 32100        | 8650      |
| Lithium (Li)          | 0.1  | nc                      | nc      | nc      | nc      | mg/kg    | 7.9              | 9.4            | 8.7             | 7.7            | 8.4       | 8.6       | 8.6       | 8         | 9.3       | 9            | 8         |
| Magnesium (Mg)        | 10   | nc                      | nc      | nc      | nc      | mg/kg    | 8270             | 8220           | 8740            | 8180           | 8450      | 6430      | 8840      | 9190      | 9020      | 8660         | 9570      |
| Manganese (Mn)        | 0.4  | nc                      | nc      | nc      | nc      | mg/kg    | 477              | 539            | 502             | 533            | 530       | 567       | 532       | 509       | 615       | 595          | 551       |
| Phospohorus (P)       | 10   | nc                      | nc      | nc      | nc      | mg/kg    | 827              | 781            | 882             | 883            | 890       | 744       | 937       | 700       | 847       | 808          | 689       |
| Potassium (K)         | 10   | nc                      | nc      | nc      | nc      | mg/kg    | 758              | 883            | 784             | 711            | 865       | 1020      | 580       | 641       | 1000      | 1010         | 827       |
| Silicon (Si)          | 3000 | nc                      | nc      | nc      | nc      | mg/kg    | <3000            | <3000          | <3000           | <3000          | <3000     | <3000     | <3000     | <3000     | <3000     | <3000        | <3000     |
| Sodium (Na)           | 40   | nc                      | nc      | nc      | nc      | mg/kg    | 268              | 394            | 397             | 359            | 220       | 402       | 355       | 437       | 588       | 547          | 449       |
| Strontium (Sr)        | 0.2  | nc                      | nc      | nc      | nc      | mg/kg    | 50               | 43.7           | 43.8            | 47.7           | 46.3      | 38.5      | 46        | 63.8      | 98.7      | 99.4         | 49.3      |
| Sulfur (S)            | 1000 | nc                      | nc      | nc      | nc      | mg/kg    | <1000            | <1000          | <1000           | <1000          | <1000     | <1000     | <1000     | <1000     | <1000     | <1000        | <1000     |
| Tellurium (Te)        | 0.1  | nc                      | nc      | nc      | nc      | mg/kg    | <0.1             | <0.1           | <0.1            | <0.1           | <0.1      | <0.1      | <0.1      | <0.1      | <0.1      | <0.1         | <0.1      |
| Thorium (Th)          | 0.5  | nc                      | nc      | nc      | nc      | mg/kg    | 1.7              | 2              | 1.5             | 1.5            | 1.5       | 1.8       | 1.4       | 1.2       | 3.4       | 3.4          | 1.3       |
| Titanium (Ti)         | 2    | nc                      | nc      | nc      | nc      | mg/kg    | 957              | 1290           | 1290            | 1060           | 988       | 1290      | 856       | 1170      | 1310      | 1270         | 1300      |
| Zirconium (Zr)        | 2    | nc                      | nc      | nc      | nc      | mg/kg    | 6                | 9              | 8               | 7              | 8         | 11        | 6         | 7         | 8         | 8            | 7         |
|                       |      | ·                       |         |         |         | Notes:   | all units are ex | xpressed in mo | a/ka unless oth | nerwise stated |           | · ·       |           |           | · ·       |              |           |

|               | _                    |
|---------------|----------------------|
| Light Shaded  | > CCME RL Guidelines |
| Medium Shaded | > CCME CL Guidelines |
| Dark Shaded   | > CCMF II Guidelines |

- a Based on MoE Protocol 4: Determining Background Soil Quality Region 3 Southern Interior
- nc No Applicable Guideline
- RL Residential / Parkland Land Use
- CL Commercial Land Use
- IL Industrial Land Use
- MDL Method Detection Limit

CCME Canadian Council of Ministers of the Environment Recommended Canadian Soil Quality Guidelines

COLUMBIA ENVIRONMENTAL

Project No: 13-0493 1 of 18

Table 1: Metals Concentrations in soil

| Sample ID             |      |              |         |         |         |           | BH4-1     | BH5-1     | BH6-1     | BH7-1     | BH8-1     | BH9-1     | BHDUP4       |
|-----------------------|------|--------------|---------|---------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|
| Sample Date           |      |              |         |         |         |           | 04-Mar-14 | 04-Mar-14 | 04-Mar-14 | 04-Mar-14 | 04-Mar-14 | 07-Mar-14 | 07-Mar-14    |
| Sample Type           |      |              |         |         |         |           | Discrete  | Discrete  | Discrete  | Discrete  | Discrete  | Discrete  | Duplicate of |
| Sample Depth (m)      |      |              |         |         |         |           | 0.5-0.8   | 0.3-0.6   | 0.3-0.6   | 0.6-0.9   | 0.3-0.6   | 0.5-1.0   | BH9-1        |
| Field Grainsize       |      |              |         |         |         |           | Coarse       |
| Physical Properties   | MDL  | Background a | CCME RL | CCME CL | CCME IL | Units     |           |           |           |           |           |           |              |
| Moisture              | 0.3  |              | nc      | nc      | nc      | %         | 5.1       | 4.6       | 3.6       | 4.7       | 14.3      | 16.7      | 6.2          |
| pH                    | 0.01 |              | 6 to 8  | 6 to 8  | 6 to 8  | pH Units  | 9         | 9.1       | 9.3       | 9.2       | 8         | 8.5       | 8.6          |
| Total Metals by ICPMS | 0.01 |              | 0.00    | 0.00    | 0.00    | pri orino |           | 0         | 0.0       | 0.2       |           | 0.0       | 0.0          |
| Antimony (Sb)         | 0.1  | 4            | 20      | 40      | 40      | mg/kg     | 0.3       | 0.3       | 0.3       | 0.3       | 0.4       | 0.3       | 0.3          |
| Arsenic (As)          | 0.4  | 25           | 12      | 12      | 12      | mg/kg     | 3.2       | 4         | 4.5       | 3.2       | 4         | 3.1       | 3.1          |
| Barium (Ba)           | 1    | 350          | 500     | 2000    | 2000    | mg/kg     | 98        | 90        | 63        | 63        | 152       | 143       | 112          |
| Beryllium (Be)        | 0.1  | 2            | 4       | 8       | 8       | mg/kg     | 0.3       | 0.4       | 0.3       | 0.3       | 0.6       | 0.4       | 0.5          |
| Cadmium (Cd)          | 0.04 | 0.55         | 10      | 22      | 22      | mg/kg     | 0.1       | 0.1       | 0.07      | 0.08      | 0.18      | 0.15      | 0.13         |
| Chromium (Cr)         | 1    | 150          | 64      | 87      | 87      | mg/kg     | 28.2      | 26.6      | 26.2      | 27.4      | 46.8      | 26.1      | 25.2         |
| Cobalt (Co)           | 0.1  | 30           | 50      | 300     | 300     | mg/kg     | 10.5      | 11.6      | 10.8      | 10.8      | 14.7      | 13        | 12.4         |
| Copper (Cu)           | 0.2  | 75           | 63      | 91      | 91      | mg/kg     | 37.9      | 39.5      | 35.6      | 40.4      | 53.2      | 73.9      | 84           |
| Iron (Fe)             | 20   | nc           | nc      | nc      | nc      | mg/kg     | 29100     | 31900     | 30800     | 30800     | 35100     | 32600     | 30600        |
| Lead (Pb)             | 0.2  | 15           | 140     | 260     | 600     | mg/kg     | 4         | 3.1       | 12.5      | 3.3       | 4.9       | 3.7       | 3.1          |
| Mercury (Hg)          | 0.05 | 0.25         | 6.6     | 24      | 50      | mg/kg     | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | <0.05        |
| Molybdenum (Mo)       | 0.1  | 1            | 10      | 40      | 40      | mg/kg     | 1.6       | 1.8       | 2.1       | 0.8       | 2.4       | 0.8       | 0.7          |
| Nickel (Ni)           | 0.4  | 75           | 50      | 50      | 50      | mg/kg     | 19.8      | 25.2      | 25.9      | 18.4      | 35.3      | 26.9      | 26.7         |
| Selenium (Se)         | 0.5  | 4            | 1       | 2.9     | 2.9     | mg/kg     | <0.5      | <0.5      | <0.5      | <0.5      | 0.6       | <0.5      | <0.5         |
| Silver (Ag)           | 0.2  | 1            | 20      | 40      | 40      | mg/kg     | <0.2      | <0.2      | <0.2      | <0.2      | <0.2      | <0.2      | <0.2         |
| Thallium (TI)         | 0.1  | nc           | 1       | 1       | 1       | mg/kg     | <0.1      | <0.1      | <0.1      | <0.1      | <0.1      | <0.1      | <0.1         |
| Tin (Sn)              | 0.2  | 4            | 50      | 300     | 300     | mg/kg     | 0.5       | 0.5       | 0.5       | 0.4       | 0.6       | 0.5       | 0.4          |
| Uranium (U)           | 0.1  | nc           | 23      | 33      | 300     | mg/kg     | 0.4       | 0.4       | 0.4       | 0.4       | 0.6       | 0.7       | 0.5          |
| Vanadium (V)          | 0.4  | 150          | 130     | 130     | 130     | mg/kg     | 70.2      | 74.9      | 70.3      | 74.8      | 80        | 85.9      | 82.5         |
| Zinc (Zn)             | 2    | 100          | 200     | 360     | 360     | mg/kg     | 52        | 53        | 52        | 47        | 68        | 66        | 56           |
| Aluminum (AI)         | 20   | nc           | nc      | nc      | nc      | mg/kg     | 13500     | 14500     | 13400     | 12500     | 18800     | 14700     | 12800        |
| Bismuth (Bi)          | 0.1  | nc           | nc      | nc      | nc      | mg/kg     | <0.1      | <0.1      | <0.1      | <0.1      | <0.1      | <0.1      | <0.1         |
| Boron (B)             | 2    | nc           | nc      | nc      | nc      | mg/kg     | 3         | 3         | 2         | 2         | 4         | 4         | 3            |
| Calcium (Ca)          | 100  | nc           | nc      | nc      | nc      | mg/kg     | 13700     | 16200     | 13200     | 12800     | 13900     | 9980      | 9220         |
| Lithium (Li)          | 0.1  | nc           | nc      | nc      | nc      | mg/kg     | 8.6       | 8.9       | 9.5       | 7.9       | 10.5      | 8.9       | 8.2          |
| Magnesium (Mg)        | 10   | nc           | nc      | nc      | nc      | mg/kg     | 9170      | 10100     | 10500     | 9470      | 10200     | 8080      | 8320         |
| Manganese (Mn)        | 0.4  | nc           | nc      | nc      | nc      | mg/kg     | 532       | 583       | 536       | 481       | 787       | 562       | 545          |
| Phospohorus (P)       | 10   | nc           | nc      | nc      | nc      | mg/kg     | 659       | 691       | 741       | 706       | 701       | 675       | 856          |
| Potassium (K)         | 10   | nc           | nc      | nc      | nc      | mg/kg     | 793       | 825       | 662       | 652       | 1840      | 909       | 740          |
| Silicon (Si)          | 3000 | nc           | nc      | nc      | nc      | mg/kg     | <3000     | <3000     | <3000     | <3000     | <3000     | <3000     | <3000        |
| Sodium (Na)           | 40   | nc           | nc      | nc      | nc      | mg/kg     | 458       | 588       | 519       | 439       | 455       | 530       | 684          |
| Strontium (Sr)        | 0.2  | nc           | nc      | nc      | nc      | mg/kg     | 91.2      | 80.2      | 62.2      | 59.1      | 77.5      | 52.8      | 50.6         |
| Sulfur (S)            | 1000 | nc           | nc      | nc      | nc      | mg/kg     | <1000     | <1000     | <1000     | <1000     | <1000     | <1000     | <1000        |
| Tellurium (Te)        | 0.1  | nc           | nc      | nc      | nc      | mg/kg     | <0.1      | <0.1      | <0.1      | <0.1      | <0.1      | <0.1      | <0.1         |
| Thorium (Th)          | 0.5  | nc           | nc      | nc      | nc      | mg/kg     | 1.4       | 1.9       | 1.1       | 1.1       | 2.2       | 1.8       | 1.9          |
| Titanium (Ti)         | 2    | nc           | nc      | nc      | nc      | mg/kg     | 1230      | 1310      | 1210      | 1180      | 1220      | 1080      | 987          |
| Zirconium (Zr)        | 2    | nc           | nc      | nc      | nc      | mg/kg     | 7         | 8         | 7         | 7         | 10        | 8         | 7            |

Light Shaded > CCME RL Guidelines

Medium Shaded > CCME CL Guidelines

Dark Shaded > CCME IL Guidelines

Notes: all units are expressed in mg/kg unless otherwise stated

- a No Applicable Guideline
- nc Residential / Parkland Land Use
- RL Commercial Land Use
- CL Industrial Land Use
- IL Method Detection Limit
- MDL Canadian Council of Ministers of the Environment Recommended Canadian Soil Quality Guidelines CCME

Project No: 13-0493 2 of 18



Table 2: PAH Concentrations in Soil

| Sample ID                           |       |                |         |         |          | TP1-1     | TP2-1     | TP3-1     | TP4-1     | TP7-1     | TP8-1     | BH1-1     | BH2-1     |
|-------------------------------------|-------|----------------|---------|---------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Sample Date                         |       |                |         |         |          | 03-Mar-14 | 03-Mar-14 | 03-Mar-14 | 03-Mar-14 | 03-Mar-14 | 03-Mar-14 | 04-Mar-14 | 05-Mar-14 |
| Sample Type                         |       |                |         |         |          | Discrete  |
| Sample Depth (m)                    |       |                |         |         |          | 0.3-0.6   | 0.3-0.6   | 0.3-0.6   | 0.3-0.6   | 0.3-0.6   | 0.3-0.6   | 1.0-1.5   | 0.7-1.5   |
| Physical Properties                 | MDL   | CCME RL        | CCME CL | CCME IL | Units    |           |           |           |           |           |           |           |           |
| Moisture                            | 0.3   | nc             | nc      | nc      | %        | 13.1      | 4.9       | 5.2       | 5.2       | 3.4       | 9.4       | 4.3       | 18.1      |
| pH                                  | 0.01  | 6 to 8         | 6 to 8  | 6 to 8  | pH Units | 8.3       | 8.4       | 8.6       | 8.2       | 8.1       | 9.1       | 9.3       | 8.7       |
| Polycyclic Aromatics                |       |                |         |         |          |           |           |           |           |           |           |           |           |
| Naphthalene                         | 0.01  | 0.013a         | 0.013a  | 0.013a  | mg/kg    | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     |
| 2-Methylnaphthalene                 | 0.01  | nc             | nc      | nc      | mg/kg    | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     |
| Acenaphthene                        | 0.005 | 0.28a or 21.5b | 0.28a   | 0.28a   | mg/kg    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    |
| Acenaphthylene                      | 0.005 | 320a           | 320a    | 320a    | mg/kg    | 0.034     | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    |
| Fluorene                            | 0.01  | 0.25a or 15.4b | 0.25a   | 0.25a   | mg/kg    | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     |
| Phenanthrene                        | 0.02  | 0.046a         | 0.046a  | 0.046a  | mg/kg    | 0.095     | <0.02     | 0.037     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     |
| Anthracene                          | 0.01  | 2.5c           | 32c     | 32c     | mg/kg    | 0.048     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     |
| Benzo(a)anthracene                  | 0.01  | 0.33d or 6.2b  | 0.33d   | 0.33d   | mg/kg    | 0.076     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     |
| Fluoranthene                        | 0.01  | 15.4b or 50c   | 180b    | 180b    | mg/kg    | 0.198     | <0.01     | 0.018     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     |
| Pyrene                              | 0.02  | 10             | nc      | nc      | mg/kg    | 0.124     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     |
| Chrysene                            | 0.01  | 2.1d or 6.2b   | 2.1d    | 2.1d    | mg/kg    | 0.151     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     |
| Benzo(b&j)fluoranthene              | 0.01  | 0.16d or 6.2b  | 0.16d   | 0.16d   | mg/kg    | 0.236     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     |
| Benzo(k)fluoranthene                | 0.01  | 0.16d or 6.2b  | 0.16d   | 0.16d   | mg/kg    | 0.077     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     |
| Benzo(a)pyrene                      | 0.01  | 0.37d or 20c   | 72c     | 72c     | mg/kg    | 0.063     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     |
| B[a]P TPE 10 <sup>-6</sup> ILCR (e) | -     | 0.6            | -       | •       | -        | 0.125     | <         | <         | <b>~</b>  | <b>~</b>  | <b>~</b>  | <b>~</b>  | <         |
| Indeno(1,2,3-cd)pyrene              | 0.02  | 2.7d           | 2.7d    | 2.7d    | mg/kg    | 0.061     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     |
| Dibenz(a,h)anthracene               | 0.005 | 0.23d          | 0.23d   | 0.23d   | mg/kg    | 0.015     | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    |
| Benzo(g,h,i)perylene                | 0.02  | 6.8d           | 6.8d    | 6.8d    | mg/kg    | 0.068     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     |
| IACR                                | -     | 1              | -       | -       | -        | 2.527     | <         | <         | <         | <         | <         | <         | <         |

Light Shaded > CCME RL Guidelines

Medium Shaded > CCME CL Guidelines

Dark Shaded > CCME IL Guidelines

Notes: all units are expressed in mg/kg unless otherwise stated

- a protection of feshwater life guideline
- $\boldsymbol{b}\,$  soil and food ingestion guideline (provisional)
- c soil contact guideline
- d Protection of potable water guideline
- nc No Applicable Criteria
- RL Residential Land Use
- **CL** Commercial Land Use
- IL Industrial Land Use
- MDL Method Detection Limit

CCME Canadian Council of Ministers of the Environment Recommended Canadian Soil Quality Guidelines

B[a]P TPE 10-6 ILCR calculated benzo[a]pyrene total potency factor based on an incrimental lifetime cancer risk of 1 in 1,000,000 (10-6)

IACR Index of Additive Cancer Risk to protect groundwter calculated as the sum of hazard indices (soil concentration divided by soil qulaity guideline for protection of potable water) for each PAH.



Table 2: PAH Concentrations in Soil

| Sample ID                           |       |                |         |         |          | BHDUP3       | BH3-3     | BH4-1     | BH5-1     | BH6-1     | BH7-1     | BH8-1     | BH9-1     | BHDUP4       |
|-------------------------------------|-------|----------------|---------|---------|----------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|
| Sample Date                         |       |                |         |         |          | 05-Mar-14    | 06-Mar-14 | 04-Mar-14 | 04-Mar-14 | 04-Mar-14 | 04-Mar-14 | 04-Mar-14 | 07-Mar-14 | 07-Mar-14    |
| Sample Type                         |       |                |         |         |          | Duplicate of | Discrete  | Duplicate of |
| Sample Depth (m)                    |       |                |         |         |          | BH2-1        | 2.7-3.5   | 0.5-0.8   | 0.3-0.6   | 0.3-0.6   | 0.6-0.9   | 0.3-0.6   | 0.5-1.0   | BH9-1        |
| Physical Properties                 | MDL   | CCME RL        | CCME CL | CCME IL | Units    |              |           |           |           |           |           |           |           |              |
| Moisture                            | 0.3   | nc             | nc      | nc      | %        | 18.8         | 3.6       | 5.1       | 4.6       | 3.6       | 4.7       | 14.3      | 16.7      | 6.2          |
| рН                                  | 0.01  | 6 to 8         | 6 to 8  | 6 to 8  | pH Units | 8.7          | 8.9       | 9         | 9.1       | 9.3       | 9.2       | 8         | 8.5       | 8.6          |
| Polycyclic Aromatics                |       |                |         |         |          |              |           |           |           |           |           |           |           |              |
| Naphthalene                         | 0.01  | 0.013a         | 0.013a  | 0.013a  | mg/kg    | <0.01        | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        |
| 2-Methylnaphthalene                 | 0.01  | nc             | nc      | nc      | mg/kg    | <0.01        | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        |
| Acenaphthene                        | 0.005 | 0.28a or 21.5b | 0.28a   | 0.28a   | mg/kg    | <0.005       | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005       |
| Acenaphthylene                      | 0.005 | 320a           | 320a    | 320a    | mg/kg    | <0.005       | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005       |
| Fluorene                            | 0.01  | 0.25a or 15.4b | 0.25a   | 0.25a   | mg/kg    | <0.01        | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        |
| Phenanthrene                        | 0.02  | 0.046a         | 0.046a  | 0.046a  | mg/kg    | <0.02        | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02        |
| Anthracene                          | 0.01  | 2.5c           | 32c     | 32c     | mg/kg    | <0.01        | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        |
| Benzo(a)anthracene                  | 0.01  | 0.33d or 6.2b  | 0.33d   | 0.33d   | mg/kg    | <0.01        | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        |
| Fluoranthene                        | 0.01  | 15.4b or 50c   | 180b    | 180b    | mg/kg    | <0.01        | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        |
| Pyrene                              | 0.02  | 10             | nc      | nc      | mg/kg    | <0.02        | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02        |
| Chrysene                            | 0.01  | 2.1d or 6.2b   | 2.1d    | 2.1d    | mg/kg    | <0.01        | <0.01     | 0.013     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        |
| Benzo(b&j)fluoranthene              | 0.01  | 0.16d or 6.2b  | 0.16d   | 0.16d   | mg/kg    | <0.01        | <0.01     | 0.013     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        |
| Benzo(k)fluoranthene                | 0.01  | 0.16d or 6.2b  | 0.16d   | 0.16d   | mg/kg    | <0.01        | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        |
| Benzo(a)pyrene                      | 0.01  | 0.37d or 20c   | 72c     | 72c     | mg/kg    | <0.01        | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        |
| B[a]P TPE 10 <sup>-6</sup> ILCR (e) | -     | 0.6            | •       | •       | 1        | <            | <b>~</b>  | 0.001     | <         | <b>~</b>  | <b>v</b>  | <         | <b>~</b>  | <            |
| Indeno(1,2,3-cd)pyrene              | 0.02  | 2.7d           | 2.7d    | 2.7d    | mg/kg    | <0.02        | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02        |
| Dibenz(a,h)anthracene               | 0.005 | 0.23d          | 0.23d   | 0.23d   | mg/kg    | <0.005       | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005       |
| Benzo(g,h,i)perylene                | 0.02  | 6.8d           | 6.8d    | 6.8d    | mg/kg    | <0.02        | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02        |
| IACR                                | -     | 1              | -       | -       | -        | <            | <         | 0.087     | <         | <         | <         | <         | <         | <            |

Light Shaded > CCME RL Guidelines

Medium Shaded > CCME CL Guidelines

Dark Shaded > CCME IL Guidelines

Notes: all units are expressed in mg/kg unless otherwise stated

- a protection of feshwater life guideline
- $\boldsymbol{b}\,$  soil and food ingestion guideline (provisional)
- c soil contact guideline
- d Protection of potable water guideline
- nc No Applicable Criteria
- RL Residential Land Use
- **CL** Commercial Land Use
- IL Industrial Land Use
- MDL Method Detection Limit

CCME Canadian Council of Ministers of the Environment Recommended Canadian Soil Quality Guidelines

B[a]P TPE 10-6 ILCR calculated benzo[a]pyrene total potency factor based on an incrimental lifetime cancer risk of 1 in 1,000,000 (10-6)

IACR Index of Additive Cancer Risk to protect groundwter calculated as the sum of hazard indices (soil concentration divided by soil qulaity guideline for protection of potable water) for each PAH.



Table 3. Petroleum Hydrocarbon Fraction Concentrations in Soil

| Sample ID                 |      |             |              |              |          | TP1-1     | TP2-1     | TP4-1     | TP7-1     | TP8-1     | BH1-1     | BH2-1     |
|---------------------------|------|-------------|--------------|--------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Sample Date               |      |             |              |              |          | 03-Mar-14 | 03-Mar-14 | 03-Mar-14 | 03-Mar-14 | 03-Mar-14 | 04-Mar-14 | 05-Mar-14 |
| Sample Type               |      |             |              |              |          | Discrete  |
| Sample Depth (m)          |      |             |              |              |          | 0.3-0.6   | 0.3-0.6   | 0.3-0.6   | 0.3-0.6   | 0.3-0.6   | 1.0-1.5   | 0.7-1.5   |
| Field Grain Size          |      |             |              |              |          | Coarse    |
| Physical Properties       | MDL  | CCME CWS RL | CCME CWS CL  | CCME CWS IL  | Units    |           |           |           |           |           |           |           |
| Moisture                  | 0.3  | nc          | nc           | nc           | %        | 13.1      | 4.9       | 5.2       | 3.4       | 9.4       | 4.3       | 18.1      |
| рН                        | 0.01 | 6 to 8      | 6 to 8       | 6 to 8       | pH Units | 8.3       | 8.4       | 8.2       | 8.1       | 9.1       | 9.3       | 8.7       |
| Ext. Pet. Hydrocarbon     |      |             |              |              |          |           |           |           |           |           |           |           |
| VPHs                      | 20   | nc          | nc           | nc           | mg/kg    | <20       | <20       | <20       | <20       | <20       | <20       | <20       |
| VHs (6-10)                | 20   | nc          | nc           | nc           | mg/kg    | <20       | <20       | <20       | <20       | <20       | <20       | <20       |
| F1 (C6-C10) - BTEX        | 20   | 30a         | 320a or 240b | 320a or 240b | mg/kg    | <20       | <20       | <20       | <20       | <20       | <20       | <20       |
| F2 (C10-C16 Hydrocarbons) | 100  | 150a        | 260a         | 260a         | mg/kg    | <100      | <100      | <100      | <100      | <100      | <100      | <100      |
| F3 (C16-C34 Hydrocarbons) | 200  | 300a        | 1700a        | 1700a        | mg/kg    | <200      | <200      | <200      | <200      | <200      | <200      | <200      |
| F4 (C34-C50 Hydrocarbons) | 200  | 2800a       | 3300a        | 3300a        | mg/kg    | <200      | <200      | <200      | <200      | <200      | <200      | <200      |

Light Shaded > CCME RL Guidelines

Medium Shaded > CCME CL Guidelines

Dark Shaded > CCME IL Guidelines

Blue Italics MDL > CCME Guidline

Notes: all values are in mg/kg unless otherwise stated

a Coarse grain Canada Wide Standard

**b** For protection of potable groundwater

nc No Applicable Criteria

RL Residential Land Use

CL Commercial Land Use

IL Industrial Land Use

MDL Method Detection Limit

CWS Canada Wide Standards for Petroleum Hydrocarbon Fractions. Endorsed by CCME

**CCME** Canadian Council of Ministers of the Environment Recommended Canadian Soil Quality Guidelines



Table 3. Petroleum Hydrocarbon Fraction Concentrations in Soil

| Sample ID                 |      |                    |              |              |          | BHDUP3       | BH3-3     | BH4-1     | BH6-1     | BH7-1     | BH8-1     | BH9-1     | BHDUP4       |
|---------------------------|------|--------------------|--------------|--------------|----------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|
| Sample Date               |      |                    |              |              |          | 05-Mar-14    | 06-Mar-14 | 04-Mar-14 | 04-Mar-14 | 04-Mar-14 | 04-Mar-14 | 07-Mar-14 | 07-Mar-14    |
| Sample Type               |      |                    |              |              |          | Duplicate of | Discrete  | Discrete  | Discrete  | Discrete  | Discrete  | Discrete  | Duplicate of |
| Sample Depth (m)          |      |                    |              |              |          | BH2-1        | 2.7-3.5   | 0.5-0.8   | 0.3-0.6   | 0.6-0.9   | 0.3-0.6   | 0.5-1.0   | BH9-1        |
| Field Grain Size          |      |                    |              |              |          | Coarse       | Coarse    | Coarse    | Coarse    | Coarse    | Coarse    | Coarse    | Coarse       |
| Physical Properties       | MDL  | <b>CCME CWS RL</b> | CCME CWS CL  | CCME CWS IL  | Units    |              |           |           |           |           |           |           |              |
| Moisture                  | 0.3  | nc                 | nc           | nc           | %        | 18.8         | 3.6       | 5.1       | 3.6       | 4.7       | 14.3      | 16.7      | 6.2          |
| pН                        | 0.01 | 6 to 8             | 6 to 8       | 6 to 8       | pH Units | 8.7          | 8.9       | 9         | 9.3       | 9.2       | 8         | 8.5       | 8.6          |
| Ext. Pet. Hydrocarbon     |      |                    |              |              |          |              |           |           |           |           |           |           |              |
| VPHs                      | 20   | nc                 | nc           | nc           | mg/kg    | <20          | <20       | <20       | <20       | <20       | <20       | <20       | <20          |
| VHs (6-10)                | 20   | nc                 | nc           | nc           | mg/kg    | <20          | <20       | <20       | <20       | <20       | <20       | <20       | <20          |
| F1 (C6-C10) - BTEX        | 20   | 30a                | 320a or 240b | 320a or 240b | mg/kg    | <20          | <20       | <20       | <20       | <20       | <20       | <20       | <20          |
| F2 (C10-C16 Hydrocarbons) | 100  | 150a               | 260a         | 260a         | mg/kg    | <100         | <100      | <100      | <100      | <100      | <100      | <100      | <100         |
| F3 (C16-C34 Hydrocarbons) | 200  | 300a               | 1700a        | 1700a        | mg/kg    | <200         | <200      | <200      | <200      | <200      | <200      | <200      | <200         |
| F4 (C34-C50 Hydrocarbons) | 200  | 2800a              | 3300a        | 3300a        | mg/kg    | <200         | <200      | <200      | <200      | <200      | <200      | <200      | <200         |

Light Shaded > CCME RL Guidelines

Medium Shaded > CCME CL Guidelines

Dark Shaded > CCME IL Guidelines

Blue Italics MDL > CCME Guidline

Notes: all values are in mg/kg unless otherwise stated

a Coarse grain Canada Wide Standard

**b** For protection of potable groundwater

nc No Applicable Criteria

RL Residential Land Use

CL Commercial Land Use

IL Industrial Land Use

MDL Method Detection Limit

CWS Canada Wide Standards for Petroleum Hydrocarbon Fractions. Endorsed by CCME

**CCME** Canadian Council of Ministers of the Environment Recommended Canadian Soil Quality Guidelines



Table 4: VOC Concentrations in Soil

| Sample ID                 |      |         |         |         |          | TP1-1     | TP2-1     | TP4-1     | TP7-1     | TP8-1     | BH1-1     | BH2-1     | BHDUP3    |
|---------------------------|------|---------|---------|---------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Sample Date               |      |         |         |         |          | 03-Mar-14 | 03-Mar-14 | 03-Mar-14 | 03-Mar-14 | 03-Mar-14 | 04-Mar-14 | 05-Mar-14 | 05-Mar-14 |
| Sample Type               |      |         |         |         |          | Discrete  | Duplicate |
| Sample Depth (m)          |      |         |         |         |          | 0.3-0.6   | 0.3-0.6   | 0.3-0.6   | 0.3-0.6   | 0.3-0.6   | 1.0-1.5   | 0.7-1.5   | of BH2-1  |
| Field Grain Size          |      |         |         |         |          | Coarse    |
| Physical Properties       | MDL  | CCME RL | CCME CL | CCME IL | Units    |           |           |           |           |           |           |           |           |
| Moisture                  | 0.3  | nc      | nc      | nc      | %        | 13.1      | 4.9       | 5.2       | 3.4       | 9.4       | 4.3       | 18.1      | 18.8      |
| рН                        | 0.01 | 6 to 8  | 6 to 8  | 6 to 8  | pH Units | 8.3       | 8.4       | 8.2       | 8.1       | 9.1       | 9.3       | 8.7       | 8.7       |
| Volatile Organics         |      |         |         |         |          |           |           |           |           |           |           |           |           |
| Benzene                   | 0.02 | 0.03a   | 0.03a   | 0.03a   | mg/kg    | < 0.02    | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     |
| Bromodichloromethane      | 0.1  | nc      | nc      | nc      | mg/kg    | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |
| Bromoform                 | 0.1  | nc      | nc      | nc      | mg/kg    | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |
| Carbon tetrachloride      | 0.05 | 5       | 50      | 50      | mg/kg    | < 0.05    | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | < 0.05    | < 0.05    |
| Chlorobenzene             | 0.05 | 1       | 10      | 10      | mg/kg    | < 0.05    | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | < 0.05    | < 0.05    |
| Chloroform                | 0.07 | 5       | 50      | 50      | mg/kg    | <0.07     | <0.07     | <0.07     | <0.07     | <0.07     | <0.07     | <0.07     | <0.07     |
| Dibromochloromethane      | 0.1  | nc      | nc      | nc      | mg/kg    | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |
| 1,2-Dibromoethane         | 0.1  | nc      | nc      | nc      | mg/kg    | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |
| Dibromomethane            | 0.1  | nc      | nc      | nc      | mg/kg    | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |
| 1,2-Dichlorobenzene       | 0.05 | 1       | 10      | 10      | mg/kg    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    |
| 1,3-Dichlorobenzene       | 0.05 | 1       | 10      | 10      | mg/kg    | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     |
| 1,4-Dichlorobenzene       | 0.05 | 1       | 10      | 10      | mg/kg    | < 0.05    | <0.05     | < 0.05    | <0.05     | <0.05     | <0.05     | < 0.05    | <0.05     |
| 1,1-Dichloroethane        | 0.05 | 5       | 50      | 50      | mg/kg    | < 0.05    | < 0.05    | < 0.05    | <0.05     | <0.05     | < 0.05    | < 0.05    | < 0.05    |
| 1,2-Dichloroethane        | 0.05 | 5       | 50      | 50      | mg/kg    | < 0.05    | <0.05     | < 0.05    | <0.05     | <0.05     | <0.05     | < 0.05    | <0.05     |
| 1,1-Dichloroethene        | 0.05 | 5       | 50      | 50      | mg/kg    | < 0.05    | <0.05     | < 0.05    | <0.05     | <0.05     | <0.05     | < 0.05    | <0.05     |
| cis-1,2-Dichloroethene    | 0.1  | 5       | 50      | 50      | mg/kg    | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |
| trans-1,2-Dichloroethene  | 0.05 | 5       | 50      | 50      | mg/kg    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | <0.05     | < 0.05    | < 0.05    | < 0.05    |
| 1,2-Dichloropropane       | 0.05 | 5       | 50      | 50      | mg/kg    | < 0.05    | <0.05     | <0.05     | <0.05     | <0.05     | < 0.05    | <0.05     | <0.05     |
| cis-1,3-Dichloropropene   | 0.05 | 5       | 50      | 50      | mg/kg    | < 0.05    | <0.05     | < 0.05    | < 0.05    | <0.05     | < 0.05    | < 0.05    | < 0.05    |
| trans-1,3-Dichloropropene | 0.05 | 5       | 50      | 50      | mg/kg    | < 0.05    | <0.05     | < 0.05    | < 0.05    | <0.05     | < 0.05    | < 0.05    | < 0.05    |
| Ethylbenzene              | 0.05 | 0.082b  | 0.082b  | 0.082b  | mg/kg    | < 0.05    | <0.05     | < 0.05    | <0.05     | < 0.05    | <0.05     | < 0.05    | < 0.05    |
| Methyl tert-butyl ether   | 0.04 | nc      | nc      | nc      | mg/kg    | < 0.05    | <0.05     | < 0.05    | <0.05     | < 0.05    | <0.05     | < 0.05    | < 0.05    |
| Methylene chloride        | 0.5  | 5       | 50      | 50      | mg/kg    | < 0.50    | <0.50     | <0.50     | <0.50     | <0.50     | <0.50     | <0.50     | <0.50     |
| Styrene                   | 0.05 | 5       | 50      | 50      | mg/kg    | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     |
| 1,1,2,2-Tetrachloroethane | 0.05 | 5       | 50      | 50      | mg/kg    | < 0.05    | <0.05     | < 0.05    | <0.05     | < 0.05    | <0.05     | < 0.05    | < 0.05    |
| Tetrachloroethene (PCE)   | 0.05 | 0.2     | 0.5     | 0.6     | mg/kg    | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     |
| Toluene                   | 0.2  | 0.37b   | 0.37b   | 0.37b   | mg/kg    | <0.20     | <0.20     | <0.20     | <0.20     | <0.20     | <0.20     | <0.20     | <0.20     |
| 1,1,1-Trichloroethane     | 0.05 | 5       | 50      | 50      | mg/kg    | < 0.05    | <0.05     | < 0.05    | <0.05     | < 0.05    | < 0.05    | <0.05     | <0.05     |
| 1,1,2-Trichloroethane     | 0.07 | 5       | 50      | 50      | mg/kg    | <0.07     | <0.07     | <0.07     | <0.07     | <0.07     | <0.07     | <0.07     | <0.07     |
| Trichloroethene (TCE)     | 0.01 | 0.01    | 0.01    | 0.01    | mg/kg    | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     |
| Trichlorofluoromethane    | 0.1  | nc      | nc      | nc      | mg/kg    | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |
| Vinyl chloride            | 0.1  | nc      | nc      | nc      | mg/kg    | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |
| Xylenes (total)           | 0.1  | 11b     | 11b     | 11b     | mg/kg    | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |



Notes: all units are expressed in mg/kg unless otherwise stated

- a Guideline is for incrimental lifetime cancer risk of 1 in 100,000 (10-5), coarse grain, and surface soils (≤1.5m)
- **b** Guideline is for coarse grain, and surface soils (≤1.5m)
- nc No Applicable Criteria
- RL Residential Land Use
- CL Commercial Land Use
- IL Industrial Land Use
- MDL Method Detection Limit

**CCME** Canadian Council of Ministers of the Environment Recommended Canadian Soil Quality Guidelines

Project No; 13-0493 7 of 18



Table 4: VOC Concentrations in Soil

| Sample ID                 |      |         |         |         |          | BH3-3     | BH4-1     | BH6-1     | BH7-1     | BH8-1     | BH9-1     | BHDUP4    |
|---------------------------|------|---------|---------|---------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Sample Date               |      |         |         |         |          | 06-Mar-14 | 04-Mar-14 | 04-Mar-14 | 04-Mar-14 | 04-Mar-14 | 07-Mar-14 | 07-Mar-14 |
| Sample Type               |      |         |         |         |          | Discrete  | Discrete  | Discrete  | Discrete  | Discrete  | Discrete  | Duplicate |
| Sample Depth (m)          |      |         |         |         |          | 2.7-3.5   | 0.5-0.8   | 0.3-0.6   | 0.6-0.9   | 0.3-0.6   | 0.5-1.0   | of BH9-1  |
| Field Grain Size          |      |         |         |         |          | Coarse    |
| Physical Properties       | MDL  | CCME RL | CCME CL | CCME IL | Units    |           |           |           |           |           |           |           |
| Moisture                  | 0.3  | nc      | nc      | nc      | %        | 3.6       | 5.1       | 3.6       | 4.7       | 14.3      | 16.7      | 6.2       |
| рН                        | 0.01 | 6 to 8  | 6 to 8  | 6 to 8  | pH Units | 8.9       | 9         | 9.3       | 9.2       | 8         | 8.5       | 8.6       |
| Volatile Organics         |      |         |         |         |          |           |           |           |           |           |           |           |
| Benzene                   | 0.02 | 0.03a   | 0.03a   | 0.03a   | mg/kg    | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     | <0.02     |
| Bromodichloromethane      | 0.1  | nc      | nc      | nc      | mg/kg    | -         | <0.10     | <0.10     | -         | -         | <0.10     | <0.10     |
| Bromoform                 | 0.1  | nc      | nc      | nc      | mg/kg    | -         | <0.10     | <0.10     | -         | -         | <0.10     | <0.10     |
| Carbon tetrachloride      | 0.05 | 5       | 50      | 50      | mg/kg    | -         | <0.05     | <0.05     | -         | -         | <0.05     | <0.05     |
| Chlorobenzene             | 0.05 | 1       | 10      | 10      | mg/kg    | -         | <0.05     | <0.05     | -         | -         | <0.05     | < 0.05    |
| Chloroform                | 0.07 | 5       | 50      | 50      | mg/kg    | -         | <0.07     | <0.07     | -         | -         | <0.07     | <0.07     |
| Dibromochloromethane      | 0.1  | nc      | nc      | nc      | mg/kg    | -         | <0.10     | <0.10     | -         | -         | <0.10     | <0.10     |
| 1,2-Dibromoethane         | 0.1  | nc      | nc      | nc      | mg/kg    | -         | <0.10     | <0.10     | -         | -         | <0.10     | <0.10     |
| Dibromomethane            | 0.1  | nc      | nc      | nc      | mg/kg    | -         | <0.10     | <0.10     | -         | -         | <0.10     | <0.10     |
| 1,2-Dichlorobenzene       | 0.05 | 1       | 10      | 10      | mg/kg    | -         | < 0.05    | <0.05     | -         | -         | <0.05     | < 0.05    |
| 1,3-Dichlorobenzene       | 0.05 | 1       | 10      | 10      | mg/kg    | -         | < 0.05    | < 0.05    | -         | -         | <0.05     | < 0.05    |
| 1,4-Dichlorobenzene       | 0.05 | 1       | 10      | 10      | mg/kg    | -         | < 0.05    | < 0.05    | -         | -         | < 0.05    | < 0.05    |
| 1,1-Dichloroethane        | 0.05 | 5       | 50      | 50      | mg/kg    | -         | < 0.05    | < 0.05    | -         | -         | <0.05     | < 0.05    |
| 1,2-Dichloroethane        | 0.05 | 5       | 50      | 50      | mg/kg    | -         | <0.05     | <0.05     | -         | -         | <0.05     | < 0.05    |
| 1,1-Dichloroethene        | 0.05 | 5       | 50      | 50      | mg/kg    | -         | < 0.05    | < 0.05    | -         | -         | < 0.05    | < 0.05    |
| cis-1,2-Dichloroethene    | 0.1  | 5       | 50      | 50      | mg/kg    | -         | <0.10     | <0.10     | -         | -         | <0.10     | <0.10     |
| trans-1,2-Dichloroethene  | 0.05 | 5       | 50      | 50      | mg/kg    | -         | <0.05     | < 0.05    | -         | -         | < 0.05    | < 0.05    |
| 1,2-Dichloropropane       | 0.05 | 5       | 50      | 50      | mg/kg    | -         | <0.05     | <0.05     | -         | -         | <0.05     | <0.05     |
| cis-1,3-Dichloropropene   | 0.05 | 5       | 50      | 50      | mg/kg    | -         | <0.05     | < 0.05    | -         | -         | < 0.05    | < 0.05    |
| trans-1,3-Dichloropropene | 0.05 | 5       | 50      | 50      | mg/kg    | -         | < 0.05    | < 0.05    | -         | -         | < 0.05    | < 0.05    |
| Ethylbenzene              | 0.05 | 0.082b  | 0.082b  | 0.082b  | mg/kg    | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | < 0.05    |
| Methyl tert-butyl ether   | 0.04 | nc      | nc      | nc      | mg/kg    | <0.04     | <0.05     | <0.05     | <0.04     | <0.04     | <0.05     | < 0.05    |
| Methylene chloride        | 0.5  | 5       | 50      | 50      | mg/kg    | -         | <0.50     | <0.50     | -         | -         | <0.50     | < 0.50    |
| Styrene                   | 0.05 | 5       | 50      | 50      | mg/kg    | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | <0.05     | < 0.05    |
| 1,1,2,2-Tetrachloroethane | 0.05 | 5       | 50      | 50      | mg/kg    | -         | <0.05     | <0.05     | -         | -         | <0.05     | < 0.05    |
| Tetrachloroethene (PCE)   | 0.05 | 0.2     | 0.5     | 0.6     | mg/kg    | -         | <0.05     | <0.05     | -         | -         | <0.05     | <0.05     |
| Toluene                   | 0.2  | 0.37b   | 0.37b   | 0.37b   | mg/kg    | <0.20     | <0.20     | <0.20     | <0.20     | <0.20     | <0.20     | <0.20     |
| 1,1,1-Trichloroethane     | 0.05 | 5       | 50      | 50      | mg/kg    | -         | <0.05     | <0.05     | -         | -         | <0.05     | <0.05     |
| 1,1,2-Trichloroethane     | 0.07 | 5       | 50      | 50      | mg/kg    | -         | <0.07     | <0.07     | -         | -         | <0.07     | <0.07     |
| Trichloroethene (TCE)     | 0.01 | 0.01    | 0.01    | 0.01    | mg/kg    | -         | <0.01     | <0.01     | -         | -         | <0.01     | <0.01     |
| Trichlorofluoromethane    | 0.1  | nc      | nc      | nc      | mg/kg    | -         | <0.10     | <0.10     | -         | -         | <0.10     | <0.10     |
| Vinyl chloride            | 0.1  | nc      | nc      | nc      | mg/kg    | -         | <0.10     | <0.10     | -         | -         | <0.10     | <0.10     |
| Xylenes (total)           | 0.1  | 11b     | 11b     | 11b     | mg/kg    | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     | <0.10     |



Notes: all units are expressed in mg/kg unless otherwise stated

- a Guideline is for incrimental lifetime cancer risk of 1 in 100,000 (10-5), coarse grain, and surface soils (≤1.5m)
- **b** Guideline is for coarse grain, and surface soils (≤1.5m)
- nc No Applicable Criteria
- RL Residential Land Use
- CL Commercial Land Use
- IL Industrial Land Use
- MDL Method Detection Limit

**CCME** Canadian Council of Ministers of the Environment Recommended Canadian Soil Quality Guidelines

Project No; 13-0493 8 of 18



Table 5: SPLP PAH in Recycled Asphalt

| Sample ID                                                 |       |         |               |       | ASP-1     |
|-----------------------------------------------------------|-------|---------|---------------|-------|-----------|
| •                                                         |       |         |               |       |           |
| Sample Date                                               |       |         |               |       | 04-Mar-14 |
| Sample Type                                               |       |         |               |       | Solid     |
| Sample Depth (m)                                          |       |         |               |       | N/A       |
| Synthetic Preciptation Leachate<br>Procedure (SPLP) - PAH | MDL   | CCME DW | CCME FIGWQ PL | Units |           |
| Acenaphthene                                              | 0.001 | nc      | 0.0058        | mg/L  | <0.001    |
| Acenaphthylene                                            | 0.001 | nc      | 0.046         | mg/L  | <0.001    |
| Acridine                                                  | 0.001 | nc      | 0.00005       | mg/L  | <0.001    |
| Anthracene                                                | 0.001 | nc      | 0.000012      | mg/L  | <0.001    |
| Benzo (a) anthracene                                      | 0.001 | nc      | 0.000018      | mg/L  | <0.001    |
| Benzo (a) pyrene                                          | 0.001 | 0.01    | 0.00001       | mg/L  | <0.001    |
| Benzo (b) fluoranthene                                    | 0.001 | nc      | 0.00048       | mg/L  | <0.001    |
| Benzo (g,h,i) perylene                                    | 0.001 | nc      | 0.00017       | mg/L  | <0.001    |
| Benzo (k) fluoranthene                                    | 0.001 | nc      | 0.00048       | mg/L  | <0.001    |
| Chrysene                                                  | 0.001 | nc      | 0.0001        | mg/L  | <0.001    |
| Dibenz (a,h) anthracene                                   | 0.001 | nc      | 0.00026       | mg/L  | <0.001    |
| Fluoranthene                                              | 0.001 | nc      | 0.00004       | mg/L  | <0.001    |
| Fluorene                                                  | 0.001 | nc      | 0.003         | mg/L  | <0.001    |
| Indeno (1,2,3-cd) pyrene                                  | 0.001 | nc      | 0.00021       | mg/L  | <0.001    |
| Naphthalene                                               | 0.001 | nc      | 0.0011        | mg/L  | <0.001    |
| Phenanthrene                                              | 0.001 | nc      | 0.0004        | mg/L  | <0.001    |
| Pyrene                                                    | 0.001 | nc      | 0.000025      | mg/L  | <0.001    |
| Quinoline                                                 | 0.001 | nc      | 0.0034        | mg/L  | <0.001    |

| Light Shaded  | > CCME DW Guidelines |
|---------------|----------------------|
| Medium Shaded | > CCME FIGWQ         |
| Blue Italics  | MDL > CCME Guidline  |

Notes: all units are expressed in mg/L unless otherwise stated

nc No Applicable Guideline

RL Residential Land Use

**CL** Commercial Land Use

IL Industrial Land Use

DW Drinking Water Quality Guideline (CCME Criteria from Health Canada)

FIGWQ Federal Interim Groundwater Quality Guidelines for the Federal Contaminated Sites Action Plan (FCSAP)

MDL Method Detection Limit

**CCME** Canadian Council of Ministers of the Environment Recommended Canadian Soil Quality Guidelines



Table 6a: Total Metals Concentrations in Surface Water

| Sample ID                    |        |                 |        |          | SW1           | SW2           | SW3           |
|------------------------------|--------|-----------------|--------|----------|---------------|---------------|---------------|
| Sample Date                  |        |                 |        |          | 03-Mar-14     | 03-Mar-14     | 03-Mar-14     |
| Sample Type                  |        |                 |        |          | Surface Water | Surface Water | Surface Water |
| Field Parameters             |        |                 |        |          |               |               |               |
| Hq                           |        |                 |        | pH Units | 8.2           | 8.18          | 7.85          |
| Conductivity                 |        |                 |        | uS/cm    | 0.334         | 0.338         | 0.501         |
| Temperature                  |        |                 |        | °C       | 1.1           | 1.1           | 1.9           |
| Physical Parameters          | MDL    | CCME FW         | HC DW  | Units    |               |               |               |
| Hardness (Total) CaCo3       | 0.5    | nc              | nc     | mg/L     | 177           | 183           | 249           |
| Total Metals                 |        |                 |        |          |               |               |               |
| Aluminum Al                  | 0.05   | 0.005 or 0.1a   | 0.2    | mg/L     | 0.08          | 0.09          | 0.09          |
| Antimony_Sb                  | 0.001  | nc              | 0.006  | mg/L     | <0.001        | <0.001        | <0.001        |
| Arsenic_As                   | 0.005  | 0.005           | 0.01   | mg/L     | <0.005        | <0.005        | <0.005        |
| Barium Ba                    | 0.05   | nc              | 1      | mg/L     | <0.05         | <0.05         | <0.05         |
| Beryllium Be                 | 0.001  | nc              | nc     | mg/L     | <0.001        | <0.001        | <0.001        |
| Boron _B                     | 0.04   | 1.5             | 5      | mg/L     | <0.04         | <0.04         | <0.04         |
| Cadmium Cd                   | 0.0001 | calculated      | 0.005  | mg/L     | <0.0001       | <0.0001       | <0.0001       |
| Calculated Cadmium Guideline | -      | b               | -      | -        | 0.25          | 2.62          | 3.38          |
| Chromium Cr                  | 0.005  | 0.001c          | 0.05   | mg/L     | <0.005        | <0.005        | <0.005        |
| Cobalt_Co                    | 0.0005 | nc              | nc     | mg/L     | <0.0005       | <0.0005       | <0.0005       |
| Copper_Cu                    | 0.002  | calculated      | ≤1 g   | mg/L     | 0.002         | 0.002         | 0.003         |
| Calculated Copper Guideline  | -      | d               | 3      | -        | 3.85          | 3.96          | 5.16          |
| Iron fe                      | 0.1    | 0.3             | ≤0.3 g | mg/L     | 0.27          | 0.29          | <0.10         |
| Lead Pb                      | 0.001  | calculated      | 0.01   | mg/L     | <0.001        | <0.001        | <0.001        |
| Calculated Lead Guideline    | -      | е               | -      | -        | 6.58          | 6.87          | 10.16         |
| Manganese_Mn                 | 0.002  | nc              | ≤0.05  | mg/L     | 0.005         | 0.006         | <0.002        |
| Mercury_Hg                   | 0.0002 | 0.000026        | 0.001  | mg/L     | <0.0002       | <0.0002       | <0.0002       |
| Molybdenum_Mo                | 0.001  | 0.073           | nc     | mg/L     | 0.003         | 0.004         | 0.006         |
| Nickel Ni                    | 0.002  | 0.025 to 0.150a | nc     | mg/L     | <0.002        | <0.002        | <0.002        |
| Calculated Nickel Guideline  | -      | f               | -      | -        | 147.51        | 151.29        | 191.19        |
| Selenium_Se                  | 0.005  | 0.001           | 0.01   | mg/L     | <0.005        | <0.005        | <0.005        |
| Silver_Ag                    | 0.0005 | 0.0001          | nc     | mg/L     | <0.0005       | <0.0005       | < 0.0005      |
| Sodium_Na                    | 0.2    | nc              | ≤200 g | mg/L     | 12.5          | 13.2          | 15.3          |
| Thallium_TI                  | 0.0002 | 0.0008          | nc     | mg/L     | <0.0002       | <0.0002       | <0.0002       |
| Uranium_U                    | 0.0002 | 0.015           | 0.02   | mg/L     | 0.001         | 0.0011        | 0.001         |
| Zinc_Zn                      | 0.04   | 0.03            | ≤5g    | mg/L     | <0.04         | <0.04         | <0.04         |
| Bismuth_Bi                   | 0.001  | nc              | nc     | mg/L     | <0.001        | <0.001        | <0.001        |
| Calcium_Ca                   | 2      | nc              | nc     | mg/L     | 46.2          | 46.8          | 69.1          |
| Lithium_Li                   | 0.001  | nc              | nc     | mg/L     | 0.002         | 0.002         | 0.001         |
| Magnesium_Mg                 | 0.1    | nc              | nc     | mg/L     | 15            | 16.2          | 18.5          |
| Phosphorus_P                 | 0.2    | nc              | nc     | mg/L     | <0.2          | <0.2          | <0.2          |
| Potassium_K                  | 0.2    | nc              | nc     | mg/L     | 2.6           | 2.8           | 2.1           |
| Silicon_Si                   | 5      | nc              | nc     | mg/L     | 14            | 15            | 10            |
| Strontium_Sr                 | 0.01   | nc              | nc     | mg/L     | 0.19          | 0.2           | 0.26          |
| Total Sulphur_S              | 10     | nc              | nc     | mg/L     | <10           | <10           | <10           |
| Tellerium_Te                 | 0.002  | nc              | nc     | mg/L     | <0.002        | <0.002        | <0.002        |
| Thorium_Th                   | 0.001  | nc              | nc     | mg/L     | <0.001        | <0.001        | <0.001        |
| Tin_Sn                       | 0.002  | nc              | nc     | mg/L     | <0.002        | <0.002        | <0.002        |
| Titanium_Ti                  | 0.05   | nc              | nc     | mg/L     | <0.05         | <0.05         | <0.05         |
| Vanadium_V                   | 0.01   | nc              | nc     | mg/L     | <0.01         | <0.01         | <0.01         |
| Zirconium Zr                 | 0.001  | nc              | nc     | mg/L     | <0.001        | <0.001        | <0.001        |

| Shaded       | > CCME FW           |
|--------------|---------------------|
| Outlined     | > HC DW             |
| Grey Italics | Calculated Criteria |
| Plus Italias | MDL - CCME Cuidlia  |

MDL > CCME Guidline

Notes: All values in mg/L unless otherwise stated

- a Criteria varies with pH
- $\textbf{b} \ \text{Criteria} = 10^{0.86[\log(\text{hardness})]-3.2)}$
- c Standard is for Chromium VI
- d Criteria = e^(0.8545[ln(hardness)]-1.465)\*0.2
- e Criteria = e^(1.273[ln(hardness)]-4.705)
- f Criteria = e^(0.76[ln(hardness)]+1.06)
- ${\bf g}\,$  Aesthetic guideline to protect against taste and odor concerns
- nc No criteria

CCME FW Canadian Council of Ministers of the Environment guidelines applicable to protection of freshwater aquatic life

HC DW Health Canada Drinking Water Guidelines

MDL Method Detection Limit

**CCME** Canadian Council of Ministers of the Environment Recommended Canadian Water Quality Guidelines for the Protection of Aquatic Life






Table 6b: Dissolved Metals Concentrations in Groundwater

| Surpe   Park     | 2 MW08-43       | MW08-42     | MW07-32D    | MW07-32S    | MWDUP        | MW07-29D    | MW07-28D    | MW07-28S    | MW05-12     | MW14-3      | MW14-3      | MW14-2      | MW14-1      | MWDUP2       | MW14-1      |          |       |               |        | Sample ID                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|----------|-------|---------------|--------|------------------------------|
| ## Print Pri | 4 07-Mar-14     | 07-Mar-14   | 07-Mar-14   | 07-Mar-14   | 07-Mar-14    | 07-Mar-14   | 07-Mar-14   | 07-Mar-14   | 07-Mar-14   | 26-May-14   | 08-Mar-14   | 07-Mar-14   | 26-May-14   | 07-Mar-14    | 07-Mar-14   |          |       |               |        | Sample Date                  |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er Groundwater  | Groundwater | Groundwater | Groundwater | Duplicate of | Groundwater | Duplicate of | Groundwater |          |       |               |        | Sample Type                  |
| Contention   Content   C   |                 |             |             |             | MW07-29D     |             |             |             |             |             |             |             |             | MW14-1       |             |          |       |               |        | Field Parameters             |
| Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.57            | 9.05        | 8.33        | 8.35        | -            | 8.91        | 8.77        | 8.25        | 8.65        | 8.75        | 8.46        | 8.39        | 8.53        | -            | 8.34        | pH Units |       |               |        | pH                           |
| Paysing Pays   | 1.13            | 0.796       | 0.93        | 0.827       | -            | 0.419       | 0.51        | 2.62        | 1.88        | 0.471       | 0.596       | 0.517       | 0.486       | -            | 0.459       | uS/cm    |       |               |        | Conductivity                 |
| Section   Color   Co   | 8.2             | 2.6         | 8.1         | 7.6         | -            | 8.2         | 7.9         | 7.4         | 9.7         | 9.3         | 7.7         | 11          | 12.8        | -            | 10.9        | °C       |       |               |        | Temperature                  |
| Description      |                 |             |             |             |              |             |             |             |             |             |             |             |             |              |             | Units    | HC DW | FIGWQ         | MDL    | Physical Parameters          |
| Authorium A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 438             | 395         | 368         | 394         | 209          | 215         | 281         | 605         | 287         | 260         | 240         | 284         | 281         | 248          | 251         | mg/L     | nc    | nc            | 0.5    | Hardness (Total)_CaCo3       |
| Anthony   Sheep   Company   Sheep   Company   Sheep   Company   Sheep   Shee   |                 |             |             |             |              |             |             |             |             |             |             |             |             |              |             |          |       |               |        | Dissolved Metals             |
| Search   As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.05          | < 0.05      | <0.05       | < 0.05      | <0.05        | < 0.05      | < 0.05      | < 0.05      | < 0.05      | <0.005      | 0.33        | < 0.05      | <0.005      | < 0.05       | < 0.05      | mg/L     | 0.2   | 0.005 or 0.1a | 0.05   | Aluminum_Al                  |
| Barlum Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.001           | < 0.001     | < 0.001     | < 0.001     | < 0.001      | < 0.001     | < 0.001     | <0.001      | <0.001      | 0.0002      | < 0.001     | < 0.001     | 0.0002      | <0.001       | < 0.001     | mg/L     | 0.006 | 1.6           | 0.001  | Antimony_Sb                  |
| Beyfein Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.005         | < 0.005     | < 0.005     | < 0.005     | < 0.005      | < 0.005     | < 0.005     | < 0.005     | < 0.005     | 0.0009      | < 0.005     | < 0.005     | 0.001       | < 0.005      | < 0.005     | mg/L     | 0.01  | 0.005         | 0.005  | Arsenic_As                   |
| Series   Berna   Ber   | 0.09            | 0.08        | 0.09        | 0.09        | < 0.05       | < 0.05      | < 0.05      | 0.22        | 0.16        | 0.047       | 0.05        | < 0.05      | 0.021       | < 0.05       | < 0.05      | mg/L     | 1     | 0.5           | 0.05   | Barium_Ba                    |
| Cadministric Confirmation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.001          | < 0.001     | <0.001      | <0.001      | <0.001       | <0.001      | <0.001      | <0.001      | <0.001      | -           | <0.001      | <0.001      | -           | <0.001       | <0.001      | mg/L     | nc    | 0.0053        | 0.001  | Beryllium_Be                 |
| Chromium_Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.04           | < 0.04      | <0.04       | <0.04       | <0.04        | <0.04       | <0.04       | <0.04       | <0.04       | 0.018       | <0.04       | 0.05        | 0.037       | 0.04         | 0.05        | mg/L     | 5     | -             | 0.04   | Boron _B                     |
| Chromismic Cr   0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0001         | <0.0001     | <0.0001     | <0.0001     | <0.0001      | <0.0001     | <0.0001     | <0.0001     | <0.0001     | <0.00001    | <0.0001     | <0.0001     | 0.00001     | <0.0001      | <0.0001     | mg/L     | 0.005 | 0.000017      | 0.0001 | Cadmium_Cd                   |
| Cobail Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.54            | 0.50        | 0.47        | 0.49        | 0.29         | 0.30        | 0.37        | 0.71        | 0.38        | 0.35        | 0.33        | 0.38        | 0.37        | 0.34         | 0.34        | -        | -     | b             | -      | Calculated Cadmium Guideline |
| Copper_Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.005          | <0.005      | <0.005      | < 0.005     | < 0.005      | < 0.005     | <0.005      | < 0.005     | <0.005      | 0.0007      | < 0.005     | <0.005      | 0.0033      | <0.005       | <0.005      | mg/L     | 0.05  | 0.0089        | 0.005  | Chromium_Cr                  |
| Calculated Copper Guideline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.0005        | <0.0005     | <0.0005     | <0.0005     | <0.0005      | <0.0005     | <0.0005     | < 0.0005    | < 0.0005    | -           | < 0.0005    | <0.0005     | -           | < 0.0005     | < 0.0005    | mg/L     | nc    | nc            |        | Cobalt_Co                    |
| Iton_fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.002          | <0.002      | <0.002      | 0.002       | < 0.002      | <0.002      | <0.002      | <0.002      | <0.002      | 0.0023      | 0.015       | 0.003       | 0.0031      | <0.002       | <0.002      | mg/L     | ≤1 g  | calculated    | 0.002  |                              |
| Lead_Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.35            | 7.65        |             | 7.63        | 4.44         | 4.55        | 5.72        | 11.01       |             |             | 5.00        |             |             | 5.14         | 5.19        | -        | -     | d             | -      | Calculated Copper Guideline  |
| Calculated Lead Guideline   -   e   -   -   10.27   10.11   11.85   12.01   9.70   10.74   12.18   31.46   11.85   8.43   8.13   18.23   16.71   18.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.10           | <0.10       |             |             |              |             |             |             |             |             |             |             |             |              |             |          |       |               |        |                              |
| Manganese Mn   0.002   nc   s0.05   mg/L   0.012   0.012   0.0017   <0.002   0.001   0.001   <0.002   0.002   0.002   0.002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002   <0.0002    | <0.001          | <0.001      |             |             |              |             |             |             |             |             |             |             |             |              |             | mg/L     | 0.01  | calculated    | 0.001  | Lead_Pb                      |
| Mercury_Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.86           | 18.29       |             |             |              | 1           |             |             |             |             |             |             |             |              |             | -        | -     | е             | -      | Calculated Lead Guideline    |
| Molybdenum_Mo   Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybdenum_Molybden   | <0.002          | <0.002      |             |             |              |             |             |             |             |             |             |             |             |              |             |          |       |               |        |                              |
| Nicke   Ni   0.002   calculated   nc   mg/L   0.002   0.0013   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   0.002   |                 | <0.0002     |             |             |              |             |             |             |             |             |             |             |             |              |             |          |       |               |        | /- 0                         |
| Calculated Mickel Guideline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.002           |             |             |             |              |             |             |             |             |             |             |             |             |              |             |          |       |               |        |                              |
| Selenium_Se   0.005   0.001   0.01   mg/L   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005      | <0.002          |             |             |             |              |             |             |             |             |             |             |             |             |              |             | mg/L     | nc    | calculated    | 0.002  |                              |
| Silver_Ag   0.0005   0.0001   nc   mg/L   0.0011   0.0011   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.0005   0.00   | 293.68          |             |             |             |              |             |             |             |             |             |             |             |             |              |             | -        | -     | 1             |        |                              |
| Sodium_Na   0.2   nc   \$200 g   mg/L   17.4   16.9   -   19.8   20.2   -   273   308   19.9   18.9   18.8   36   32.9   37.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _               |             |             |             |              |             |             |             |             |             |             |             |             |              |             |          |       |               |        |                              |
| Thailium_TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |             |             |             |              |             |             |             |             |             |             |             |             |              |             |          |       |               |        | _ 0                          |
| Uranium_U         0.0002         0.3         0.02         mg/L         0.0026         0.00313         0.0034         0.0012         0.00117         0.0009         0.0013         0.0025         0.0009         0.0008         0.0007         0.0007         0.0007           Zinc_Zn         0.04         0.04         0.01         s5g         mg/L         <0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49.1            |             |             |             |              |             |             |             |             |             |             |             |             |              |             | •        |       |               |        | _                            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |             |             |             |              |             |             |             |             |             |             |             |             |              |             |          |       |               |        | _                            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0008<br><0.04 |             |             |             |              |             |             |             |             |             |             |             |             |              |             |          |       |               |        |                              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.04           |             |             |             |              |             |             |             |             |             |             |             |             |              |             |          |       |               |        |                              |
| Lithium_Li 0.001 nc nc mg/L 0.004 0.004 - 0.004 0.002 - 0.004 0.004 0.001 0.001 0.001 0.003 0.003 0.003 0.000 Magnesium_Mg 0.1 nc nc mg/L 24.7 24 26.8 29.4 20.8 22.7 24.7 52.4 37.5 29.7 29.5 34.3 31.8 42.5 Phosphorus_P 0.2 nc nc mg/L 40.2 <0.2 - <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 113             |             |             |             |              |             |             |             |             |             |             |             |             |              |             |          |       |               |        |                              |
| Magnesium_Mg         0.1         nc         nc         mg/L         24.7         24         26.8         29.4         20.8         22.7         24.7         52.4         37.5         29.7         29.5         34.3         31.8         42.5           Phosphorus_P         0.2         nc         nc         mg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.004           |             |             |             |              |             |             |             |             |             |             |             | 00.1        |              |             |          |       |               |        |                              |
| Phosphorus_P         0.2         nc         nc         mg/L         <0.2         <0.2         -         <0.2         <0.2         -         <0.2         <0.2         -         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2         <0.2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37.7            |             |             |             |              |             |             |             |             |             |             |             | 26.8        |              |             |          |       |               |        |                              |
| Potassium_K         0.2         nc         nc         mg/L         3.1         2.9         -         2.9         3.2         -         4         5.3         3.9         2.1         2.1         2.9         2.9         2           Silicon_Si         5         nc         nc         mg/L         10         10         -         10         11         -         8         8         12         11         11         8         7         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.2            | <0.2        |             |             |              |             |             |             |             |             |             |             | - 20.0      |              |             |          |       |               |        |                              |
| Silicon_Si 5 nc nc mg/L 10 10 - 10 11 - 8 8 12 11 11 8 7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.1             |             |             |             |              |             |             |             |             |             |             |             | -           |              |             |          |       | 1             |        |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8               |             |             |             |              |             |             |             |             | -           |             |             | -           |              |             |          |       |               |        | _                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.68            | 0.69        | 0.54        | 0.57        | 0.49         | 0.49        | 0.4         | 0.85        | 0.4         | -           | 0.28        | 0.39        | -           | 0.32         | 0.33        | mg/L     | nc    | nc            | 0.01   | Strontium Sr                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <10             | <10         | <10         |             | <10          | <10         | <10         |             |             | -           |             |             | -           |              |             |          |       |               |        |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _               | <0.002      |             |             |              |             |             |             |             | -           |             |             | -           |              |             |          |       |               |        |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.001          | <0.001      |             | <0.001      | <0.001       | <0.001      | <0.001      |             | <0.001      | -           | <0.001      | <0.001      | -           | <0.001       |             |          | nc    | nc            | 0.001  |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _               | <0.002      |             |             | <0.002       |             | <0.002      |             | <0.002      | -           | 0.015       | <0.002      | -           | <0.002       |             |          |       | 1             | 0.002  | _                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.05           | <0.05       |             | <0.05       | <0.05        | < 0.05      |             | <0.05       | <0.05       | -           | <0.05       | <0.05       | -           |              |             |          |       |               | 0.05   | _                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.01           | <0.01       | <0.01       | <0.01       | <0.01        | <0.01       | <0.01       | <0.01       | <0.01       | -           | <0.01       | <0.01       | -           | <0.01        | <0.01       |          | nc    | nc            | 0.01   | Vanadium_V                   |
| Zirconium_Zr 0.001 nc nc mg/L <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 <- <0.001 | <0.001          | <0.001      | <0.001      | < 0.001     | < 0.001      | <0.001      | <0.001      | <0.001      | <0.001      | -           | <0.001      | <0.001      | -           | <0.001       | <0.001      | mg/L     | nc    | nc            | 0.001  | Zirconium_Zr                 |

| Red Text     | > CCME_FIGWQ        |
|--------------|---------------------|
| Outlined     | > HC DW             |
| Grey Italics | Calculated Criteria |

Blue Italics MDL > CCME Guidline

Notes: All values in mg/L unless otherwise stated

- a Criteria varies with pH. Guideline for the protection of freshwater aquatic life used as per guidance
- **b** Criteria = 10^(0.86[log(hardness)]-3.2)
- c Standard is for Chromium VI
- d Criteria = e^(0.8545[In(hardness)]-1.465)\*0.2
- e Criteria = e^(1.273[ln(hardness)]-4.705)
- f Criteria = e^(0.76[ln(hardness)]+1.06)
- g Aesthetic guideline to protect against taste and odor concerns
- nc No criteri

CCME FIGWQ Canadian Council of Ministers of the Environment Federal Interim Groundwater Quality Guidelines for Residential, Commercial, and Industrial Land Use

- HC DW Health Canada Drinking Water Guidelines
- MDL Method Detection Limit

CCME Canadian Council of Ministers of the Environment Recommended Canadian Water Quality Guidelines

for the Protection of Aquatic Life

Project No: 13-0493 11 of 18



Table 7: PAH Concentrations in Water

| Sample ID                |      |       |         |       |          | SW1           | SW2           | SW3           | MW14-1      | MWDUP2       | MW14-1      | MW14-2      | MW14-3      | MW14-3      |
|--------------------------|------|-------|---------|-------|----------|---------------|---------------|---------------|-------------|--------------|-------------|-------------|-------------|-------------|
| Sample Date              |      |       |         |       |          | 03-Mar-14     | 03-Mar-14     | 03-Mar-14     | 07-Mar-14   | 07-Mar-14    | 26-May-14   | 07-Mar-14   | 08-Mar-14   | 26-May-14   |
| Sample Type              |      |       |         |       |          | Surface Water | Surface Water | Surface Water | Groundwater | Duplicate of | Groundwater | Groundwater | Groundwater | Groundwater |
| Field Parameters         |      |       |         |       |          |               |               |               |             | MW14-1       |             |             |             |             |
| рН                       |      |       |         |       | pH Units | 8.2           | 8.18          | 7.85          | 8.34        | -            | 8.53        | 8.39        | 8.46        | 8.75        |
| Conductivity             |      |       |         |       | uS/cm    | 0.334         | 0.338         | 0.501         | 0.459       | -            | 0.486       | 0.517       | 0.596       | 0.471       |
| Temperature              |      |       |         |       | °C       | 1.1           | 1.1           | 1.9           | 10.9        | -            | 12.8        | 11          | 7.7         | 9.3         |
| Physical Parameters      | MDL  | FIGWQ | CCME FW | HC DW | Units    |               |               |               |             |              |             |             |             |             |
| Hardness _CaCo3          | 0.5  | nc    | nc      | nc    | mg/L     | 177           | 183           | 249           | 251         | 248          | 281         | 284         | 240         | 260         |
| Polycyclic Aromatics     |      |       |         |       |          |               |               |               |             |              |             |             |             |             |
| Naphthalene              | 0.05 | 1.1   | 1.1     | nc    | ug/L     | <0.05         | <0.05         | <0.05         | 0.19        | 0.24         | <1.0        | <0.05       | 0.26        | <1.0        |
| Quinoline                | 0.05 | nc    | 3.4     | nc    | ug/L     | <0.05         | <0.05         | <0.05         | <0.05       | <0.05        | -           | < 0.05      | < 0.05      | -           |
| Acenaphthylene           | 0.02 | 46    | nc      | nc    | ug/L     | <0.02         | <0.02         | <0.02         | <0.02       | <0.02        | -           | <0.02       | <0.02       | -           |
| Acenaphthene             | 0.02 | 5.8   | 5.8     | nc    | ug/L     | <0.02         | <0.02         | <0.02         | <0.02       | <0.02        | -           | <0.02       | <0.02       | -           |
| Fluorene                 | 0.02 | 3     | 3       | nc    | ug/L     | <0.02         | <0.02         | <0.02         | <0.02       | <0.02        | -           | <0.02       | <0.02       | -           |
| Phenanthrene             | 0.05 | 0.4   | 0.4     | nc    | ug/L     | < 0.05        | < 0.05        | <0.05         | <0.05       | <0.05        | -           | < 0.05      | < 0.05      | -           |
| Anthracene               | 0.01 | 0.012 | 0.012   | nc    | ug/L     | <0.01         | <0.01         | <0.01         | <0.01       | <0.01        | -           | <0.01       | <0.01       | -           |
| Acridine                 | 0.05 | nc    | 4.4     | nc    | ug/L     | < 0.05        | < 0.05        | < 0.05        | <0.05       | <0.05        | -           | < 0.05      | < 0.05      | -           |
| Fluoranthene             | 0.02 | 0.04  | 0.04    | nc    | ug/L     | <0.02         | <0.02         | <0.02         | <0.02       | <0.02        | -           | <0.02       | <0.02       | -           |
| Pyrene                   | 0.02 | 0.025 | 0.025   | nc    | ug/L     | <0.02         | <0.02         | <0.02         | <0.02       | <0.02        | -           | <0.02       | <0.02       | -           |
| Benzo (a) anthracene     | 0.01 | 0.018 | 0.018   | nc    | ug/L     | <0.01         | <0.01         | <0.01         | <0.01       | <0.01        | -           | <0.01       | <0.01       | -           |
| Chrysene                 | 0.02 | 0.1   | nc      | nc    | ug/L     | <0.02         | <0.02         | <0.02         | <0.02       | <0.02        | -           | <0.02       | <0.02       | -           |
| Benzo (b) fluoranthene   | 0.02 | 0.48  | nc      | nc    | ug/L     | <0.02         | <0.02         | <0.02         | <0.02       | <0.02        | -           | <0.02       | <0.02       | -           |
| Benzo (k) fluoranthene   | 0.02 | 0.48  | nc      | nc    | ug/L     | <0.02         | <0.02         | <0.02         | <0.02       | <0.02        | -           | <0.02       | <0.02       | -           |
| Benzo (a) pyrene         | 0.01 | 0.01  | 0.015   | 0.01  | ug/L     | <0.01         | <0.01         | <0.01         | <0.01       | <0.01        | -           | <0.01       | <0.01       | -           |
| Indeno (1,2,3-cd) pyrene | 0.02 | 0.23  | nc      | nc    | ug/L     | <0.02         | <0.02         | <0.02         | <0.02       | <0.02        | -           | <0.02       | <0.02       | -           |
| Dibenz (a,h) anthracene  | 0.02 | 0.28  | nc      | nc    | ug/L     | <0.02         | <0.02         | <0.02         | <0.02       | <0.02        | -           | <0.02       | <0.02       | -           |
| Benzo (g,h,i) perylene   | 0.02 | 0.21  | nc      | nc    | ug/L     | <0.02         | <0.02         | <0.02         | <0.02       | <0.02        | -           | <0.02       | <0.02       | -           |

| Shaded       | > CCME FW           |
|--------------|---------------------|
| Outlined     | > HC DW             |
| Red Text     | > CCME_FIGWQ        |
| Grey Italics | Calculated Criteria |
| Blue Italics | MDL > CCME Guidline |

Notes: All values in ug/L unless otherwise stated

nc No criteria

CCME FW Canadian Council of Ministers of the Environment guidelines applicable to protection of freshwater aquatic life

**CCME FIGWQ** Canadian Council of Ministers of the Environment Federal Interim Groundwater Quality Guidelines

HC DW Health Canada Drinking Water Guidelines

MDL Method Detection Limit

**CCME** Canadian Council of Ministers of the Environment Recommended Canadian Water Quality Guidelines for the Protection of Aquatic Life

Project No: 13-0493 12 of 18

Table 8: Petroleum Hydrocarbon Concentrations including BTEX in Water

| Sample ID                   |             |       |         |       |          | SW1           | SW2           | SW3           | MW14-1      | MWDUP2       | MW14-1      | MW14-2      | MW14-3      | MW14-3      |
|-----------------------------|-------------|-------|---------|-------|----------|---------------|---------------|---------------|-------------|--------------|-------------|-------------|-------------|-------------|
| Sample Date                 |             |       |         |       |          | 03-Mar-14     | 03-Mar-14     | 03-Mar-14     | 07-Mar-14   | 07-Mar-14    | 26-May-14   | 07-Mar-14   | 08-Mar-14   | 26-May-14   |
| Sample Type                 |             |       |         |       |          | Surface Water | Surface Water | Surface Water | Groundwater | Duplicate of | Groundwater | Groundwater | Groundwater | Groundwater |
| Field Parameters            |             |       |         |       |          |               |               |               |             | MW14-1       |             |             |             |             |
| рН                          |             |       |         |       | pH Units | 8.2           | 8.18          | 7.85          | 8.34        | -            | 8.53        | 8.39        | 8.46        | 8.75        |
| Conductivity                |             |       |         |       | uS/cm    | 0.334         | 0.338         | 0.501         | 0.459       | -            | 0.486       | 0.517       | 0.596       | 0.471       |
| Temperature                 |             |       |         |       | °C       | 1.1           | 1.1           | 1.9           | 10.9        | -            | 12.8        | 11          | 7.7         | 9.3         |
| Physical Parameters         | MDL         | FIGWQ | CCME FW | HC DW | Units    |               |               |               |             |              |             |             |             |             |
| Hardness _CaCo3             | 0.5         | nc    | nc      | nc    | mg/L     | 177           | 183           | 249           | 251         | 248          | 281         | 284         | 240         | 260         |
| Extractable Petroleum Hydro | carbons     |       |         |       |          |               |               |               |             |              |             |             |             |             |
| CCME PHC F1 (C6-C10)        | 100         | 810   | nc      | nc    | ug/L     | <100          | <100          | <100          | <100        | <100         | -           | <100        | <100        | -           |
| CCME PHC F2 (C10-C16)       | 100         | 1300  | nc      | nc    | ug/L     | <100          | <100          | <100          | <100        | <100         | -           | <100        | <100        | -           |
| CCME PHC F3 (C16-C34)       | 100         | nc    | nc      | nc    | ug/L     | <100          | <100          | <100          | <100        | <100         | -           | <100        | <100        | -           |
| CCME PHC F4 (C34-C50)       | 100         | nc    | nc      | nc    | ug/L     | <100          | <100          | <100          | <100        | <100         | -           | <100        | <100        | -           |
| Volatile Organic Compounds  | including B | TEX   |         |       |          |               |               |               |             |              |             |             |             |             |
| VHw (6-10)                  | 100         | nc    | nc      | nc    | ug/L     | <100          | <100          | <100          | <100        | <100         | <100        | <100        | <100        | <100        |
| VPHw                        | 100         | nc    | nc      | nc    | ug/L     | <100          | <100          | <100          | <100        | <100         | <100        | <100        | <100        | <100        |
| Benzene                     | 0.5         | 140   | 370     | 5     | ug/L     | <0.5          | <0.5          | <0.5          | <0.5        | <0.5         | <0.5        | <0.5        | <0.5        | <0.5        |
| Ethylbenzene                | 1           | 11000 | 90      | 2.4a  | ug/L     | <1.0          | <1.0          | <1.0          | <1.0        | <1.0         | <1.0        | <1.0        | <1.0        | <1.0        |
| Toluene                     | 1           | 83    | 2       | 2.4a  | ug/L     | <1.0          | <1.0          | <1.0          | 4           | 3.6          | <1.0        | <1.0        | 1.5         | <1.0        |
| Xylenes (total)             | 2           | 3900  | nc      | 300   | ug/L     | <2.0          | <2.0          | <2.0          | 3.1         | 2.7          | <2.0        | <2.0        | <2.0        | <2.0        |

| Shaded       | > CCME FW           |
|--------------|---------------------|
| Outlined     | > HC DW             |
| Red Text     | > CCME_FIGWQ        |
| Grey Italics | Calculated Criteria |
| Blue Italics | MDL > CCME Guidline |

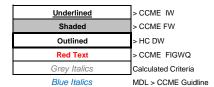
Notes: All values in ug/L unless otherwise stated

nc No criteria

CCME FW Canadian Council of Ministers of the Environment guidelines applicable to protection of freshwater aquatic life

CCME FIGWQ Canadian Council of Ministers of the Environment Federal Interim Groundwater Quality Guidelines

HC DW Health Canada Drinking Water Guidelines


MDL Method Detection Limit

**CCME** Canadian Council of Ministers of the Environment Recommended Canadian Water Quality Guidelines for the Protection of Aquatic Life



Table 9: Anion Concentrations in Groundwater

| Sample ID              |      |       |         |          |       |          | MW05-12     | MW07-28S    | MW07-28D    | MW07-29D    | MWDUP        | MW07-32S    | MW07-32D    | MW08-42     | MW08-43     |
|------------------------|------|-------|---------|----------|-------|----------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|
| Sample Date            |      |       |         |          |       |          | 07-Mar-14   | 07-Mar-14   | 07-Mar-14   | 07-Mar-14   | 07-Mar-14    | 07-Mar-14   | 07-Mar-14   | 07-Mar-14   | 07-Mar-14   |
| Sample Type            |      |       |         |          |       |          | Groundwater | Groundwater | Groundwater | Groundwater | Duplicate of | Groundwater | Groundwater | Groundwater | Groundwater |
| Field Parameters       |      |       |         |          |       |          |             |             |             |             | MW07-29D     |             |             |             |             |
| рН                     |      |       |         |          |       | pH Units | 8.65        | 8.25        | 8.77        | 8.91        | -            | 8.35        | 8.33        | 9.05        | 8.57        |
| Conductivity           |      |       |         |          |       | uS/cm    | 1.88        | 2.62        | 0.51        | 0.419       | -            | 0.827       | 0.93        | 0.796       | 1.13        |
| Temperature            |      |       |         |          |       | °C       | 9.7         | 7.4         | 7.9         | 8.2         | -            | 7.6         | 8.1         | 2.6         | 8.2         |
| Physical Parameters    | MDL  | FIGWQ | CCME FW | CCME IW  | HC DW | Units    |             |             |             |             |              |             |             |             |             |
| Hardness _CaCo3        | 0.5  | nc    | nc      |          | nc    | mg/L     | 287         | 605         | 281         | 215         | 209          | 394         | 368         | 395         | 438         |
| General Chemistry      |      |       |         |          |       |          |             |             |             |             |              |             |             |             |             |
| Chloride               | 0.1  | 230   | 120a    | 100-710c | nc    | mg/L     | <u>387</u>  | <u>609</u>  | 1.13        | 1.15        | 1.22         | 122         | <u>119</u>  | 73.1        | <u>178</u>  |
| Fluoride               | 0.1  | 0.12  | 120a    | 1d       | 1.5   | mg/L     | 0.24        | 0.13        | 0.23        | 0.2         | 0.22         | 0.12        | 0.11        | 0.14        | 0.14        |
| Nitrogen, Nitrate as N | 0.01 | 13    | 13a     | nc       | 45    | mg/L     | 1.1         | 0.917       | <0.010      | 0.012       | 0.014        | 0.407       | 0.37        | 0.161       | 0.56        |
| Nitrogen, Nitrite as N | 0.01 | 0.06  | 60a     | 32.8     | 3.2   | mg/L     | < 0.010     | <0.010      | <0.010      | 0.012       | 0.014        | <0.010      | <0.010      | <0.010      | <0.010      |
| Phosphate, Ortho as P  | 0.01 | nc    | nc      | nc       | nc    | mg/L     | <0.01       | <0.01       | <0.01       | <0.01       | <0.01        | <0.01       | <0.01       | <0.01       | <0.01       |
| Sulfate                | 1    | 100   | nc      | 1000     | 500b  | mg/L     | 35.3        | 38.4        | 50.9        | 50.8        | 49.6         | 29.2        | 28.4        | 32.1        | 28.8        |



Notes: All values in mg/L unless otherwise stated

- a Guideline is for long term
- **b** Aesthetic Objective
- c Guideline varies with crop type
- d Guideline is for the protection of irrigation water
- nc No criteria

CCME FW Canadian Council of Ministers of the Environment guidelines applicable to protection of freshwater aquatic life

CCME IW Canadian Council of Ministers of the Environment guidelines applicable to protection of irrigation water and livestock

CCME FIGWQ Canadian Council of Ministers of the Environment Federal Interim Groundwater Quality Guidelines

HC DW Health Canada Drinking Water Guidelines



Project No: 13-0493 14 of 18

Table 10a: Relative Percent Difference (RPD) of Duplicate Aanlayses in Soil

### **INORGANICS**

| Sample ID             |      |       | BH2-1     | BHDUP3       | RPD | BH9-1     | BHDUP4       | RPD |
|-----------------------|------|-------|-----------|--------------|-----|-----------|--------------|-----|
| Sample Date           |      |       | 05-Mar-14 | 05-Mar-14    |     | 07-Mar-14 | 07-Mar-14    |     |
| Sample Type           |      |       | Discrete  | Duplicate of |     | Discrete  | Duplicate of |     |
| Sample Depth (m)      |      |       | 0.7-1.5   | BH2-1        |     | 0.5-1.0   | BH9-1        |     |
| Total Metals by ICPMS | MDL  | Units |           |              | %   |           |              | %   |
| Antimony (Sb)         | 0.1  | mg/kg | 0.5       | 0.4          | -   | 0.3       | 0.3          | -   |
| Arsenic (As)          | 0.4  | mg/kg | 3.6       | 3.5          | 3   | 3.1       | 3.1          | 0   |
| Barium (Ba)           | 1    | mg/kg | 152       | 151          | 1   | 143       | 112          | 24  |
| Beryllium (Be)        | 0.1  | mg/kg | 0.6       | 0.5          | 18  | 0.4       | 0.5          | -   |
| Cadmium (Cd)          | 0.04 | mg/kg | 0.16      | 0.14         | -   | 0.15      | 0.13         | -   |
| Chromium (Cr)         | 1    | mg/kg | 31        | 30.7         | 1   | 26.1      | 25.2         | 4   |
| Cobalt (Co)           | 0.1  | mg/kg | 12.4      | 12.2         | 2   | 13        | 12.4         | 5   |
| Copper (Cu)           | 0.2  | mg/kg | 82        | 81.9         | 0   | 73.9      | 84           | 13  |
| Iron (Fe)             | 20   | mg/kg | 32900     | 31900        | 3   | 32600     | 30600        | 6   |
| Lead (Pb)             | 0.2  | mg/kg | 4.6       | 4.3          | 7   | 3.7       | 3.1          | 18  |
| Mercury (Hg)          | 0.05 | mg/kg | <0.05     | < 0.05       | -   | <0.05     | <0.05        | -   |
| Molybdenum (Mo)       | 0.1  | mg/kg | 0.9       | 0.9          | 0   | 0.8       | 0.7          | 13  |
| Nickel (Ni)           | 0.4  | mg/kg | 23.7      | 23.2         | 2   | 26.9      | 26.7         | 1   |
| Selenium (Se)         | 0.5  | mg/kg | 0.5       | 0.5          | -   | <0.5      | <0.5         | -   |
| Silver (Ag)           | 0.2  | mg/kg | <0.2      | <0.2         | -   | <0.2      | <0.2         | -   |
| Thallium (TI)         | 0.1  | mg/kg | <0.1      | <0.1         | -   | <0.1      | <0.1         | -   |
| Tin (Sn)              | 0.2  | mg/kg | 0.6       | 0.6          | -   | 0.5       | 0.4          | -   |
| Uranium (U)           | 0.1  | mg/kg | 0.9       | 0.9          | 0   | 0.7       | 0.5          | 33  |
| Vanadium (V)          | 0.4  | mg/kg | 91.3      | 88           | 4   | 85.9      | 82.5         | 4   |
| Zinc (Zn)             | 2    | mg/kg | 56        | 54           | 4   | 66        | 56           | 16  |
| Aluminum (AI)         | 20   | mg/kg | 16300     | 15900        | 2   | 14700     | 12800        | 14  |
| Bismuth (Bi)          | 0.1  | mg/kg | <0.1      | <0.1         | -   | <0.1      | <0.1         | -   |
| Boron (B)             | 2    | mg/kg | 4         | 4            | -   | 4         | 3            | -   |
| Calcium (Ca)          | 100  | mg/kg | 33300     | 32100        | 4   | 9980      | 9220         | 8   |
| Lithium (Li)          | 0.1  | mg/kg | 9.3       | 9            | -   | 8.9       | 8.2          | 8   |
| Magnesium (Mg)        | 10   | mg/kg | 9020      | 8660         | 4   | 8080      | 8320         | 3   |
| Manganese (Mn)        | 0.4  | mg/kg | 615       | 595          | 3   | 562       | 545          | 3   |
| Phospohorus (P)       | 10   | mg/kg | 847       | 808          | 5   | 675       | 856          | 24  |
| Potassium (K)         | 10   | mg/kg | 1000      | 1010         | 1   | 909       | 740          | 20  |
| Silicon (Si)          | 3000 | mg/kg | <3000     | <3000        | -   | <3000     | <3000        | -   |
| Sodium (Na)           | 40   | mg/kg | 588       | 547          | 7   | 530       | 684          | 25  |
| Strontium (Sr)        | 0.2  | mg/kg | 98.7      | 99.4         | 1   | 52.8      | 50.6         | 4   |
| Sulfur (S)            | 1000 | mg/kg | <1000     | <1000        | -   | <1000     | <1000        | -   |
| Tellurium (Te)        | 0.1  | mg/kg | <0.1      | <0.1         | -   | <0.1      | <0.1         | -   |
| Thorium (Th)          | 0.5  | mg/kg | 3.4       | 3.4          | 0   | 1.8       | 1.9          | -   |
| Titanium (Ti)         | 2    | mg/kg | 1310      | 1270         | 3   | 1080      | 987          | 9   |
| Zirconium (Zr)        | 2    | mg/kg | 8         | 8            | -   | 8         | 7            | -   |

| Average | 7  |
|---------|----|
| Median  | 4  |
| Maximum | 33 |
| Minimum | 0  |

Notes: all units are expressed in mg/kg unless otherwise stated

- RPD was not calculated if concentration was < 5 times the MDL

MDL Method Detection Limit

RDP Relative Percent Difference

**BOLD** RPD > 30% (inorganics) were noted in Bold



Project No: 13-0493 15 of 18

Table 10a: Relative Percent Difference (RPD) of Duplicate Aanlayses in Soil

### **ORGANICS**

| Sample ID                 |       |       | BH2-1     | BHDUP3       | RPD | BH9-1     | BHDUP4       | RPD |
|---------------------------|-------|-------|-----------|--------------|-----|-----------|--------------|-----|
| Sample Date               |       |       | 05-Mar-14 | 05-Mar-14    |     | 07-Mar-14 | 07-Mar-14    |     |
| Sample Type               |       |       | Discrete  | Duplicate of |     | Discrete  | Duplicate of |     |
| Sample Depth (m)          |       |       | 0.7-1.5   | BH2-1        |     | 0.5-1.0   | BH9-1        |     |
| Polycyclic Aromatics      | MDL   | Units |           |              | %   |           |              | %   |
| Naphthalene               | 0.01  | mg/kg | <0.01     | <0.01        | -   | <0.01     | <0.01        | -   |
| 2-Methylnaphthalene       | 0.01  | mg/kg | <0.01     | <0.01        | -   | <0.01     | <0.01        | -   |
| Acenaphthene              | 0.005 | mg/kg | <0.005    | <0.005       | -   | <0.005    | <0.005       | -   |
| Acenaphthylene            | 0.005 | mg/kg | <0.005    | <0.005       | -   | <0.005    | <0.005       | -   |
| Fluorene                  | 0.01  | mg/kg | <0.01     | <0.01        | -   | <0.01     | <0.01        | -   |
| Phenanthrene              | 0.02  | mg/kg | <0.02     | <0.02        | -   | <0.02     | <0.02        | -   |
| Anthracene                | 0.01  | mg/kg | <0.01     | <0.01        | -   | <0.01     | <0.01        | -   |
| Benzo(a)anthracene        | 0.01  | mg/kg | <0.01     | <0.01        | -   | <0.01     | <0.01        | -   |
| Fluoranthene              | 0.01  | mg/kg | <0.01     | <0.01        | -   | <0.01     | <0.01        | -   |
| Pyrene                    | 0.02  | mg/kg | <0.02     | <0.02        | -   | <0.02     | <0.02        | -   |
| Chrysene                  | 0.01  | mg/kg | <0.01     | <0.01        | -   | <0.01     | <0.01        | -   |
| Benzo(b&j)fluoranthene    | 0.01  | mg/kg | <0.01     | <0.01        |     | <0.01     | <0.01        | -   |
| Benzo(k)fluoranthene      | 0.01  | mg/kg | <0.01     | <0.01        | -   | <0.01     | <0.01        | -   |
| Benzo(a)pyrene            | 0.01  | mg/kg | <0.01     | <0.01        | -   | <0.01     | <0.01        | -   |
| Indeno(1,2,3-cd)pyrene    | 0.02  | mg/kg | <0.02     | <0.02        | _   | <0.02     | <0.02        | -   |
| Dibenz(a,h)anthracene     | 0.005 | mg/kg | <0.005    | <0.005       | -   | <0.005    | < 0.005      | -   |
| Benzo(g,h,i)perylene      | 0.02  | mg/kg | <0.02     | <0.02        | -   | <0.02     | <0.02        | -   |
| Volatile Organics         |       |       |           |              |     |           |              |     |
| Benzene                   | 0.02  | mg/kg | <0.02     | <0.02        | -   | <0.02     | <0.02        | -   |
| Bromodichloromethane      | 0.1   | mg/kg | <0.10     | <0.10        | -   | <0.10     | <0.10        | -   |
| Bromoform                 | 0.1   | mg/kg | <0.10     | <0.10        |     | <0.10     | <0.10        | -   |
| Carbon tetrachloride      | 0.05  | mg/kg | <0.05     | <0.05        | -   | <0.05     | < 0.05       | -   |
| Chlorobenzene             | 0.05  | mg/kg | < 0.05    | <0.05        | -   | < 0.05    | < 0.05       | -   |
| Chloroform                | 0.07  | mg/kg | <0.07     | <0.07        |     | <0.07     | <0.07        | -   |
| Dibromochloromethane      | 0.1   | mg/kg | <0.10     | <0.10        | -   | <0.10     | <0.10        | -   |
| 1,2-Dibromoethane         | 0.1   | mg/kg | <0.10     | <0.10        | -   | <0.10     | <0.10        | -   |
| Dibromomethane            | 0.1   | mg/kg | <0.10     | <0.10        | -   | <0.10     | <0.10        | -   |
| 1,2-Dichlorobenzene       | 0.05  | mg/kg | <0.05     | < 0.05       | i   | < 0.05    | <0.05        | -   |
| 1,3-Dichlorobenzene       | 0.05  | mg/kg | <0.05     | <0.05        | ,   | <0.05     | <0.05        | -   |
| 1,4-Dichlorobenzene       | 0.05  | mg/kg | < 0.05    | < 0.05       | ,   | < 0.05    | < 0.05       | -   |
| 1,1-Dichloroethane        | 0.05  | mg/kg | <0.05     | < 0.05       | 1   | < 0.05    | < 0.05       | -   |
| 1,2-Dichloroethane        | 0.05  | mg/kg | <0.05     | <0.05        | -   | <0.05     | <0.05        | -   |
| 1,1-Dichloroethene        | 0.05  | mg/kg | <0.05     | <0.05        | -   | < 0.05    | <0.05        | -   |
| cis-1,2-Dichloroethene    | 0.1   | mg/kg | <0.10     | <0.10        | -   | <0.10     | <0.10        | -   |
| trans-1,2-Dichloroethene  | 0.05  | mg/kg | <0.05     | <0.05        | ,   | <0.05     | <0.05        | -   |
| 1,2-Dichloropropane       | 0.05  | mg/kg | <0.05     | <0.05        | ,   | <0.05     | <0.05        | -   |
| cis-1,3-Dichloropropene   | 0.05  | mg/kg | <0.05     | <0.05        | -   | <0.05     | <0.05        | -   |
| trans-1,3-Dichloropropene | 0.05  | mg/kg | <0.05     | <0.05        | -   | <0.05     | <0.05        | -   |
| Ethylbenzene              | 0.05  | mg/kg | <0.05     | <0.05        | -   | <0.05     | <0.05        | -   |
| Methyl tert-butyl ether   | 0.04  | mg/kg | <0.05     | <0.05        | -   | <0.05     | <0.05        | -   |
| Methylene chloride        | 0.5   | mg/kg | <0.50     | <0.50        | -   | <0.50     | <0.50        | -   |
| Styrene                   | 0.05  | mg/kg | <0.05     | <0.05        | -   | <0.05     | <0.05        | -   |
| 1,1,2,2-Tetrachloroethane | 0.05  | mg/kg | <0.05     | <0.05        | -   | <0.05     | <0.05        | -   |
| Tetrachloroethene (PCE)   | 0.05  | mg/kg | <0.05     | <0.05        | -   | <0.05     | <0.05        | -   |
| Toluene                   | 0.2   | mg/kg | <0.20     | <0.20        | -   | <0.20     | <0.20        | -   |
| 1,1,1-Trichloroethane     | 0.05  | mg/kg | <0.05     | <0.05        | -   | <0.05     | <0.05        | -   |
| 1,1,2-Trichloroethane     | 0.07  | mg/kg | <0.07     | <0.07        | -   | <0.07     | <0.07        | -   |
| Trichloroethene (TCE)     | 0.01  | mg/kg | <0.01     | <0.01        | -   | <0.01     | <0.01        | -   |
| Trichlorofluoromethane    | 0.1   | mg/kg | <0.10     | <0.10        | -   | <0.10     | <0.10        | -   |
| Vinyl chloride            | 0.1   | mg/kg | <0.10     | <0.10        | -   | <0.10     | <0.10        | -   |
| Xylenes (total)           | 0.1   | mg/kg | <0.10     | <0.10        | -   | <0.10     | <0.10        | -   |

| Average | - |
|---------|---|
| Median  | - |
| Maximum | - |
| Minimum | - |

Notes: all units are expressed in mg/kg unless otherwise stated

- RPD was not calculated if concentration was < 5 times the MDL

MDL Method Detection Limit

RDP Relative Percent Difference

BOLD RPD > 40% (organics) were noted in Bold



Project No: 13-0493 16 of 18

Table 10b: Relative Percent Difference (RPD) for Duplicate Analyses in Water

### **INORGANICS**

| Sample ID        |        |       | MW14-1      | MWDUP2       | RPD | MW07-29D    | MWDUP        | RPD |
|------------------|--------|-------|-------------|--------------|-----|-------------|--------------|-----|
| Sample Date      |        |       | 07-Mar-14   | 07-Mar-14    |     | 07-Mar-14   | 07-Mar-14    |     |
| Sample Type      |        |       | Groundwater | Duplicate of |     | Groundwater | Duplicate of |     |
| Dissolved Metals | MDL    | Units |             | MW14-1       | %   |             | MW07-29D     | %   |
| Aluminum_Al      | 0.05   | mg/L  | <0.05       | <0.05        | -   | <0.05       | <0.05        | -   |
| Antimony_Sb      | 0.001  | mg/L  | <0.001      | <0.001       | =   | <0.001      | <0.001       | -   |
| Arsenic_As       | 0.005  | mg/L  | <0.005      | <0.005       | -   | <0.005      | <0.005       | -   |
| Barium_Ba        | 0.05   | mg/L  | < 0.05      | <0.05        | =   | <0.05       | <0.05        | -   |
| Beryllium_Be     | 0.001  | mg/L  | <0.001      | <0.001       | =   | <0.001      | <0.001       | -   |
| Boron _B         | 0.04   | mg/L  | 0.05        | 0.04         | -   | <0.04       | <0.04        | -   |
| Cadmium_Cd       | 0.0001 | mg/L  | <0.0001     | <0.0001      | 1   | <0.0001     | <0.0001      | -   |
| Chromium_Cr      | 0.005  | mg/L  | <0.005      | <0.005       | 1   | <0.005      | <0.005       | -   |
| Cobalt_Co        | 0.0005 | mg/L  | <0.0005     | <0.0005      | -   | <0.0005     | <0.0005      | -   |
| Copper_Cu        | 0.002  | mg/L  | <0.002      | <0.002       | -   | <0.002      | <0.002       |     |
| Iron_fe          | 0.1    | mg/L  | <0.10       | <0.10        | -   | <0.10       | <0.10        | -   |
| Lead_Pb          | 0.001  | mg/L  | <0.001      | <0.001       | -   | <0.001      | <0.001       | -   |
| Manganese_Mn     | 0.002  | mg/L  | 0.012       | 0.012        | -   | 0.029       | 0.028        | 4   |
| Mercury_Hg       | 0.0002 | mg/L  | <0.0002     | <0.0002      | -   | <0.0002     | <0.0002      | -   |
| Molybdenum_Mo    | 0.001  | mg/L  | 0.008       | 0.008        | 0   | 0.003       | 0.003        | -   |
| Nickel_Ni        | 0.002  | mg/L  | <0.002      | <0.002       | -   | <0.002      | <0.002       | -   |
| Selenium_Se      | 0.005  | mg/L  | < 0.005     | <0.005       | -   | <0.005      | <0.005       | -   |
| Silver_Ag        | 0.0005 | mg/L  | 0.0011      | 0.0011       | -   | 0.0009      | <0.0005      | -   |
| Sodium_Na        | 0.2    | mg/L  | 17.4        | 16.9         | 3   | 18.9        | 18.8         | 1   |
| Thallium_Tl      | 0.0002 | mg/L  | <0.0002     | <0.0002      | -   | <0.0002     | <0.0002      | -   |
| Uranium_U        | 0.0002 | mg/L  | 0.0026      | 0.0026       | 0   | 0.0009      | 0.0008       | =   |
| Zinc_Zn          | 0.04   | mg/L  | <0.04       | <0.04        | =   | <0.04       | <0.04        | -   |
| Bismuth_Bi       | 0.001  | mg/L  | <0.001      | <0.001       | =   | <0.001      | <0.001       | =   |
| Calcium_Ca       | 2      | mg/L  | 59.9        | 59.9         | 0   | 37.1        | 34.9         | 6   |
| Lithium_Li       | 0.001  | mg/L  | 0.004       | 0.004        | 1   | 0.001       | 0.001        | -   |
| Magnesium_Mg     | 0.1    | mg/L  | 24.7        | 24           | 3   | 29.7        | 29.5         | 1   |
| Phosphorus_P     | 0.2    | mg/L  | <0.2        | <0.2         | -   | <0.2        | <0.2         | -   |
| Potassium_K      | 0.2    | mg/L  | 3.1         | 2.9          | 7   | 2.1         | 2.1          | 0   |
| Silicon_Si       | 5      | mg/L  | 10          | 10           | -   | 11          | 11           | -   |
| Strontium_Sr     | 0.01   | mg/L  | 0.33        | 0.32         | 3   | 0.49        | 0.49         | 0   |
| Total Sulphur_S  | 10     | mg/L  | <10         | <10          | -   | <10         | <10          | -   |
| Tellerium_Te     | 0.002  | mg/L  | <0.002      | <0.002       | -   | <0.002      | <0.002       | -   |
| Thorium_Th       | 0.001  | mg/L  | <0.001      | <0.001       | -   | <0.001      | <0.001       | -   |
| Tin_Sn           | 0.002  | mg/L  | <0.002      | <0.002       | -   | <0.002      | <0.002       | -   |
| <br>Titanium_Ti  | 0.05   | mg/L  | <0.05       | <0.05        | -   | <0.05       | <0.05        | _   |
| Vanadium_V       | 0.01   | mg/L  | <0.01       | <0.01        | -   | <0.01       | <0.01        | -   |
| Zirconium_Zr     | 0.001  | mg/L  | <0.001      | <0.001       | -   | <0.001      | <0.001       | -   |

| Average | 2 |
|---------|---|
| Median  | 1 |
| Maximum | 7 |
| Minimum | 0 |

Notes: all units are expressed in mg/kg unless otherwise stated

- RPD was not calculated if concentration was < 5 times the MDL

MDL Method Detection Limit

RDP Relative Percent Difference

**BOLD** RPD > 20% (inorganics in water) were noted in Bold



Project No: 13-0493 17 of 18

Table 10b: Relative Percent Difference (RPD) for Duplicate Analyses in Water

### **ORGANICS**

| Sample ID                    | I            |       | MW14-1      | MWDUP2              | RPD | MW07-29D     | MWDUP                    | RPD |
|------------------------------|--------------|-------|-------------|---------------------|-----|--------------|--------------------------|-----|
| Sample Date                  |              |       | 07-Mar-14   | 07-Mar-14           | 5   | 07-Mar-14    | 07-Mar-14                |     |
| Sample Type                  |              |       | Groundwater |                     |     | Groundwater  |                          |     |
| Polycyclic Aromatics         | MDL          | Units | Gloundwater | Duplicate of MW14-1 | %   | Orodriawater | Duplicate of<br>MW07-29D | %   |
| Naphthalene                  | 0.05         | ug/L  | 0.19        | 0.24                | 23  | -            | -                        | -   |
| Quinoline                    | 0.05         | ug/L  | <0.05       | <0.05               | -   | _            | _                        | _   |
| Acenaphthylene               | 0.02         | ug/L  | <0.02       | <0.02               | -   | _            | _                        | _   |
| Acenaphthene                 | 0.02         | ug/L  | <0.02       | <0.02               | -   | -            | -                        | -   |
| Fluorene                     | 0.02         | ug/L  | <0.02       | <0.02               | _   | _            | _                        | _   |
| Phenanthrene                 | 0.05         | ug/L  | <0.05       | <0.05               | _   | _            | -                        | _   |
| Anthracene                   | 0.01         | ug/L  | <0.01       | <0.01               | _   | -            | -                        | _   |
| Acridine                     | 0.05         | ug/L  | <0.05       | <0.05               | _   | _            | _                        | _   |
| Fluoranthene                 | 0.02         | ug/L  | <0.02       | <0.02               | -   | _            | _                        | -   |
| Pyrene                       | 0.02         | ug/L  | <0.02       | <0.02               | -   | _            | _                        | -   |
| Benzo (a) anthracene         | 0.01         | ug/L  | <0.01       | <0.01               | -   | -            | =                        | -   |
| Chrysene                     | 0.02         | ug/L  | <0.02       | <0.02               | -   | _            | _                        | -   |
| Benzo (b) fluoranthene       | 0.02         | ug/L  | <0.02       | <0.02               | -   | _            | _                        | -   |
| Benzo (k) fluoranthene       | 0.02         | ug/L  | <0.02       | <0.02               | -   | _            | -                        | -   |
| Benzo (a) pyrene             | 0.01         | ug/L  | <0.01       | <0.01               | -   | -            | -                        | -   |
| Indeno (1,2,3-cd) pyrene     | 0.02         | ug/L  | <0.02       | <0.02               | -   | -            | -                        | _   |
| Dibenz (a,h) anthracene      | 0.02         | ug/L  | <0.02       | <0.02               | -   | -            | -                        | -   |
| Benzo (g,h,i) perylene       | 0.02         | ug/L  | <0.02       | <0.02               | -   | -            | -                        | -   |
| Extractable Petroleum Hydroc | arbons       |       |             |                     |     |              |                          |     |
| CCME PHC F1 (C6-C10)         | 100          | ug/L  | <100        | <100                | -   | -            | -                        | _   |
| CCME PHC F2 (C10-C16)        | 100          | ug/L  | <100        | <100                | -   | -            | -                        | -   |
| CCME PHC F3 (C16-C34)        | 100          | ug/L  | <100        | <100                | -   | -            | -                        | -   |
| CCME PHC F4 (C34-C50)        | 100          | ug/L  | <100        | <100                | -   | -            | -                        | -   |
| Volatile Organic Compounds i | ncluding BTE | Х     |             |                     |     |              |                          |     |
| VHw (6-10)                   | 100          | ug/L  | <100        | <100                | -   | -            | -                        | =   |
| VPHw                         | 100          | ug/L  | <100        | <100                | -   | _            | -                        | =   |
| Benzene                      | 0.5          | ug/L  | <0.5        | <0.5                | -   | -            | -                        | -   |
| Ethylbenzene                 | 1            | ug/L  | <1.0        | <1.0                | -   | -            | -                        | -   |
| Toluene                      | 1            | ug/L  | 4           | 3.6                 | -   | -            | -                        | -   |
| Xylenes (total)              | 2            | ug/L  | 3.1         | 2.7                 | -   | -            | =                        | -   |
| General Chemistry            |              |       |             |                     |     |              |                          |     |
| Chloride                     | 0.1          | mg/L  | -           | -                   | -   | 1.15         | 1.22                     | 6   |
| Fluoride                     | 0.1          | mg/L  | -           | -                   | ī   | 0.2          | 0.22                     | -   |
| Nitrogen, Nitrate as N       | 0.01         | mg/L  | -           | -                   | -   | 0.012        | 0.014                    | -   |
| Nitrogen, Nitrite as N       | 0.01         | mg/L  | -           | -                   | -   | 0.012        | 0.014                    | ı   |
| Phosphate, Ortho as P        | 0.01         | mg/L  | -           | -                   | -   | <0.01        | <0.01                    | -   |
| Sulfate                      | 1            | mg/L  | -           | -                   | -   | 50.8         | 49.6                     | 2   |

| Average | 11 |
|---------|----|
| Median  | 6  |
| Maximum | 23 |
| Minimum | 2  |

Notes: all units are expressed in mg/kg unless otherwise stated

- RPD was not calculated if concentration was < 5 times the MDL

MDL Method Detection Limit

RDP Relative Percent Difference

**BOLD** RPD > 30% (organics in water) were noted in Bold



Project No: 13-0493 18 of 18

# APPENDIX E LABORATORY CERTIFICATES OF ANALYSIS





### **CERTIFICATE OF ANALYSIS**

REPORTED TO Columbia Environmental Consulting Ltd

RR #2, Site 55, Compartment 10 **TEL** (778) 476-5656 Penticton, BC V2A 6J7 **FAX** (778) 476-5655

ATTENTION Summer Zawacky WORK ORDER 4051659

PO NUMBER RECEIVED / TEMP May-27-14 10:30 / 9°C

 PROJECT
 14-0493
 REPORTED
 Jun-11-14

 PROJECT INFO
 LNIB PII ESA
 COC NUMBER
 B07252

#### **General Comments:**

CARO Analytical Services employs methods which are conducted according to procedures accepted by appropriate regulatory agencies, and/or are conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts, except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the Chain of Custody or Sample Requisition document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

#### **Work Order Comments:**

June 11/14- This is an amended report from the original issued June 3/14. The RDL for Naphthalene has been lowered, as per client's request.

Issued By: DRAFT REPORT

DATA SUBJECT TO CHANGE

Please contact CARO if more information is needed or to provide feedback on our services.

Locations:

#110 4011 Viking Way #102 3677 Highway 97N 17225 109 Avenue
Richmond, BC V6V 2K9 Kelowna, BC V1X 5C3 Edmonton, AB T5S 1H7

Tel: 604-279-1499 Fax: 604-279-1599 Tel: 250-765-9646 Fax: 250-765-3893 Tel: 780-489-9100 Fax: 780-489-9700

www.caro.ca



### **ANALYSIS INFORMATION**

REPORTED TOColumbia Environmental Consulting LtdWORK ORDER4051659PROJECT14-0493REPORTEDJun-11-14

| Analysis Description     | Method Reference (* = Preparation | Method Reference (* = modified from) Preparation Analysis |          |  |  |  |
|--------------------------|-----------------------------------|-----------------------------------------------------------|----------|--|--|--|
| Dissolved Metals         | APHA 3030 B                       | APHA 3125 B                                               | Richmond |  |  |  |
| Hardness as CaCO3 (CALC) | N/A                               | APHA 2340 B                                               | Richmond |  |  |  |
| PAH in Water (low)       | EPA 3510C                         | EPA 8270D (2007)                                          | Richmond |  |  |  |
| VH in Water              | EPA 5030B / 5021A                 | BCMOE                                                     | Richmond |  |  |  |
| VOC in Water             | EPA 5030B / 5021A                 | EPA 8260B (1996)                                          | Richmond |  |  |  |
| VOC/VH/VPH in Water Pkg  | N/A                               | BCMOE                                                     | Richmond |  |  |  |

Note: The numbers in brackets represent the year that the method was published/approved

**Method Reference Descriptions:** 

BCMOE British Columbia Environmental Laboratory Manual, 2009, British Columbia Ministry of

Environment

APHA Standard Methods for the Examination of Water and Wastewater, American Public Health

Association

EPA United States Environmental Protection Agency Test Methods

**Glossary of Terms:** 

MRL Method Reporting Limit

Less than the Reported Detection Limit (RDL) - the RDL may be higher than the MRL due to

various factors such as dilutions, limited sample volume, high moisture, or interferences

mg/L Milligrams per litre ug/L Micrograms per litre



REPORTED TOColumbia Environmental Consulting LtdWORK ORDER4051659PROJECT14-0493REPORTEDJun-11-14

| Analyte                           | Result /<br>Recovery             | MRL /<br>Limit | Units | Prepared | Analyzed  | Notes |
|-----------------------------------|----------------------------------|----------------|-------|----------|-----------|-------|
| DRAFT: Calculated Parameters      |                                  |                |       |          |           |       |
| Commis ID: 800/4.4.4. (4054.650.) | Od) FMatoul Commission May 00 44 | 44.20          |       |          |           |       |
|                                   | 01) [Water] Sampled: May-26-14   |                |       |          |           |       |
| VPHw                              | < 100                            |                | ug/L  | N/A      | N/A       |       |
| Hardness, Total (Diss. as CaCO3)  | 281                              | 0.50           | mg/L  | N/A      | N/A       |       |
| Sample ID: MW14-3 (4051659-0      | 02) [Water] Sampled: May-26-14   | 13:30          |       |          |           |       |
| VPHw                              | < 100                            | 100            | ug/L  | N/A      | N/A       |       |
| Hardness, Total (Diss. as CaCO3)  | 260                              | 0.50           | mg/L  | N/A      | N/A       |       |
|                                   | 01) [Water] Sampled: May-26-14   |                |       |          |           |       |
| Aluminum, dissolved               | < 0.005                          | 0.005          |       | N/A      | May-30-14 |       |
| Antimony, dissolved               | 0.0002                           | 0.0001         |       | N/A      | May-30-14 |       |
| Arsenic, dissolved                | 0.0010                           | 0.0005         |       | N/A      | May-30-14 |       |
| Barium, dissolved                 | 0.021                            | 0.005          |       | N/A      | May-30-14 |       |
| Boron, dissolved                  | 0.037                            | 0.004          |       | N/A      | May-30-14 |       |
| Cadmium, dissolved                | 0.00001                          | 0.00001        |       | N/A      | May-30-14 |       |
| Calcium, dissolved                | 68.1                             |                | mg/L  | N/A      | May-30-14 |       |
| Chromium, dissolved               | 0.0033                           | 0.0005         |       | N/A      | May-30-14 |       |
| Copper, dissolved                 | 0.0031                           | 0.0002         |       | N/A      | May-30-14 |       |
| Iron, dissolved                   | 0.015                            | 0.010          |       | N/A      | May-30-14 |       |
| Lead, dissolved                   | < 0.0001                         | 0.0001         |       | N/A      | May-30-14 |       |
| Magnesium, dissolved              | 26.8                             |                | mg/L  | N/A      | May-30-14 |       |
| Manganese, dissolved              | 0.0017                           | 0.0002         |       | N/A      | May-30-14 |       |
| Mercury, dissolved                | < 0.00002                        | 0.0002         |       | N/A      | May-30-14 |       |
| Nickel, dissolved                 | 0.0013                           | 0.0002         |       | N/A      | May-30-14 |       |
| Selenium, dissolved               | < 0.0005                         | 0.0005         |       | N/A      | May-30-14 |       |
| Silver, dissolved                 | < 0.00005                        | 0.00005        |       | N/A      | May-30-14 |       |
| Uranium, dissolved                | 0.00313                          | 0.00002        |       | N/A      | May-30-14 |       |
| Zinc, dissolved                   | 0.004                            | 0.004          | mg/L  | N/A      | May-30-14 |       |
|                                   | 02) [Water] Sampled: May-26-14   |                |       |          |           |       |
| Aluminum, dissolved               | < 0.005                          | 0.005          |       | N/A      | May-30-14 |       |
| Antimony, dissolved               | 0.0002                           | 0.0001         |       | N/A      | May-30-14 |       |
| Arsenic, dissolved                | 0.0009                           | 0.0005         | mg/L  | N/A      | May-30-14 |       |
| Barium, dissolved                 | 0.047                            | 0.005          |       | N/A      | May-30-14 |       |
| Boron, dissolved                  | 0.018                            | 0.004          |       | N/A      | May-30-14 |       |
| Cadmium, dissolved                | < 0.00001                        | 0.00001        | mg/L  | N/A      | May-30-14 |       |
| Calcium, dissolved                | 66.9                             |                | mg/L  | N/A      | May-30-14 |       |
| Chromium, dissolved               | 0.0007                           | 0.0005         |       | N/A      | May-30-14 |       |
| Copper, dissolved                 | 0.0023                           | 0.0002         |       | N/A      | May-30-14 |       |
| Iron, dissolved                   | < 0.010                          | 0.010          |       | N/A      | May-30-14 |       |
| Lead, dissolved                   | < 0.0001                         | 0.0001         |       | N/A      | May-30-14 |       |
| Magnesium, dissolved              | 22.7                             |                | mg/L  | N/A      | May-30-14 |       |
| Manganese, dissolved              | 0.0010                           | 0.0002         |       | N/A      | May-30-14 |       |
| Mercury, dissolved                | < 0.00002                        | 0.0002         | mg/L  | N/A      | May-30-14 |       |
| Nickel, dissolved                 | < 0.0002                         | 0.0002         | ma/L  | N/A      | May-30-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd WORK ORDER 4051659
PROJECT 14-0493 REPORTED Jun-11-14

| Analyte                                                                                                                                                                                                                                                                       | Result /<br>Recovery                                                                                                                  | MRL /<br><i>Limit</i>                                                              | Units                                   | Prepared                                      | Analyzed                                                                                                                                    | Notes |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|
| DRAFT: Dissolved Metals, Continue                                                                                                                                                                                                                                             | d                                                                                                                                     |                                                                                    |                                         |                                               |                                                                                                                                             |       |
| Sample ID: MW14-3 (4051659-02) [V                                                                                                                                                                                                                                             | Vater] Sampled: May-26-1                                                                                                              | 14 13:30, Continue                                                                 | ed                                      |                                               |                                                                                                                                             |       |
| Selenium, dissolved                                                                                                                                                                                                                                                           | < 0.0005                                                                                                                              | 0.0005                                                                             | mg/L                                    | N/A                                           | May-30-14                                                                                                                                   |       |
| Silver, dissolved                                                                                                                                                                                                                                                             | < 0.00005                                                                                                                             | 0.00005                                                                            | mg/L                                    | N/A                                           | May-30-14                                                                                                                                   |       |
| Uranium, dissolved                                                                                                                                                                                                                                                            | 0.00117                                                                                                                               | 0.00002                                                                            | mg/L                                    | N/A                                           | May-30-14                                                                                                                                   |       |
| Zinc, dissolved                                                                                                                                                                                                                                                               | < 0.004                                                                                                                               | 0.004                                                                              | mg/L                                    | N/A                                           | May-30-14                                                                                                                                   |       |
| DRAFT: Aggregate Organic Paramet                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                    |                                         |                                               |                                                                                                                                             |       |
| Sample ID: MW14-1 (4051659-01) [V<br>VHw (6-10)                                                                                                                                                                                                                               | < 100                                                                                                                                 |                                                                                    | ug/L                                    | N/A                                           | Jun-02-14                                                                                                                                   |       |
|                                                                                                                                                                                                                                                                               |                                                                                                                                       |                                                                                    | ~y, L                                   | 1071                                          | Juli 02 14                                                                                                                                  |       |
| Sample ID: MW14-3 (4051659-02) [V                                                                                                                                                                                                                                             |                                                                                                                                       |                                                                                    |                                         |                                               |                                                                                                                                             |       |
| VHw (6-10)                                                                                                                                                                                                                                                                    | < 100                                                                                                                                 | 100                                                                                | ug/L                                    | N/A                                           | Jun-02-14                                                                                                                                   |       |
| -                                                                                                                                                                                                                                                                             |                                                                                                                                       | 14 11:20                                                                           |                                         |                                               |                                                                                                                                             |       |
| DRAFT: Volatile Organic Compound<br>Sample ID: MW14-1 (4051659-01) [V<br>Benzene                                                                                                                                                                                              |                                                                                                                                       |                                                                                    | ug/L                                    | N/A                                           | Jun-02-14                                                                                                                                   |       |
| Sample ID: MW14-1 (4051659-01) [V                                                                                                                                                                                                                                             | Vater] Sampled: May-26-1                                                                                                              | 0.5                                                                                | ug/L<br>ug/L                            | N/A<br>N/A                                    | Jun-02-14<br>Jun-02-14                                                                                                                      |       |
| Sample ID: MW14-1 (4051659-01) [V<br>Benzene<br>Ethylbenzene                                                                                                                                                                                                                  | Vater] Sampled: May-26-1                                                                                                              | 0.5<br>1.0                                                                         |                                         |                                               |                                                                                                                                             | A-01  |
| Sample ID: MW14-1 (4051659-01) [V<br>Benzene<br>Ethylbenzene<br>Naphthalene                                                                                                                                                                                                   | Vater] Sampled: May-26-1 < 0.5 < 1.0                                                                                                  | 0.5<br>1.0<br>5.0                                                                  | ug/L                                    | N/A                                           | Jun-02-14                                                                                                                                   | A-01  |
| Sample ID: MW14-1 (4051659-01) [V<br>Benzene<br>Ethylbenzene<br>Naphthalene<br>Toluene                                                                                                                                                                                        | Vater] Sampled: May-26-1 < 0.5 < 1.0 < 1.0                                                                                            | 0.5<br>1.0<br>5.0<br>1.0                                                           | ug/L<br>ug/L                            | N/A<br>N/A                                    | Jun-02-14<br>Jun-02-14                                                                                                                      | A-01  |
| Sample ID: MW14-1 (4051659-01) [V<br>Benzene<br>Ethylbenzene<br>Naphthalene<br>Toluene                                                                                                                                                                                        | Vater] Sampled: May-26-1 < 0.5 < 1.0 < 1.0 < 1.0                                                                                      | 0.5<br>1.0<br>5.0<br>1.0                                                           | ug/L<br>ug/L<br>ug/L                    | N/A<br>N/A<br>N/A                             | Jun-02-14<br>Jun-02-14<br>Jun-02-14                                                                                                         | A-01  |
| Bample ID: MW14-1 (4051659-01) [V Benzene Ethylbenzene Naphthalene Toluene Xylenes (total)                                                                                                                                                                                    | <pre>Vater] Sampled: May-26-1 &lt; 0.5 &lt; 1.0 &lt; 1.0 &lt; 1.0 &lt; 2.0</pre>                                                      | 0.5<br>1.0<br>5.0<br>1.0<br>2.0                                                    | ug/L<br>ug/L<br>ug/L                    | N/A<br>N/A<br>N/A<br>N/A                      | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                                                                                            | A-01  |
| Bample ID: MW14-1 (4051659-01) [V Benzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8                                                                                                                                                              | Vater] Sampled: May-26-1 < 0.5 < 1.0 < 1.0 < 2.0 89 %                                                                                 | 0.5<br>1.0<br>5.0<br>1.0<br>2.0<br>70-130                                          | ug/L<br>ug/L<br>ug/L                    | N/A<br>N/A<br>N/A<br>N/A                      | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                                                                               | A-01  |
| Bample ID: MW14-1 (4051659-01) [V Benzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4                                                                                            | Vater] Sampled: May-26-1  < 0.5  < 1.0  < 1.0  < 1.0  < 2.0  89 %  85 %  78 %                                                         | 0.5<br>1.0<br>5.0<br>1.0<br>2.0<br>70-130<br>70-130                                | ug/L<br>ug/L<br>ug/L                    | N/A<br>N/A<br>N/A<br>N/A<br>N/A               | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                                                                               | A-01  |
| Bample ID: MW14-1 (4051659-01) [VBenzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 Bample ID: MW14-3 (4051659-02) [VBB]                                                        | Vater] Sampled: May-26-1  < 0.5  < 1.0  < 1.0  < 1.0  < 2.0  89 %  85 %  78 %                                                         | 0.5<br>1.0<br>5.0<br>1.0<br>2.0<br>70-130<br>70-130<br>70-130                      | ug/L<br>ug/L<br>ug/L                    | N/A<br>N/A<br>N/A<br>N/A<br>N/A               | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                                                                               | A-01  |
| Benzene Ethylbenzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 Bample ID: MW14-3 (4051659-02) [V                                                                               | Vater] Sampled: May-26-1  < 0.5 < 1.0 < 1.0 < 1.0 < 2.0 89 % 85 % 78 %  Vater] Sampled: May-26-1                                      | 0.5<br>1.0<br>5.0<br>1.0<br>2.0<br>70-130<br>70-130<br>14 13:30                    | ug/L<br>ug/L<br>ug/L<br>ug/L            | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                                                                  | A-01  |
| Sample ID: MW14-1 (4051659-01) [V Benzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 Sample ID: MW14-3 (4051659-02) [V Benzene Ethylbenzene                                     | Vater] Sampled: May-26-1  < 0.5 < 1.0 < 1.0 < 1.0 < 2.0 89 % 85 % 78 %  Vater] Sampled: May-26-1 < 0.5                                | 0.5<br>1.0<br>5.0<br>1.0<br>2.0<br>70-130<br>70-130<br>14 13:30                    | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L    | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                                                     | A-01  |
| Bample ID: MW14-1 (4051659-01) [V Benzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 Bample ID: MW14-3 (4051659-02) [V Benzene Ethylbenzene Naphthalene                         | Vater] Sampled: May-26-7  < 0.5 < 1.0 < 1.0 < 1.0 < 2.0 89 % 85 % 78 %  Vater] Sampled: May-26-7 < 0.5 < 1.0                          | 0.5<br>1.0<br>5.0<br>1.0<br>2.0<br>70-130<br>70-130<br>70-130<br>0.5<br>1.0<br>5.0 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L    | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                                        |       |
| Bample ID: MW14-1 (4051659-01) [VBenzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4  Bample ID: MW14-3 (4051659-02) [VBenzene Ethylbenzene Naphthalene Toluene                  | Vater] Sampled: May-26-1  < 0.5 < 1.0 < 1.0 < 1.0 < 2.0 89 % 85 % 78 %  Vater] Sampled: May-26-1  < 0.5 < 1.0 < 1.0                   | 0.5 1.0 5.0 1.0 2.0 70-130 70-130 70-130 14 13:30  0.5 1.0 5.0 1.0                 | ug/L ug/L ug/L ug/L ug/L ug/L           | N/A       | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                           |       |
| Bample ID: MW14-1 (4051659-01) [V Benzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene                                                                                                                              | Vater] Sampled: May-26-1  < 0.5 < 1.0 < 1.0 < 1.0 < 2.0 89 % 85 % 78 %  Vater] Sampled: May-26-1  < 0.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 | 0.5 1.0 5.0 1.0 2.0 70-130 70-130 70-130 14 13:30  0.5 1.0 5.0 1.0                 | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L | N/A       | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14              |       |
| Bample ID: MW14-1 (4051659-01) [V Benzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 Bample ID: MW14-3 (4051659-02) [V Benzene Ethylbenzene Naphthalene Toluene Xylenes (total) | Vater] Sampled: May-26-1  < 0.5 < 1.0 < 1.0 < 1.0 < 2.0 89 % 85 % 78 %  Vater] Sampled: May-26-1  < 0.5 < 1.0 < 1.0 < 1.0 < 2.0       | 0.5 1.0 5.0 1.0 2.0 70-130 70-130 70-130 14 13:30  0.5 1.0 5.0 1.0 2.0             | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L | N/A       | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14 |       |

## Sample / Analysis Qualifiers:

A-01 Reported Detection Limit for this analyte lowered as per client request.



### **QUALITY CONTROL DATA**

REPORTED TO PROJECT

Columbia Environmental Consulting Ltd

14-0493

WORK ORDER
REPORTED

4051659 Jun-11-14

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment
- **Duplicate (Dup)**: Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.
- Blank Spike (BS): A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).
- Standard Reference Material (SRM): A material of similar matrix to the samples, externally certified for the parameter(s) listed.
   Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

| Analyte                        | Result                | MRL Units    | Spike<br>Level | Source<br>Result | % REC       | REC<br>Limit | RPD  | RPD<br>Limit | Notes |
|--------------------------------|-----------------------|--------------|----------------|------------------|-------------|--------------|------|--------------|-------|
| DRAFT: Aggregate Organic Paran | neters, Batch B4E1240 |              |                |                  |             |              |      |              |       |
| Blank (B4E1240-BLK1)           |                       |              | Prepared       | d: Jun-01-1      | 4, Analyze  | d: Jun-01    | -14  |              |       |
| VHw (6-10)                     | < 100                 | 100 ug/L     |                |                  |             |              |      |              |       |
| LCS (B4E1240-BS2)              |                       |              | Prepared       | d: Jun-02-1      | 4, Analyze  | d: Jun-02    | -14  |              |       |
| VHw (6-10)                     | 2320                  | 100 ug/L     | 2770           |                  | 84          | 57-107       |      |              |       |
| DRAFT: Dissolved Metals, Batch | B4E1130               |              |                |                  |             |              |      |              |       |
| Blank (B4E1130-BLK1)           |                       |              | Prepared       | d: May-30-       | 14, Analyze | ed: May-3    | 0-14 |              |       |
| Aluminum, dissolved            | < 0.005               | 0.005 mg/L   |                |                  |             |              |      |              |       |
| Antimony, dissolved            | < 0.0001              | 0.0001 mg/L  |                |                  |             |              |      |              |       |
| Arsenic, dissolved             | < 0.0005              | 0.0005 mg/L  |                |                  |             |              |      |              |       |
| Barium, dissolved              | < 0.005               | 0.005 mg/L   |                |                  |             |              |      |              |       |
| Boron, dissolved               | < 0.004               | 0.004 mg/L   |                |                  |             |              |      |              |       |
| Cadmium, dissolved             | < 0.00001             | 0.00001 mg/L |                |                  |             |              |      |              |       |
| Calcium, dissolved             | < 0.2                 | 0.2 mg/L     |                |                  |             |              |      |              |       |
| Chromium, dissolved            | < 0.0005              | 0.0005 mg/L  |                |                  |             |              |      |              |       |
| Copper, dissolved              | < 0.0002              | 0.0002 mg/L  |                |                  |             |              |      |              |       |
| Iron, dissolved                | < 0.010               | 0.010 mg/L   |                |                  |             |              |      |              |       |
| Lead, dissolved                | < 0.0001              | 0.0001 mg/L  |                |                  |             |              |      |              |       |
| Magnesium, dissolved           | < 0.01                | 0.01 mg/L    |                |                  |             |              |      |              |       |
| Manganese, dissolved           | < 0.0002              | 0.0002 mg/L  |                |                  |             |              |      |              |       |
| Mercury, dissolved             | < 0.00002             | 0.0002 mg/L  |                |                  |             |              |      |              |       |
| Nickel, dissolved              | < 0.0002              | 0.0002 mg/L  |                |                  |             |              |      |              |       |
| Selenium, dissolved            | < 0.0005              | 0.0005 mg/L  |                |                  |             |              |      |              |       |
| Silver, dissolved              | < 0.00005             | 0.00005 mg/L |                |                  |             |              |      |              |       |
| Uranium, dissolved             | < 0.00002             | 0.00002 mg/L |                |                  |             |              |      |              |       |
| Zinc, dissolved                | < 0.004               | 0.004 mg/L   |                |                  |             |              |      |              |       |
| Reference (B4E1130-SRM1)       |                       |              | Prepared       | d: May-30-       | 14, Analyze | ed: May-3    | 0-14 |              |       |
| Aluminum, dissolved            | 0.232                 | 0.005 mg/L   | 0.233          |                  | 99          | 81-129       |      |              |       |
| Antimony, dissolved            | 0.0477                | 0.0001 mg/L  | 0.0430         |                  | 111         | 75-125       |      |              |       |
| Arsenic, dissolved             | 0.426                 | 0.0005 mg/L  | 0.438          |                  | 97          | 88-114       |      |              |       |
| Barium, dissolved              | 3.41                  | 0.005 mg/L   | 3.35           |                  | 102         | 72-104       |      |              |       |
| Boron, dissolved               | 1.93                  | 0.004 mg/L   | 1.74           |                  | 111         | 74-117       |      |              |       |



# **QUALITY CONTROL DATA**

REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER
REPORTED

4051659 Jun-11-14

| Analyte   | Result | MRL Units | Spike | Source | % REC   | REC   | RPD | RPD   | Notes  |
|-----------|--------|-----------|-------|--------|---------|-------|-----|-------|--------|
| 7 many to | rtooun |           | Level | Result | 70 IXES | Limit |     | Limit | 110100 |

### DRAFT: Dissolved Metals, Batch B4E1130, Continued

| Reference (B4E1130-SRM1), Continued |        | Prepared: May-30-14, Analyzed: May-30-14 |        |     |        |  |
|-------------------------------------|--------|------------------------------------------|--------|-----|--------|--|
| Cadmium, dissolved                  | 0.220  | 0.00001 mg/L                             | 0.224  | 98  | 89-111 |  |
| Calcium, dissolved                  | 8.3    | 0.2 mg/L                                 | 7.69   | 108 | 86-121 |  |
| Chromium, dissolved                 | 0.447  | 0.0005 mg/L                              | 0.437  | 102 | 89-114 |  |
| Copper, dissolved                   | 0.876  | 0.0002 mg/L                              | 0.844  | 104 | 91-115 |  |
| Iron, dissolved                     | 1.32   | 0.010 mg/L                               | 1.29   | 102 | 77-124 |  |
| Lead, dissolved                     | 0.113  | 0.0001 mg/L                              | 0.112  | 101 | 92-113 |  |
| Magnesium, dissolved                | 7.14   | 0.01 mg/L                                | 6.92   | 103 | 78-120 |  |
| Manganese, dissolved                | 0.342  | 0.0002 mg/L                              | 0.345  | 99  | 90-114 |  |
| Nickel, dissolved                   | 0.859  | 0.0002 mg/L                              | 0.840  | 102 | 90-111 |  |
| Selenium, dissolved                 | 0.0328 | 0.0005 mg/L                              | 0.0331 | 99  | 85-115 |  |
| Uranium, dissolved                  | 0.270  | 0.00002 mg/L                             | 0.266  | 102 | 85-120 |  |
| Zinc, dissolved                     | 0.866  | 0.004 mg/L                               | 0.881  | 98  | 85-111 |  |

## DRAFT: Volatile Organic Compounds (VOC), Batch B4E1240

| Blank (B4E1240-BLK1)              |              |                      | Prepared: Jur | n-01-14, Analyze | ed: Jun-01-14    |  |
|-----------------------------------|--------------|----------------------|---------------|------------------|------------------|--|
| Benzene                           | < 0.5        | 0.5 ug/L             |               |                  |                  |  |
| Ethylbenzene                      | < 1.0        | 1.0 ug/L             |               |                  |                  |  |
| Naphthalene                       | < 5.0        | 5.0 ug/L             |               |                  |                  |  |
| Toluene                           | < 1.0        | 1.0 ug/L             |               |                  |                  |  |
| Xylenes (total)                   | < 2.0        | 2.0 ug/L             |               |                  |                  |  |
| Surrogate: Toluene-d8             | 27.6         | ug/L                 | 25.0          | 110              | 70-130           |  |
| Surrogate: 4-Bromofluorobenzene   | 28.2         | ug/L                 | 25.0          | 113              | 70-130           |  |
| Surrogate: 1,4-Dichlorobenzene-d4 | 26.9         | ug/L                 | 26.2          | 103              | 70-130           |  |
| LCS (B4E1240-BS1)                 |              |                      | Prepared: Jur | n-01-14, Analyze | ed: Jun-01-14    |  |
| Benzene                           | 21.0         | 0.5 ug/L             | 20.0          | 105              | 70-130           |  |
| Ethylbenzene                      | 20.4         | 1.0 ug/L             | 20.0          | 102              | 70-130           |  |
| Naphthalene                       | 18.4         | 5.0 ug/L             | 20.0          | 92               | 70-130           |  |
|                                   |              | 0.0 49.2             | 20.0          | 0 <u>2</u>       | 70 100           |  |
| Toluene                           | 21.5         | 1.0 ug/L             | 20.0          | 108              | 70-130           |  |
| Toluene<br>Xylenes (total)        |              |                      |               |                  |                  |  |
|                                   | 21.5         | 1.0 ug/L             | 20.0          | 108              | 70-130           |  |
| Xylenes (total)                   | 21.5<br>60.3 | 1.0 ug/L<br>2.0 ug/L | 20.0<br>60.0  | 108<br>101       | 70-130<br>70-130 |  |



### **CERTIFICATE OF ANALYSIS**

REPORTED TO Columbia Environmental Consulting Ltd

RR #2, Site 55, Compartment 10 **TEL** (778) 476-5656 Penticton, BC V2A 6J7 **FAX** (778) 476-5655

ATTENTION Summer Zawacky WORK ORDER 4051659

PO NUMBER RECEIVED / TEMP May-27-14 10:30 / 9°C

 PROJECT
 14-0493
 REPORTED
 Jun-03-14

 PROJECT INFO
 LNIB PII ESA
 COC NUMBER
 B07252

#### **General Comments:**

CARO Analytical Services employs methods which are conducted according to procedures accepted by appropriate regulatory agencies, and/or are conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts, except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the Chain of Custody or Sample Requisition document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Issued By:

Jennifer Shanko, AScT For Brent Coates, BSc

Shanlio

Business Manager, Richmond

Please contact CARO if more information is needed or to provide feedback on our services.

Locations:

#110 4011 Viking Way #102 3677 Highway 97N 17225 109 Avenue
Richmond, BC V6V 2K9 Kelowna, BC V1X 5C3 Edmonton, AB T5S 1H7

Tel: 604-279-1499 Fax: 604-279-1599 Tel: 250-765-9646 Fax: 250-765-3893 Tel: 780-489-9100 Fax: 780-489-9700

www.caro.ca



### **ANALYSIS INFORMATION**

REPORTED TOColumbia Environmental Consulting LtdWORK ORDER4051659PROJECT14-0493REPORTEDJun-03-14

| Analysis Description     | •                 | Method Reference (* = modified from) |          |  |  |  |
|--------------------------|-------------------|--------------------------------------|----------|--|--|--|
| Analysis Description     | Preparation       | Analysis                             | Location |  |  |  |
| BTEX/VH/VPH in Water Pkg | N/A               | BCMOE                                | Richmond |  |  |  |
| Dissolved Metals         | APHA 3030 B       | APHA 3125 B                          | Richmond |  |  |  |
| Hardness as CaCO3 (CALC) | N/A               | APHA 2340 B                          | Richmond |  |  |  |
| VH in Water              | EPA 5030B / 5021A | BCMOE                                | Richmond |  |  |  |
| VOC in Water             | EPA 5030B / 5021A | EPA 8260B (1996)                     | Richmond |  |  |  |
| VOC/VH/VPH in Water Pkg  | N/A               | BCMOE                                | Richmond |  |  |  |

Note: The numbers in brackets represent the year that the method was published/approved

**Method Reference Descriptions:** 

BCMOE British Columbia Environmental Laboratory Manual, 2009, British Columbia Ministry of

Environment

APHA Standard Methods for the Examination of Water and Wastewater, American Public Health

Association

EPA United States Environmental Protection Agency Test Methods

**Glossary of Terms:** 

MRL Method Reporting Limit

Less than the Reported Detection Limit (RDL) - the RDL may be higher than the MRL due to

various factors such as dilutions, limited sample volume, high moisture, or interferences

mg/L Milligrams per litre ug/L Micrograms per litre



REPORTED TOColumbia Environmental Consulting LtdWORK ORDER4051659PROJECT14-0493REPORTEDJun-03-14

| Analyte                                         | Result /<br>Recovery           | MRL /<br><i>Limit</i> | Units | Prepared | Analyzed  | Notes |
|-------------------------------------------------|--------------------------------|-----------------------|-------|----------|-----------|-------|
| Calculated Parameters                           |                                |                       |       |          |           |       |
| Sample ID: MW14 1 (4051659)                     | 01) [Water] Sampled: May-26-14 | 1 11:20               |       |          |           |       |
| •                                               | ,                              |                       | //    | NI/A     | NI/A      |       |
| VPHw                                            | < 100                          |                       | ug/L  | N/A      | N/A       |       |
| Hardness, Total (Diss. as CaCO3)                | 281                            | 0.50                  | mg/L  | N/A      | N/A       |       |
| Sample ID: MW14-3 (4051659-                     | 02) [Water] Sampled: May-26-14 | 4 13:30               |       |          |           |       |
| VPHw                                            | < 100                          | 100                   | ug/L  | N/A      | N/A       |       |
| Hardness, Total (Diss. as CaCO3)                | 260                            | 0.50                  | mg/L  | N/A      | N/A       |       |
| Dissolved Metals<br>Sample ID: MW14-1 (4051659- | 01) [Water] Sampled: May-26-14 | 4 11:30               |       |          |           |       |
| Aluminum, dissolved                             | < 0.005                        | 0.005                 |       | N/A      | May-30-14 |       |
| Antimony, dissolved                             | 0.0002                         | 0.0001                | mg/L  | N/A      | May-30-14 |       |
| Arsenic, dissolved                              | 0.0010                         | 0.0005                |       | N/A      | May-30-14 |       |
| Barium, dissolved                               | 0.021                          | 0.005                 | mg/L  | N/A      | May-30-14 |       |
| Boron, dissolved                                | 0.037                          | 0.004                 | mg/L  | N/A      | May-30-14 |       |
| Cadmium, dissolved                              | 0.00001                        | 0.00001               | mg/L  | N/A      | May-30-14 |       |
| Calcium, dissolved                              | 68.1                           | 0.2                   | mg/L  | N/A      | May-30-14 |       |
| Chromium, dissolved                             | 0.0033                         | 0.0005                | mg/L  | N/A      | May-30-14 |       |
| Copper, dissolved                               | 0.0031                         | 0.0002                | mg/L  | N/A      | May-30-14 |       |
| Iron, dissolved                                 | 0.015                          | 0.010                 | mg/L  | N/A      | May-30-14 |       |
| Lead, dissolved                                 | < 0.0001                       | 0.0001                | mg/L  | N/A      | May-30-14 |       |
| Magnesium, dissolved                            | 26.8                           | 0.01                  | mg/L  | N/A      | May-30-14 |       |
| Manganese, dissolved                            | 0.0017                         | 0.0002                | mg/L  | N/A      | May-30-14 |       |
| Mercury, dissolved                              | < 0.00002                      | 0.0002                | mg/L  | N/A      | May-30-14 |       |
| Nickel, dissolved                               | 0.0013                         | 0.0002                | mg/L  | N/A      | May-30-14 |       |
| Selenium, dissolved                             | < 0.0005                       | 0.0005                | mg/L  | N/A      | May-30-14 |       |
| Silver, dissolved                               | < 0.00005                      | 0.00005               | mg/L  | N/A      | May-30-14 |       |
| Uranium, dissolved                              | 0.00313                        | 0.00002               | mg/L  | N/A      | May-30-14 |       |
| Zinc, dissolved                                 | 0.004                          | 0.004                 | mg/L  | N/A      | May-30-14 |       |
| Sample ID: MW14-3 (4051659-                     | 02) [Water] Sampled: May-26-14 | 4 13:30               |       |          |           |       |
| Aluminum, dissolved                             | < 0.005                        | 0.005                 | mg/L  | N/A      | May-30-14 |       |
| Antimony, dissolved                             | 0.0002                         | 0.0001                | mg/L  | N/A      | May-30-14 |       |
| Arsenic, dissolved                              | 0.0009                         | 0.0005                | mg/L  | N/A      | May-30-14 |       |
| Barium, dissolved                               | 0.047                          | 0.005                 | mg/L  | N/A      | May-30-14 |       |
| Boron, dissolved                                | 0.018                          | 0.004                 | mg/L  | N/A      | May-30-14 |       |
| Cadmium, dissolved                              | < 0.00001                      | 0.00001               | mg/L  | N/A      | May-30-14 |       |
| Calcium, dissolved                              | 66.9                           | 0.2                   | mg/L  | N/A      | May-30-14 |       |
| Chromium, dissolved                             | 0.0007                         | 0.0005                | mg/L  | N/A      | May-30-14 |       |
| Copper, dissolved                               | 0.0023                         | 0.0002                | mg/L  | N/A      | May-30-14 |       |
| Iron, dissolved                                 | < 0.010                        | 0.010                 | mg/L  | N/A      | May-30-14 |       |
| Lead, dissolved                                 | < 0.0001                       | 0.0001                | mg/L  | N/A      | May-30-14 |       |
| Magnesium, dissolved                            | 22.7                           |                       | mg/L  | N/A      | May-30-14 |       |
| Manganese, dissolved                            | 0.0010                         | 0.0002                | mg/L  | N/A      | May-30-14 |       |
| Mercury, dissolved                              | < 0.00002                      | 0.0002                | mg/L  | N/A      | May-30-14 |       |
| Nickel, dissolved                               | < 0.0002                       | 0.0002                | ma/l  | N/A      | May-30-14 |       |



REPORTED TOColumbia Environmental Consulting LtdWORK ORDER4051659PROJECT14-0493REPORTEDJun-03-14

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result /<br>Recovery                                                                                                                                 | MRL /<br><i>Limit</i>                                                     | Units                                   | Prepared                                      | Analyzed                                                                                                                                    | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Dissolved Metals, Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                           |                                         |                                               |                                                                                                                                             |       |
| Sample ID: MW14-3 (4051659-02) [\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nater] Sampled: May-26-                                                                                                                              | 14 13:30, Continu                                                         | ed                                      |                                               |                                                                                                                                             |       |
| Selenium, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.0005                                                                                                                                             | 0.0005                                                                    | mg/L                                    | N/A                                           | May-30-14                                                                                                                                   |       |
| Silver, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.00005                                                                                                                                            | 0.00005                                                                   | mg/L                                    | N/A                                           | May-30-14                                                                                                                                   |       |
| Uranium, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00117                                                                                                                                              | 0.00002                                                                   | mg/L                                    | N/A                                           | May-30-14                                                                                                                                   |       |
| Zinc, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.004                                                                                                                                              | 0.004                                                                     | mg/L                                    | N/A                                           | May-30-14                                                                                                                                   |       |
| Aggregate Organic Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                                                           |                                         |                                               |                                                                                                                                             |       |
| Sample ID: MW14-1 (4051659-01) [V<br>VHw (6-10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nater   Sampled: May-26-<br>  < 100                                                                                                                  |                                                                           | ug/L                                    | N/A                                           | Jun-02-14                                                                                                                                   |       |
| , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                           | ug/L                                    | IN/A                                          | Juli-02-14                                                                                                                                  |       |
| Sample ID: MW14-3 (4051659-02) [\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Water] Sampled: May-26-                                                                                                                              | 14 13:30                                                                  |                                         |                                               |                                                                                                                                             |       |
| VHw (6-10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 100                                                                                                                                                | 100                                                                       | ug/L                                    | N/A                                           | Jun-02-14                                                                                                                                   |       |
| Volatile Organic Compounds (VOC)<br>Sample ID: MW14-1 (4051659-01) [\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      | 14 11:30                                                                  |                                         |                                               |                                                                                                                                             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                           | ug/L                                    | N/A                                           | Jun-02-14                                                                                                                                   |       |
| Sample ID: MW14-1 (4051659-01) [\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Water] Sampled: May-26-                                                                                                                              | 0.5                                                                       | ug/L<br>ug/L                            | N/A<br>N/A                                    | Jun-02-14<br>Jun-02-14                                                                                                                      |       |
| Sample ID: MW14-1 (4051659-01) [N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Nater] Sampled: May-26-</b><br>< 0.5                                                                                                              | 0.5<br>1.0                                                                |                                         |                                               |                                                                                                                                             |       |
| Sample ID: MW14-1 (4051659-01) [V<br>Benzene<br>Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vater] Sampled: May-26-<br>< 0.5<br>< 1.0                                                                                                            | 0.5<br>1.0<br>5.0                                                         | ug/L                                    | N/A                                           | Jun-02-14                                                                                                                                   |       |
| Sample ID: MW14-1 (4051659-01) [V Benzene Ethylbenzene Naphthalene Toluene Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vater] Sampled: May-26-<br>< 0.5<br>< 1.0<br>< 5.0                                                                                                   | 0.5<br>1.0<br>5.0<br>1.0                                                  | ug/L<br>ug/L                            | N/A<br>N/A                                    | Jun-02-14<br>Jun-02-14                                                                                                                      |       |
| Benzene Ethylbenzene Naphthalene Toluene Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vater] Sampled: May-26-<br>< 0.5<br>< 1.0<br>< 5.0<br>< 1.0                                                                                          | 0.5<br>1.0<br>5.0<br>1.0                                                  | ug/L<br>ug/L<br>ug/L                    | N/A<br>N/A<br>N/A                             | Jun-02-14<br>Jun-02-14<br>Jun-02-14                                                                                                         |       |
| Sample ID: MW14-1 (4051659-01) [V<br>Benzene<br>Ethylbenzene<br>Naphthalene<br>Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vater] Sampled: May-26-<br>< 0.5<br>< 1.0<br>< 5.0<br>< 1.0<br>< 2.0                                                                                 | 0.5<br>1.0<br>5.0<br>1.0<br>2.0                                           | ug/L<br>ug/L<br>ug/L                    | N/A<br>N/A<br>N/A<br>N/A                      | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                                                                                            |       |
| Bample ID: MW14-1 (4051659-01) [VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vater] Sampled: May-26-<br>< 0.5<br>< 1.0<br>< 5.0<br>< 1.0<br>< 2.0<br>89 %                                                                         | 0.5<br>1.0<br>5.0<br>1.0<br>2.0<br>70-130                                 | ug/L<br>ug/L<br>ug/L<br>ug/L            | N/A<br>N/A<br>N/A<br>N/A                      | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                                                                               |       |
| Bample ID: MW14-1 (4051659-01) [Villian Benzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vater] Sampled: May-26-<br>< 0.5<br>< 1.0<br>< 5.0<br>< 1.0<br>< 2.0<br>89 %<br>85 %<br>78 %                                                         | 0.5<br>1.0<br>5.0<br>1.0<br>2.0<br>70-130<br>70-130                       | ug/L<br>ug/L<br>ug/L<br>ug/L            | N/A<br>N/A<br>N/A<br>N/A<br>N/A               | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                                                                               |       |
| Bample ID: MW14-1 (4051659-01) [Value of the content of the conten | Vater] Sampled: May-26-<br>< 0.5<br>< 1.0<br>< 5.0<br>< 1.0<br>< 2.0<br>89 %<br>85 %<br>78 %                                                         | 0.5 1.0 5.0 1.0 2.0 70-130 70-130 14 13:30                                | ug/L<br>ug/L<br>ug/L<br>ug/L            | N/A<br>N/A<br>N/A<br>N/A<br>N/A               | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                                                                               |       |
| Bample ID: MW14-1 (4051659-01) [NB Benzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 Sample ID: MW14-3 (4051659-02) [NB Sample ID: MW14-3 (4051659-02)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vater] Sampled: May-26-  < 0.5  < 1.0  < 5.0  < 1.0  < 2.0  89 %  85 %  78 %  Vater] Sampled: May-26-                                                | 0.5<br>1.0<br>5.0<br>1.0<br>2.0<br>70-130<br>70-130<br>70-130             | ug/L<br>ug/L<br>ug/L<br>ug/L            | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                                                                  |       |
| Bample ID: MW14-1 (4051659-01) [N Benzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: MW14-3 (4051659-02) [N Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vater] Sampled: May-26-  < 0.5  < 1.0  < 5.0  < 1.0  < 2.0  89 %  85 %  78 %  Vater] Sampled: May-26-  < 0.5                                         | 0.5<br>1.0<br>5.0<br>1.0<br>2.0<br>70-130<br>70-130<br>70-130<br>14 13:30 | ug/L<br>ug/L<br>ug/L<br>ug/L            | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                                                     |       |
| Bample ID: MW14-1 (4051659-01) [N Benzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 Sample ID: MW14-3 (4051659-02) [N Benzene Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vater] Sampled: May-26-  < 0.5  < 1.0  < 5.0  < 1.0  < 2.0  89 %  85 %  78 %  Vater] Sampled: May-26-  < 0.5  < 1.0                                  | 0.5<br>1.0<br>5.0<br>1.0<br>2.0<br>70-130<br>70-130<br>70-130<br>14 13:30 | ug/L ug/L ug/L ug/L ug/L                | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                                        |       |
| Bample ID: MW14-1 (4051659-01) [N Benzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 Sample ID: MW14-3 (4051659-02) [N Benzene Ethylbenzene Naphthalene Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vater] Sampled: May-26-  < 0.5 < 1.0 < 5.0 < 1.0 < 2.0 89 % 85 % 78 %  Vater] Sampled: May-26- < 0.5 < 1.0 < 5.0                                     | 0.5 1.0 5.0 1.0 2.0 70-130 70-130 70-130 14 13:30  0.5 1.0 5.0 1.0        | ug/L ug/L ug/L ug/L ug/L ug/L           | N/A       | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14                           |       |
| Benzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4 Bample ID: MW14-3 (4051659-02) [Valence of the content o | Vater] Sampled: May-26-  < 0.5  < 1.0  < 5.0  < 1.0  < 2.0  89 %  85 %  78 %  Vater] Sampled: May-26-  < 0.5  < 1.0  < 5.0  < 1.0  < 5.0  < 1.0      | 0.5 1.0 5.0 1.0 2.0 70-130 70-130 70-130 14 13:30  0.5 1.0 5.0 1.0        | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L | N/A       | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14              |       |
| Bample ID: MW14-1 (4051659-01) [N Benzene Ethylbenzene Naphthalene Toluene Xylenes (total) Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4  Bample ID: MW14-3 (4051659-02) [N Benzene Ethylbenzene Naphthalene Toluene Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vater] Sampled: May-26-  < 0.5 < 1.0 < 5.0 < 1.0 < 2.0 89 % 85 % 78 %  Vater] Sampled: May-26- < 0.5 < 1.0 < 5.0 < 1.0 < 5.0 < 1.0 < 5.0 < 1.0 < 2.0 | 0.5 1.0 5.0 1.0 2.0 70-130 70-130 70-130 14 13:30  0.5 1.0 5.0 1.0 2.0    | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L | N/A       | Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14<br>Jun-02-14 |       |



### **QUALITY CONTROL DATA**

REPORTED TO PROJECT

Columbia Environmental Consulting Ltd

14-0493

WORK ORDER
REPORTED

4051659 Jun-03-14

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment
- **Duplicate (Dup)**: Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.
- Blank Spike (BS): A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).
- Standard Reference Material (SRM): A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

| Analyte                             | Result    | MRL Units    | Spike<br>Level | Source<br>Result | % REC      | REC<br>Limit | RPD  | RPD<br>Limit | Notes |
|-------------------------------------|-----------|--------------|----------------|------------------|------------|--------------|------|--------------|-------|
| Aggregate Organic Parameters, Batch | B4E1240   |              |                |                  |            |              |      |              |       |
| Blank (B4E1240-BLK1)                |           |              | Prepared       | d: Jun-01-1      | 4, Analyze | ed: Jun-01   | -14  |              |       |
| VHw (6-10)                          | < 100     | 100 ug/L     |                |                  |            |              |      |              |       |
| LCS (B4E1240-BS2)                   |           |              | Prepared       | d: Jun-02-1      | 4. Analyze | ed: Jun-02   | -14  |              |       |
| VHw (6-10)                          | 2320      | 100 ug/L     | 2770           |                  | 84         | 57-107       |      |              |       |
| Dissolved Metals, Batch B4E1130     |           |              |                |                  |            |              |      |              |       |
| Blank (B4E1130-BLK1)                |           |              | Prepared       | d: May-30-       | 14, Analyz | ed: May-3    | 0-14 |              |       |
| Aluminum, dissolved                 | < 0.005   | 0.005 mg/L   |                |                  |            |              |      |              |       |
| Antimony, dissolved                 | < 0.0001  | 0.0001 mg/L  |                |                  |            |              |      |              |       |
| Arsenic, dissolved                  | < 0.0005  | 0.0005 mg/L  |                |                  |            |              |      |              |       |
| Barium, dissolved                   | < 0.005   | 0.005 mg/L   |                |                  |            |              |      |              |       |
| Boron, dissolved                    | < 0.004   | 0.004 mg/L   |                |                  |            |              |      |              |       |
| Cadmium, dissolved                  | < 0.00001 | 0.00001 mg/L |                |                  |            |              |      |              |       |
| Calcium, dissolved                  | < 0.2     | 0.2 mg/L     |                |                  |            |              |      |              |       |
| Chromium, dissolved                 | < 0.0005  | 0.0005 mg/L  |                |                  |            |              |      |              |       |
| Copper, dissolved                   | < 0.0002  | 0.0002 mg/L  |                |                  |            |              |      |              |       |
| Iron, dissolved                     | < 0.010   | 0.010 mg/L   |                |                  |            |              |      |              |       |
| Lead, dissolved                     | < 0.0001  | 0.0001 mg/L  |                |                  |            |              |      |              |       |
| Magnesium, dissolved                | < 0.01    | 0.01 mg/L    |                |                  |            |              |      |              |       |
| Manganese, dissolved                | < 0.0002  | 0.0002 mg/L  |                |                  |            |              |      |              |       |
| Mercury, dissolved                  | < 0.00002 | 0.0002 mg/L  |                |                  |            |              |      |              |       |
| Nickel, dissolved                   | < 0.0002  | 0.0002 mg/L  |                |                  |            |              |      |              |       |
| Selenium, dissolved                 | < 0.0005  | 0.0005 mg/L  |                |                  |            |              |      |              |       |
| Silver, dissolved                   | < 0.00005 | 0.00005 mg/L |                |                  |            |              |      |              |       |
| Uranium, dissolved                  | < 0.00002 | 0.00002 mg/L |                |                  |            |              |      |              |       |
| Zinc, dissolved                     | < 0.004   | 0.004 mg/L   |                |                  |            |              |      |              |       |
| Reference (B4E1130-SRM1)            |           |              | Prepared       | d: May-30-       | 14, Analyz | ed: May-3    | 0-14 |              |       |
| Aluminum, dissolved                 | 0.232     | 0.005 mg/L   | 0.233          |                  | 99         | 81-129       |      |              |       |
| Antimony, dissolved                 | 0.0477    | 0.0001 mg/L  | 0.0430         |                  | 111        | 75-125       |      |              |       |
| Arsenic, dissolved                  | 0.426     | 0.0005 mg/L  | 0.438          |                  | 97         | 88-114       |      |              |       |
| Barium, dissolved                   | 3.41      | 0.005 mg/L   | 3.35           |                  | 102        | 72-104       |      |              |       |
| Boron, dissolved                    | 1.93      | 0.004 mg/L   | 1.74           |                  | 111        | 74-117       |      |              |       |



# **QUALITY CONTROL DATA**

REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4051659 Jun-03-14

| Analyte                                  | Result | MRL Units    | Spike<br>Level | Source<br>Result | % REC      | REC<br>Limit | RPD         | RPD<br>Limit | Notes |
|------------------------------------------|--------|--------------|----------------|------------------|------------|--------------|-------------|--------------|-------|
| Dissolved Metals, Batch B4E1130, Continu | ed     |              |                |                  |            |              |             |              |       |
| Reference (B4E1130-SRM1), Continued      |        |              | Prepared       | d: May-30-1      | 4, Analyze | ed: May-30   | <b>)-14</b> |              |       |
| Cadmium, dissolved                       | 0.220  | 0.00001 mg/L | 0.224          |                  | 98         | 89-111       |             |              |       |
| Calcium, dissolved                       | 8.3    | 0.2 mg/L     | 7.69           |                  | 108        | 86-121       |             |              |       |
| Chromium, dissolved                      | 0.447  | 0.0005 mg/L  | 0.437          |                  | 102        | 89-114       |             |              |       |
| Copper, dissolved                        | 0.876  | 0.0002 mg/L  | 0.844          |                  | 104        | 91-115       |             |              |       |
| Iron, dissolved                          | 1.32   | 0.010 mg/L   | 1.29           |                  | 102        | 77-124       |             |              |       |
| Lead, dissolved                          | 0.113  | 0.0001 mg/L  | 0.112          |                  | 101        | 92-113       |             |              |       |
| Magnesium, dissolved                     | 7.14   | 0.01 mg/L    | 6.92           |                  | 103        | 78-120       |             |              |       |
| Manganese, dissolved                     | 0.342  | 0.0002 mg/L  | 0.345          |                  | 99         | 90-114       |             |              |       |
| Nickel, dissolved                        | 0.859  | 0.0002 mg/L  | 0.840          |                  | 102        | 90-111       |             |              |       |
| Selenium, dissolved                      | 0.0328 | 0.0005 mg/L  | 0.0331         |                  | 99         | 85-115       |             |              |       |
| Uranium, dissolved                       | 0.270  | 0.00002 mg/L | 0.266          |                  | 102        | 85-120       |             |              |       |
| Zinc, dissolved                          | 0.866  | 0.004 mg/L   | 0.881          |                  | 98         | 85-111       |             |              |       |

#### Volatile Organic Compounds (VOC), Batch B4E1240

| Blank (B4E1240-BLK1)              |       |          | Prepared: Jun- | -01-14, Analyz | ed: Jun-01-14 |  |
|-----------------------------------|-------|----------|----------------|----------------|---------------|--|
| Benzene                           | < 0.5 | 0.5 ug/L |                |                |               |  |
| Ethylbenzene                      | < 1.0 | 1.0 ug/L |                |                |               |  |
| Naphthalene                       | < 5.0 | 5.0 ug/L |                |                |               |  |
| Toluene                           | < 1.0 | 1.0 ug/L |                |                |               |  |
| Xylenes (total)                   | < 2.0 | 2.0 ug/L |                |                |               |  |
| Surrogate: Toluene-d8             | 27.6  | ug/L     | 25.0           | 110            | 70-130        |  |
| Surrogate: 4-Bromofluorobenzene   | 28.2  | ug/L     | 25.0           | 113            | 70-130        |  |
| Surrogate: 1,4-Dichlorobenzene-d4 | 26.9  | ug/L     | 26.2           | 103            | 70-130        |  |
| LCS (B4E1240-BS1)                 |       |          | Prepared: Jun- | -01-14, Analyz | ed: Jun-01-14 |  |
| Benzene                           | 21.0  | 0.5 ug/L | 20.0           | 105            | 70-130        |  |
| Ethylbenzene                      | 20.4  | 1.0 ug/L | 20.0           | 102            | 70-130        |  |
| Naphthalene                       | 18.4  | 5.0 ug/L | 20.0           | 92             | 70-130        |  |
| Toluene                           | 21.5  | 1.0 ug/L | 20.0           | 108            | 70-130        |  |
| Xylenes (total)                   | 60.3  | 2.0 ug/L | 60.0           | 101            | 70-130        |  |
| Surrogate: Toluene-d8             | 29.4  | ug/L     | 25.0           | 118            | 70-130        |  |
| Surrogate: 4-Bromofluorobenzene   | 30.0  | ug/L     | 25.0           | 120            | 70-130        |  |
|                                   | 20.5  |          | 20.0           | 440            | 70.400        |  |
| Surrogate: 1,4-Dichlorobenzene-d4 | 30.5  | ug/L     | 26.2           | 116            | 70-130        |  |



### **CERTIFICATE OF ANALYSIS**

REPORTED TO Columbia Environmental Consulting Ltd

RR #2, Site 55, Compartment 10 **TEL** (778) 476-5656 Penticton, BC V2A 6J7 **FAX** (778) 476-5655

ATTENTION Summer Zawacky WORK ORDER 4030418

PO NUMBER RECEIVED / TEMP Mar-10-14 13:12 / 8°C

 PROJECT
 14-0493
 REPORTED
 Mar-19-14

 PROJECT INFO
 LNIB PII ESA
 COC NUMBER
 B08808, B08809

#### **General Comments:**

CARO Analytical Services employs methods which are conducted according to procedures accepted by appropriate regulatory agencies, and/or are conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts, except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the Chain of Custody or Sample Requisition document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Issued By:

Jennifer Shanko, AScT For Brent Coates, BSc

Shanlio

Business Manager, Richmond

Please contact CARO if more information is needed or to provide feedback on our services.

Locations:

#110 4011 Viking Way #102 3677 Highway 97N 17225 109 Avenue
Richmond, BC V6V 2K9 Kelowna, BC V1X 5C3 Edmonton, AB T5S 1H7

Tel: 604-279-1499 Fax: 604-279-1599 Tel: 250-765-9646 Fax: 250-765-3893 Tel: 780-489-9100 Fax: 780-489-9700

www.caro.ca



### **ANALYSIS INFORMATION**

Columbia Environmental Consulting Ltd 4030418 **REPORTED TO WORK ORDER PROJECT REPORTED** Mar-19-14

| Analysis Description      | Method Reference (* = Preparation | Method Reference (* = modified from) Preparation Analysis |          |  |
|---------------------------|-----------------------------------|-----------------------------------------------------------|----------|--|
| BTEX in Water             | EPA 5030B / 5021A                 | EPA 8260B (1996)                                          | Richmond |  |
| BTEX/VH/VPH in Water Pkg  | N/A                               | BCMOE                                                     | Richmond |  |
| CCME PHC F1 in Water      | EPA 5030B / 5021A                 | CCME CWS PHC (2001) *                                     | Richmond |  |
| CCME PHC F2-F4 in Water   | EPA 3510C                         | CCME CWS PHC (2001) *                                     | Richmond |  |
| Chloride in Water by IC   | N/A                               | APHA 4110 B                                               | Kelowna  |  |
| Dissolved Metals          | APHA 3030 B                       | APHA 3125 B                                               | Richmond |  |
| Fluoride in Water by IC   | N/A                               | APHA 4110 B                                               | Kelowna  |  |
| Hardness as CaCO3 (CALC)  | N/A                               | APHA 2340 B                                               | Richmond |  |
| Nitrate-N in Water by IC  | N/A                               | APHA 4110 B                                               | Kelowna  |  |
| Nitrite-N in Water by IC  | N/A                               | APHA 4110 B                                               | Kelowna  |  |
| Orthophosphate as P by IC | N/A                               | APHA 4110 B                                               | Kelowna  |  |
| PAH in Water (low)        | EPA 3510C                         | EPA 8270D (2007)                                          | Richmond |  |
| Sulfate in Water by IC    | N/A                               | APHA 4110 B                                               | Kelowna  |  |
| Total Recoverable Metals  | APHA 3030E *                      | APHA 3125 B                                               | Richmond |  |
| VH in Water               | EPA 5030B / 5021A                 | BCMOE                                                     | Richmond |  |

Note: The numbers in brackets represent the year that the method was published/approved

### **Method Reference Descriptions:**

British Columbia Environmental Laboratory Manual, 2009, British Columbia Ministry of **BCMOE** 

**CCME** Canadian Council of Ministers of the Environment, Canada-wide Standard Reference Methods **APHA** 

Standard Methods for the Examination of Water and Wastewater, American Public Health

Association

**EPA** United States Environmental Protection Agency Test Methods

### **Glossary of Terms:**

MRL Method Reporting Limit

Less than the Reported Detection Limit (RDL) - the RDL may be higher than the MRL due to <

various factors such as dilutions, limited sample volume, high moisture, or interferences

AO Aesthetic objective mg/L Milligrams per litre Micrograms per litre ug/L



Columbia Environmental Consulting Ltd REPORTED TO **PROJECT** 

**WORK ORDER** REPORTED

| Analyte                                      | Result /<br>Recovery                   | MRL /<br>Limit | Units        | Prepared   | Analyzed    | Notes |
|----------------------------------------------|----------------------------------------|----------------|--------------|------------|-------------|-------|
| Anions                                       |                                        |                |              |            |             |       |
| Sample ID: MW05-12 (403041                   | 8-08) [Water] Sampled: Mar-07-14 12:00 | )              |              |            |             |       |
| Chloride                                     | 387                                    |                | mg/L         | N/A        | Mar-11-14   |       |
| Fluoride                                     | 0.24                                   |                | mg/L         | N/A        | Mar-11-14   |       |
| Nitrogen, Nitrate as N                       | 1.10                                   | 0.010          |              | N/A        | Mar-11-14   |       |
| Nitrogen, Nitrite as N                       | < 0.010                                | 0.010          |              | N/A        | Mar-11-14   |       |
| Phosphate, Ortho as P                        | < 0.01                                 |                | mg/L         | N/A        | Mar-11-14   |       |
| Sulfate                                      | 35.3                                   |                | mg/L         | N/A        | Mar-11-14   |       |
| Sample ID: MW07-28S (40304                   | 18-09) [Water] Sampled: Mar-07-14 12:  |                |              |            |             |       |
| Chloride                                     | 609                                    |                | mg/L         | N/A        | Mar-11-14   |       |
| Fluoride                                     | 0.13                                   |                | mg/L         | N/A        | Mar-11-14   |       |
| Nitrogen, Nitrate as N                       | 0.917                                  | 0.010          |              | N/A        | Mar-11-14   |       |
| Nitrogen, Nitrite as N                       | < 0.010                                | 0.010          |              | N/A        | Mar-11-14   |       |
| Phosphate, Ortho as P                        | < 0.01                                 |                | mg/L         | N/A        | Mar-11-14   |       |
| Sulfate                                      | 38.4                                   |                | mg/L         | N/A        | Mar-11-14   |       |
|                                              | 118-10) [Water] Sampled: Mar-07-14 12: |                | 9/ =         |            |             |       |
| Chloride                                     | 1.13                                   |                | mg/L         | N/A        | Mar-11-14   |       |
| Fluoride                                     | 0.23                                   |                | mg/L         | N/A        | Mar-11-14   |       |
| Nitrogen, Nitrate as N                       | < 0.010                                | 0.10           |              | N/A        | Mar-11-14   |       |
| Nitrogen, Nitrite as N                       | < 0.010                                | 0.010          |              | N/A        | Mar-11-14   |       |
| Phosphate, Ortho as P                        | < 0.010                                |                | mg/L         | N/A        | Mar-11-14   |       |
| Sulfate                                      | 50.9                                   |                | mg/L         | N/A        | Mar-11-14   |       |
|                                              |                                        |                | IIIg/L       | IV/A       | IVIAI-11-14 |       |
| Chloride (40304                              | 118-11) [Water] Sampled: Mar-07-14 12: |                | ma/l         | N/A        | Mar-11-14   |       |
| Fluoride                                     | 1.15                                   |                | mg/L         | N/A<br>N/A | Mar-11-14   |       |
|                                              | 0.20                                   |                | mg/L         | N/A<br>N/A | Mar-11-14   |       |
| Nitrogen, Nitrate as N                       | 0.012                                  | 0.010          |              | N/A<br>N/A | Mar-11-14   |       |
| Nitrogen, Nitrite as N Phosphate, Ortho as P | <b>0.012</b> < 0.01                    |                | mg/L<br>mg/L | N/A<br>N/A | Mar-11-14   |       |
| Sulfate                                      | 50.8                                   |                | mg/L         | N/A        | Mar-11-14   |       |
|                                              |                                        | 1.0            | IIIg/L       | IN/A       | IVIAI-11-14 |       |
|                                              | 3-12) [Water] Sampled: Mar-07-14 12:00 | 0.40           |              | N1/A       | Man 44 44   |       |
| Chloride                                     | 1.22                                   |                | mg/L         | N/A        | Mar-11-14   |       |
| Fluoride                                     | 0.22                                   |                | mg/L         | N/A        | Mar-11-14   |       |
| Nitrogen, Nitrate as N                       | 0.014                                  |                | mg/L         | N/A        | Mar-11-14   |       |
| Nitrogen, Nitrite as N                       | 0.014                                  |                | mg/L         | N/A        | Mar-11-14   |       |
| Phosphate, Ortho as P                        | < 0.01                                 |                | mg/L         | N/A        | Mar-11-14   |       |
| Sulfate                                      | 49.6                                   |                | mg/L         | N/A        | Mar-11-14   |       |
|                                              | 18-13) [Water] Sampled: Mar-07-14 12:  |                |              |            |             |       |
| Chloride                                     | 122                                    |                | mg/L         | N/A        | Mar-11-14   |       |
| Fluoride                                     | 0.12                                   |                | mg/L         | N/A        | Mar-11-14   |       |
| Nitrogen, Nitrate as N                       | 0.407                                  | 0.010          |              | N/A        | Mar-11-14   |       |
| Nitrogen, Nitrite as N                       | < 0.010                                | 0.010          |              | N/A        | Mar-11-14   |       |
| Phosphate, Ortho as P                        | < 0.01                                 |                | mg/L         | N/A        | Mar-11-14   |       |
| Sulfate                                      | 29.2                                   | 1 0            | mg/L         | N/A        | Mar-11-14   |       |



REPORTED TOColumbia Environmental Consulting LtdWORK ORDER4030418PROJECT14-0493REPORTEDMar-19-14

| Analyte                                                                                                  | Result /<br>Recovery                    | MRL /<br><i>Limit</i>               | Units        | Prepared   | Analyzed   | Notes |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|--------------|------------|------------|-------|
| Anions, Continued                                                                                        |                                         |                                     |              |            |            |       |
| Sample ID: MW07-32D (4030418-14                                                                          | I) [Water] Sampled: Mar-0               | 7-14 12:00                          |              |            |            |       |
| Chloride                                                                                                 | 119                                     |                                     | mg/L         | N/A        | Mar-11-14  |       |
| Fluoride                                                                                                 | 0.11                                    |                                     | mg/L         | N/A        | Mar-11-14  |       |
| Nitrogen, Nitrate as N                                                                                   | 0.370                                   | 0.010                               |              | N/A        | Mar-11-14  |       |
| Nitrogen, Nitrite as N                                                                                   | < 0.010                                 | 0.010                               | mg/L         | N/A        | Mar-11-14  |       |
| Phosphate, Ortho as P                                                                                    | < 0.01                                  | 0.01                                | mg/L         | N/A        | Mar-11-14  |       |
| Sulfate                                                                                                  | 28.4                                    | 1.0                                 | mg/L         | N/A        | Mar-11-14  |       |
| Sample ID: MW08-42 (4030418-15)                                                                          | [Water] Sampled: Mar-07                 | -14 12:00                           |              |            |            |       |
| Chloride                                                                                                 | 73.1                                    | 0.10                                | mg/L         | N/A        | Mar-11-14  |       |
| Fluoride                                                                                                 | 0.14                                    | 0.10                                | mg/L         | N/A        | Mar-11-14  |       |
| Nitrogen, Nitrate as N                                                                                   | 0.161                                   | 0.010                               | mg/L         | N/A        | Mar-11-14  |       |
| Nitrogen, Nitrite as N                                                                                   | < 0.010                                 | 0.010                               | mg/L         | N/A        | Mar-11-14  |       |
| Phosphate, Ortho as P                                                                                    | < 0.01                                  | 0.01                                | mg/L         | N/A        | Mar-11-14  |       |
| Sulfate                                                                                                  | 32.1                                    | 1.0                                 | mg/L         | N/A        | Mar-11-14  |       |
| Sample ID: MW08-43 (4030418-16)                                                                          | [Water] Sampled: Mar-07                 | -14 12:00                           |              |            |            |       |
| Chloride                                                                                                 | 178                                     | 0.10                                | mg/L         | N/A        | Mar-11-14  |       |
| Fluoride                                                                                                 | 0.14                                    | 0.10                                | mg/L         | N/A        | Mar-11-14  |       |
| Nitrogen, Nitrate as N                                                                                   | 0.560                                   | 0.010                               | mg/L         | N/A        | Mar-11-14  |       |
| Nitrogen, Nitrite as N                                                                                   | < 0.010                                 | 0.010                               | mg/L         | N/A        | Mar-11-14  |       |
| Phosphate, Ortho as P                                                                                    | < 0.01                                  | 0.01                                | mg/L         | N/A        | Mar-11-14  |       |
| Sulfate                                                                                                  | 28.8                                    | 1.0                                 | mg/L         | N/A        | Mar-11-14  |       |
| Calculated Parameters<br>Sample ID: SW1 (4030418-01) [Wa<br>VPHw                                         | ter] Sampled: Mar-03-14 1<br>< 100      |                                     | ug/L         | N/A        | N/A        |       |
| Hardness, Total (Total as CaCO3)                                                                         | 177                                     | 5.0                                 | mg/L         | N/A        | N/A        |       |
| Sample ID: SW2 (4030418-02) [Wa                                                                          | ter] Sampled: Mar-03-14 1               | 6:00                                |              |            |            |       |
| VPHw                                                                                                     | < 100                                   |                                     | ug/L         | N/A        | N/A        |       |
| Hardness, Total (Total as CaCO3)                                                                         | 183                                     |                                     | mg/L         | N/A        | N/A        |       |
| Sample ID: SW3 (4030418-03) [Wa                                                                          |                                         |                                     |              |            |            |       |
| VPHw                                                                                                     | < 100                                   |                                     | ug/L         | N/A        | N/A        |       |
| Hardness, Total (Total as CaCO3)                                                                         | 249                                     |                                     | mg/L         | N/A        | N/A        |       |
| Sample ID: MW14-1 (4030418-04) [                                                                         |                                         |                                     |              |            |            |       |
| - · · · · · · · · · · · · · · · · · · ·                                                                  | < 100                                   |                                     | ug/L         | N/A        | N/A        |       |
| VPHw                                                                                                     |                                         |                                     | mg/L         | N/A        | N/A        |       |
| VPHw<br>Hardness, Total (Diss. as CaCO3)                                                                 | 251                                     |                                     | _            |            |            |       |
| Hardness, Total (Diss. as CaCO3)                                                                         |                                         |                                     |              |            |            |       |
| Hardness, Total (Diss. as CaCO3)  Sample ID: MWDUP2 (4030418-05)                                         | [Water] Sampled: Mar-07                 | -14 17:00                           | ug/l         | N/A        | N/A        |       |
| Hardness, Total (Diss. as CaCO3)  Sample ID: MWDUP2 (4030418-05)  VPHw                                   | [Water] Sampled: Mar-07                 | <b>-14 17:00</b>                    | ug/L<br>ma/L | N/A<br>N/A | N/A<br>N/A |       |
| Hardness, Total (Diss. as CaCO3)  Sample ID: MWDUP2 (4030418-05)  VPHw  Hardness, Total (Diss. as CaCO3) | [Water] Sampled: Mar-07<br>< 100<br>248 | <b>-14 17:00</b> 100 5.0            | ug/L<br>mg/L | N/A<br>N/A | N/A<br>N/A |       |
| Hardness, Total (Diss. as CaCO3)  Sample ID: MWDUP2 (4030418-05)  VPHw                                   | [Water] Sampled: Mar-07<br>< 100<br>248 | -14 17:00<br>100<br>5.0<br>14 17:00 |              |            |            |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 

**WORK ORDER** REPORTED

4030418 Mar-19-14

| Analyte                          | Result /<br>Recovery      | MRL /<br><i>Limit</i> | Units | Prepared | Analyzed | Notes |
|----------------------------------|---------------------------|-----------------------|-------|----------|----------|-------|
| Calculated Parameters, Continued |                           |                       |       |          |          |       |
| Sample ID: MW14-2 (4030418-06) [ | Water] Sampled: Mar-07-1  | 4 17:00, Continue     | ed    |          |          |       |
| Hardness, Total (Diss. as CaCO3) | 284                       | 5.0                   | mg/L  | N/A      | N/A      |       |
| Sample ID: MW14-3 (4030418-07) [ | Water] Sampled: Mar-08-1  | 4 09:00               |       |          |          |       |
| VPHw                             | < 100                     | 100                   | ug/L  | N/A      | N/A      |       |
| Hardness, Total (Diss. as CaCO3) | 240                       | 5.0                   | mg/L  | N/A      | N/A      |       |
| Sample ID: MW05-12 (4030418-08)  | [Water] Sampled: Mar-07-  | -14 12:00             |       |          |          |       |
| Hardness, Total (Diss. as CaCO3) | 287                       | 5.0                   | mg/L  | N/A      | N/A      |       |
| Sample ID: MW07-28S (4030418-09  | ) [Water] Sampled: Mar-0  | 7-14 12:00            |       |          |          |       |
| Hardness, Total (Diss. as CaCO3) | 605                       | 5.0                   | mg/L  | N/A      | N/A      |       |
| Sample ID: MW07-28D (4030418-10  | ) [Water] Sampled: Mar-0  | 7-14 12:00            |       |          |          |       |
| Hardness, Total (Diss. as CaCO3) | 281                       | 5.0                   | mg/L  | N/A      | N/A      |       |
| Sample ID: MW07-29D (4030418-11  | ) [Water] Sampled: Mar-0  | 7-14 12:00            |       |          |          |       |
| Hardness, Total (Diss. as CaCO3) | 215                       | 5.0                   | mg/L  | N/A      | N/A      |       |
| Sample ID: MWDUP (4030418-12)    | [Water] Sampled: Mar-07-1 | 14 12:00              |       |          |          |       |
| Hardness, Total (Diss. as CaCO3) | 209                       | 5.0                   | mg/L  | N/A      | N/A      |       |
| Sample ID: MW07-32S (4030418-13  | ) [Water] Sampled: Mar-0  | 7-14 12:00            |       |          |          |       |
| Hardness, Total (Diss. as CaCO3) | 394                       | 5.0                   | mg/L  | N/A      | N/A      |       |
| Sample ID: MW07-32D (4030418-14  | ) [Water] Sampled: Mar-0  | 7-14 12:00            |       |          |          |       |
| Hardness, Total (Diss. as CaCO3) | 368                       | 5.0                   | mg/L  | N/A      | N/A      |       |
| Sample ID: MW08-42 (4030418-15)  | [Water] Sampled: Mar-07-  | -14 12:00             |       |          |          |       |
| Hardness, Total (Diss. as CaCO3) | 395                       | 5.0                   | mg/L  | N/A      | N/A      |       |
| Sample ID: MW08-43 (4030418-16)  | [Water] Sampled: Mar-07-  | -14 12:00             |       |          |          |       |
| Hardness, Total (Diss. as CaCO3) | 438                       |                       | mg/L  | N/A      | N/A      |       |
|                                  |                           |                       |       |          |          |       |

### **Dissolved Metals**

## Sample ID: MW14-1 (4030418-04) [Water] Sampled: Mar-07-14 17:00

|                      | on, [mater] campical mai or |        |      |     |           |  |
|----------------------|-----------------------------|--------|------|-----|-----------|--|
| Aluminum, dissolved  | < 0.05                      | 0.05   | mg/L | N/A | Mar-12-14 |  |
| Antimony, dissolved  | < 0.001                     | 0.001  | mg/L | N/A | Mar-12-14 |  |
| Arsenic, dissolved   | < 0.005                     | 0.005  | mg/L | N/A | Mar-12-14 |  |
| Barium, dissolved    | < 0.05                      | 0.05   | mg/L | N/A | Mar-12-14 |  |
| Beryllium, dissolved | < 0.001                     | 0.001  | mg/L | N/A | Mar-12-14 |  |
| Bismuth, dissolved   | < 0.001                     | 0.001  | mg/L | N/A | Mar-12-14 |  |
| Boron, dissolved     | 0.05                        | 0.04   | mg/L | N/A | Mar-12-14 |  |
| Cadmium, dissolved   | < 0.0001                    | 0.0001 | mg/L | N/A | Mar-12-14 |  |
| Calcium, dissolved   | 59.9                        | 2.0    | mg/L | N/A | Mar-12-14 |  |
| Chromium, dissolved  | < 0.005                     | 0.005  | mg/L | N/A | Mar-12-14 |  |
| Cobalt, dissolved    | < 0.0005                    | 0.0005 | mg/L | N/A | Mar-12-14 |  |
| Copper, dissolved    | < 0.002                     | 0.002  | mg/L | N/A | Mar-12-14 |  |
| Copper, dissolved    | < 0.002                     | 0.002  | mg/L | N/A | Mar-12-14 |  |

Page 5 of 37 Rev 03/14/14



Columbia Environmental Consulting Ltd REPORTED TO

**PROJECT** 

**WORK ORDER** REPORTED

| Analyte                     | Result /<br>Recovery           | MRL /<br><i>Limit</i> | Units        | Prepared | Analyzed  | Notes |
|-----------------------------|--------------------------------|-----------------------|--------------|----------|-----------|-------|
| Dissolved Metals, Continued |                                |                       |              |          |           |       |
| ample ID: MW14-1 (4030418   | -04) [Water] Sampled: Mar-07-1 | 4 17:00, Continue     | ed           |          |           |       |
| Iron, dissolved             | < 0.10                         | 0.10                  | mg/L         | N/A      | Mar-12-14 |       |
| _ead, dissolved             | < 0.001                        | 0.001                 | mg/L         | N/A      | Mar-12-14 |       |
| ithium, dissolved           | 0.004                          | 0.001                 |              | N/A      | Mar-12-14 |       |
| Magnesium, dissolved        | 24.7                           | 0.1                   | mg/L         | N/A      | Mar-12-14 |       |
| Manganese, dissolved        | 0.012                          | 0.002                 | mg/L         | N/A      | Mar-12-14 |       |
| Mercury, dissolved          | < 0.0002                       | 0.0002                | mg/L         | N/A      | Mar-12-14 |       |
| Molybdenum, dissolved       | 0.008                          | 0.001                 | mg/L         | N/A      | Mar-12-14 |       |
| lickel, dissolved           | < 0.002                        | 0.002                 | mg/L         | N/A      | Mar-12-14 |       |
| Phosphorus, dissolved       | < 0.2                          | 0.2                   | mg/L         | N/A      | Mar-12-14 |       |
| Potassium, dissolved        | 3.1                            | 0.2                   | mg/L         | N/A      | Mar-12-14 |       |
| Selenium, dissolved         | < 0.005                        | 0.005                 |              | N/A      | Mar-12-14 |       |
| Silicon, dissolved          | 10                             |                       | mg/L         | N/A      | Mar-12-14 |       |
| Silver, dissolved           | 0.0011                         | 0.0005                |              | N/A      | Mar-12-14 |       |
| Sodium, dissolved           | 17.4                           |                       | mg/L         | N/A      | Mar-12-14 |       |
| Strontium, dissolved        | 0.33                           |                       | mg/L         | N/A      | Mar-12-14 |       |
| Sulfur, dissolved           | < 10                           |                       | mg/L         | N/A      | Mar-12-14 |       |
| ellurium, dissolved         | < 0.002                        | 0.002                 |              | N/A      | Mar-12-14 |       |
| hallium, dissolved          | < 0.0002                       | 0.0002                |              | N/A      | Mar-12-14 |       |
| horium, dissolved           | < 0.001                        | 0.001                 |              | N/A      | Mar-12-14 |       |
| in, dissolved               | < 0.002                        | 0.002                 |              | N/A      | Mar-12-14 |       |
| itanium, dissolved          | < 0.05                         |                       | mg/L         | N/A      | Mar-12-14 |       |
| Jranium, dissolved          | 0.0026                         | 0.0002                |              | N/A      | Mar-12-14 |       |
| /anadium, dissolved         | < 0.01                         |                       | mg/L         | N/A      | Mar-12-14 |       |
| Zinc, dissolved             | < 0.04                         |                       | mg/L         | N/A      | Mar-12-14 |       |
| Zirconium, dissolved        | < 0.001                        | 0.001                 |              | N/A      | Mar-12-14 |       |
|                             | 8-05) [Water] Sampled: Mar-07  |                       | 9/ _         | 10/1     |           |       |
| Aluminum, dissolved         | < 0.05                         |                       | mg/L         | N/A      | Mar-12-14 |       |
|                             | < 0.001                        | 0.001                 |              | N/A      | Mar-12-14 |       |
| Antimony, dissolved         | < 0.005                        | 0.001                 |              | N/A      | Mar-12-14 |       |
| Arsenic, dissolved          | < 0.05                         |                       | mg/L<br>mg/L | N/A      | Mar-12-14 |       |
| Barium, dissolved           |                                | 0.001                 |              |          |           |       |
| Beryllium, dissolved        | < 0.001                        |                       |              | N/A      | Mar-12-14 |       |
| Rismuth, dissolved          | < 0.001                        | 0.001                 |              | N/A      | Mar-12-14 |       |
| Boron, dissolved            | 0.04                           |                       | mg/L         | N/A      | Mar-12-14 |       |
| Cadmium, dissolved          | < 0.0001                       | 0.0001                |              | N/A      | Mar-12-14 |       |
| Calcium, dissolved          | 59.9                           |                       | mg/L         | N/A      | Mar-12-14 |       |
| Chromium, dissolved         | < 0.005                        | 0.005                 |              | N/A      | Mar-12-14 |       |
| Cobalt, dissolved           | < 0.0005                       | 0.0005                |              | N/A      | Mar-12-14 |       |
| Copper, dissolved           | < 0.002                        | 0.002                 |              | N/A      | Mar-12-14 |       |
| ron, dissolved              | < 0.10                         |                       | mg/L         | N/A      | Mar-12-14 |       |
| ead, dissolved              | < 0.001                        | 0.001                 |              | N/A      | Mar-12-14 |       |
| Lithium, dissolved          | 0.004                          | 0.001                 |              | N/A      | Mar-12-14 |       |
| Magnesium, dissolved        | 24.0                           |                       | mg/L         | N/A      | Mar-12-14 |       |
| Manganese, dissolved        | 0.012                          | 0.002                 |              | N/A      | Mar-12-14 |       |
| Mercury, dissolved          | < 0.0002                       | 0.0002                | mg/L         | N/A      | Mar-12-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                                                                                                                                                                                                                                           | Result /<br>Recovery                                                                                              | MRL /<br><i>Limit</i>                                                                            | Units                                   | Prepared                                             | Analyzed                                                                                                                                                 | Notes |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Dissolved Metals, Continued                                                                                                                                                                                                                       |                                                                                                                   |                                                                                                  |                                         |                                                      |                                                                                                                                                          |       |
| Sample ID: MWDUP2 (403041                                                                                                                                                                                                                         | 18-05) [Water] Sampled: Mar-07                                                                                    | -14 17:00, Continเ                                                                               | ıed                                     |                                                      |                                                                                                                                                          |       |
| Molybdenum, dissolved                                                                                                                                                                                                                             | 0.008                                                                                                             | 0.001                                                                                            | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Nickel, dissolved                                                                                                                                                                                                                                 | < 0.002                                                                                                           | 0.002                                                                                            |                                         | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Phosphorus, dissolved                                                                                                                                                                                                                             | < 0.2                                                                                                             |                                                                                                  | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Potassium, dissolved                                                                                                                                                                                                                              | 2.9                                                                                                               |                                                                                                  | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Selenium, dissolved                                                                                                                                                                                                                               | < 0.005                                                                                                           | 0.005                                                                                            |                                         | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Silicon, dissolved                                                                                                                                                                                                                                | 10                                                                                                                |                                                                                                  | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Silver, dissolved                                                                                                                                                                                                                                 | 0.0011                                                                                                            | 0.0005                                                                                           |                                         | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Sodium, dissolved                                                                                                                                                                                                                                 | 16.9                                                                                                              |                                                                                                  | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Strontium, dissolved                                                                                                                                                                                                                              | 0.32                                                                                                              |                                                                                                  | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Sulfur, dissolved                                                                                                                                                                                                                                 | < 10                                                                                                              |                                                                                                  | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Tellurium, dissolved                                                                                                                                                                                                                              | < 0.002                                                                                                           | 0.002                                                                                            |                                         | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Fhallium, dissolved                                                                                                                                                                                                                               | < 0.0002                                                                                                          | 0.0002                                                                                           |                                         | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Thorium, dissolved                                                                                                                                                                                                                                | < 0.001                                                                                                           | 0.001                                                                                            |                                         | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Fin, dissolved                                                                                                                                                                                                                                    | < 0.002                                                                                                           | 0.002                                                                                            |                                         | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Fitanium, dissolved                                                                                                                                                                                                                               | < 0.05                                                                                                            |                                                                                                  | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Jranium, dissolved                                                                                                                                                                                                                                | 0.0026                                                                                                            | 0.0002                                                                                           |                                         | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| /anadium, dissolved                                                                                                                                                                                                                               | < 0.01                                                                                                            |                                                                                                  | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Zinc, dissolved                                                                                                                                                                                                                                   | < 0.04                                                                                                            |                                                                                                  | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Zirconium, dissolved                                                                                                                                                                                                                              | < 0.001                                                                                                           | 0.001                                                                                            |                                         | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Aluminum, dissolved                                                                                                                                                                                                                               | 3-06) [Water] Sampled: Mar-07-1<br>< 0.05                                                                         | 0.05                                                                                             | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Antimony, dissolved                                                                                                                                                                                                                               | < 0.001                                                                                                           | 0.001                                                                                            |                                         | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Arsenic, dissolved                                                                                                                                                                                                                                | < 0.005                                                                                                           | 0.005                                                                                            |                                         | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Barium, dissolved                                                                                                                                                                                                                                 | < 0.05                                                                                                            |                                                                                                  | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Beryllium, dissolved                                                                                                                                                                                                                              | < 0.001                                                                                                           | 0.001                                                                                            |                                         | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Bismuth, dissolved                                                                                                                                                                                                                                | < 0.001                                                                                                           | 0.001                                                                                            |                                         | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Boron, dissolved                                                                                                                                                                                                                                  | 0.05                                                                                                              | 0.04                                                                                             | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Cadmium, dissolved                                                                                                                                                                                                                                | < 0.0001                                                                                                          | 0.0001                                                                                           | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| Calcium, dissolved                                                                                                                                                                                                                                | *****                                                                                                             | 0.0001                                                                                           |                                         |                                                      |                                                                                                                                                          |       |
| , <del></del>                                                                                                                                                                                                                                     | 65.4                                                                                                              | 2.0                                                                                              | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                                                |       |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                             |                                                                                                                   |                                                                                                  |                                         | N/A<br>N/A                                           |                                                                                                                                                          |       |
| Chromium, dissolved                                                                                                                                                                                                                               | 65.4                                                                                                              | 2.0<br>0.005<br>0.0005                                                                           | mg/L<br>mg/L                            |                                                      | Mar-12-14                                                                                                                                                |       |
| Chromium, dissolved<br>Cobalt, dissolved                                                                                                                                                                                                          | <b>65.4</b> < 0.005                                                                                               | 2.0<br>0.005                                                                                     | mg/L<br>mg/L                            | N/A                                                  | Mar-12-14<br>Mar-12-14                                                                                                                                   |       |
| Chromium, dissolved Cobalt, dissolved Copper, dissolved                                                                                                                                                                                           | <b>65.4</b> < 0.005 < 0.0005                                                                                      | 2.0<br>0.005<br>0.0005<br>0.002                                                                  | mg/L<br>mg/L                            | N/A<br>N/A                                           | Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                                                      |       |
| Chromium, dissolved Cobalt, dissolved Copper, dissolved ron, dissolved                                                                                                                                                                            | 65.4<br>< 0.005<br>< 0.0005<br>0.003                                                                              | 2.0<br>0.005<br>0.0005<br>0.002                                                                  | mg/L<br>mg/L<br>mg/L<br>mg/L            | N/A<br>N/A<br>N/A                                    | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                                         |       |
| Chromium, dissolved Cobalt, dissolved Copper, dissolved ron, dissolved Lead, dissolved Lithium, dissolved                                                                                                                                         | 65.4<br>< 0.005<br>< 0.0005<br>0.003<br>< 0.10                                                                    | 2.0<br>0.005<br>0.0005<br>0.002<br>0.10                                                          | mg/L<br>mg/L<br>mg/L<br>mg/L            | N/A<br>N/A<br>N/A<br>N/A                             | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                            |       |
| Chromium, dissolved Cobalt, dissolved Copper, dissolved ron, dissolved Lead, dissolved Lithium, dissolved                                                                                                                                         | 65.4<br>< 0.005<br>< 0.0005<br>0.003<br>< 0.10<br>< 0.001                                                         | 2.0<br>0.005<br>0.0005<br>0.002<br>0.10<br>0.001                                                 | mg/L<br>mg/L<br>mg/L<br>mg/L            | N/A<br>N/A<br>N/A<br>N/A<br>N/A                      | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                               |       |
| Chromium, dissolved Cobalt, dissolved Copper, dissolved ron, dissolved Lead, dissolved                                                                                                                                                            | 65.4<br>< 0.005<br>< 0.0005<br>0.003<br>< 0.10<br>< 0.001<br>0.004                                                | 2.0<br>0.005<br>0.0005<br>0.002<br>0.10<br>0.001                                                 | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | N/A<br>N/A<br>N/A<br>N/A<br>N/A                      | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                               |       |
| Chromium, dissolved Cobalt, dissolved Copper, dissolved ron, dissolved Lead, dissolved Lithium, dissolved Magnesium, dissolved Manganese, dissolved                                                                                               | 65.4 < 0.005 < 0.0005  0.003 < 0.10 < 0.001  0.004 29.4                                                           | 2.0<br>0.005<br>0.0005<br>0.002<br>0.10<br>0.001<br>0.001                                        | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                  |       |
| Chromium, dissolved Cobalt, dissolved Copper, dissolved ron, dissolved Lead, dissolved Lithium, dissolved Magnesium, dissolved Manganese, dissolved Mercury, dissolved                                                                            | 65.4 < 0.005 < 0.0005 0.003 < 0.10 < 0.001 0.004 29.4 < 0.002                                                     | 2.0<br>0.005<br>0.0005<br>0.002<br>0.10<br>0.001<br>0.001<br>0.10                                | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                     |       |
| Chromium, dissolved Cobalt, dissolved Copper, dissolved ron, dissolved Lead, dissolved Lithium, dissolved Magnesium, dissolved Manganese, dissolved Mercury, dissolved Molybdenum, dissolved                                                      | 65.4 < 0.005 < 0.0005 0.003 < 0.10 < 0.001 0.004 29.4 < 0.002 < 0.0002                                            | 2.0<br>0.005<br>0.0005<br>0.002<br>0.10<br>0.001<br>0.001<br>0.1<br>0.002<br>0.0002              | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                        |       |
| Chromium, dissolved Cobalt, dissolved Copper, dissolved ron, dissolved Lead, dissolved Lithium, dissolved Magnesium, dissolved                                                                                                                    | 65.4 < 0.005 < 0.0005  0.003 < 0.10 < 0.001  0.004  29.4 < 0.002 < 0.0002  0.008                                  | 2.0<br>0.005<br>0.0005<br>0.002<br>0.10<br>0.001<br>0.001<br>0.002<br>0.0002<br>0.0002           | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                           |       |
| Chromium, dissolved Cobalt, dissolved Copper, dissolved ron, dissolved Lead, dissolved Lead, dissolved Lead, dissolved Magnesium, dissolved Manganese, dissolved Mercury, dissolved Molybdenum, dissolved Vickel, dissolved Phosphorus, dissolved | 65.4 < 0.005 < 0.0005 < 0.0003 < 0.10 < 0.001  0.004 29.4 < 0.002 < 0.0002  0.008 < 0.002                         | 2.0<br>0.005<br>0.0005<br>0.002<br>0.10<br>0.001<br>0.001<br>0.002<br>0.0002<br>0.0002<br>0.0002 | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | N/A              | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14              |       |
| Chromium, dissolved Cobalt, dissolved Copper, dissolved ron, dissolved Lead, dissolved Lithium, dissolved Magnesium, dissolved Manganese, dissolved Mercury, dissolved Molybdenum, dissolved Nickel, dissolved                                    | 65.4 < 0.005 < 0.0005 < 0.0003 < 0.10 < 0.001  0.004 29.4 < 0.002 < 0.0002  0.008 < 0.002 < 0.002 < 0.002 < 0.002 | 2.0<br>0.005<br>0.0005<br>0.002<br>0.10<br>0.001<br>0.001<br>0.002<br>0.0002<br>0.0002<br>0.0002 | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | N/A              | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14 |       |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

|                              |                               |                    |       | KEP      |           |       |
|------------------------------|-------------------------------|--------------------|-------|----------|-----------|-------|
| Analyte                      | Result /<br>Recovery          | MRL /<br>Limit     | Units | Prepared | Analyzed  | Notes |
| Dissolved Metals, Continued  |                               |                    |       |          |           |       |
| Sample ID: MW14-2 (4030418-0 | 06) [Water] Sampled: Mar-07-1 | 14 17:00, Continue | ed    |          |           |       |
| Silver, dissolved            | < 0.0005                      | 0.0005             | mg/L  | N/A      | Mar-12-14 |       |
| Sodium, dissolved            | 19.8                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Strontium, dissolved         | 0.39                          | 0.01               | mg/L  | N/A      | Mar-12-14 |       |
| Sulfur, dissolved            | < 10                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Tellurium, dissolved         | < 0.002                       | 0.002              | mg/L  | N/A      | Mar-12-14 |       |
| Thallium, dissolved          | < 0.0002                      | 0.0002             |       | N/A      | Mar-12-14 |       |
| Thorium, dissolved           | < 0.001                       | 0.001              |       | N/A      | Mar-12-14 |       |
| Tin, dissolved               | < 0.002                       | 0.002              |       | N/A      | Mar-12-14 |       |
| Titanium, dissolved          | < 0.05                        |                    | mg/L  | N/A      | Mar-12-14 |       |
| Uranium, dissolved           | 0.0034                        | 0.0002             |       | N/A      | Mar-12-14 |       |
| Vanadium, dissolved          | < 0.01                        |                    | mg/L  | N/A      | Mar-12-14 |       |
| Zinc, dissolved              | < 0.04                        |                    | mg/L  | N/A      | Mar-12-14 |       |
| Zirconium, dissolved         | < 0.001                       | 0.001              |       | N/A      | Mar-12-14 |       |
| Sample ID: MW14-3 (4030418-0 | 07) [Water] Sampled: Mar-08-  | 14 09:00           |       |          |           |       |
| Aluminum, dissolved          | 0.33                          | 0.05               | mg/L  | N/A      | Mar-12-14 |       |
| Antimony, dissolved          | < 0.001                       | 0.001              |       | N/A      | Mar-12-14 |       |
| Arsenic, dissolved           | < 0.005                       | 0.005              |       | N/A      | Mar-12-14 |       |
| Barium, dissolved            | 0.05                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Beryllium, dissolved         | < 0.001                       | 0.001              |       | N/A      | Mar-12-14 |       |
| Bismuth, dissolved           | < 0.001                       | 0.001              |       | N/A      | Mar-12-14 |       |
| Boron, dissolved             | < 0.04                        |                    | mg/L  | N/A      | Mar-12-14 |       |
| Cadmium, dissolved           | < 0.0001                      | 0.0001             |       | N/A      | Mar-12-14 |       |
| Calcium, dissolved           | 61.8                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Chromium, dissolved          | < 0.005                       | 0.005              |       | N/A      | Mar-12-14 |       |
| Cobalt, dissolved            | < 0.0005                      | 0.0005             |       | N/A      | Mar-12-14 |       |
| Copper, dissolved            | 0.015                         | 0.002              |       | N/A      | Mar-12-14 |       |
| Iron, dissolved              | < 0.10                        |                    | mg/L  | N/A      | Mar-12-14 |       |
| Lead, dissolved              | < 0.001                       | 0.001              |       | N/A      | Mar-12-14 |       |
| Lithium, dissolved           | 0.002                         | 0.001              |       | N/A      | Mar-12-14 |       |
| Magnesium, dissolved         | 20.8                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Manganese, dissolved         | 0.010                         | 0.002              |       | N/A      | Mar-12-14 |       |
| Mercury, dissolved           | < 0.0002                      | 0.0002             |       | N/A      | Mar-12-14 |       |
| Molybdenum, dissolved        | 0.010                         | 0.001              |       | N/A      | Mar-12-14 |       |
| Nickel, dissolved            | < 0.002                       | 0.002              |       | N/A      | Mar-12-14 |       |
| Phosphorus, dissolved        | < 0.2                         |                    | mg/L  | N/A      | Mar-12-14 |       |
| Potassium, dissolved         | 3.2                           |                    | mg/L  | N/A      | Mar-12-14 |       |
| Selenium, dissolved          | < 0.005                       | 0.005              |       | N/A      | Mar-12-14 |       |
| Silicon, dissolved           | 11                            |                    | mg/L  | N/A      | Mar-12-14 |       |
| Silver, dissolved            | < 0.0005                      | 0.0005             |       | N/A      | Mar-12-14 |       |
| Sodium, dissolved            | 20.2                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Strontium, dissolved         | 0.28                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Sulfur, dissolved            | < 10                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Tellurium, dissolved         | < 0.002                       | 0.002              |       | N/A      | Mar-12-14 |       |
| Thallium, dissolved          | < 0.002                       | 0.002              |       | N/A      | Mar-12-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                     | Result /<br>Recovery          | MRL /<br>Limit     | Units | Prepared | Analyzed  | Notes |
|-----------------------------|-------------------------------|--------------------|-------|----------|-----------|-------|
| Dissolved Metals, Continued |                               |                    |       |          |           |       |
| Sample ID: MW14-3 (4030418- | 07) [Water] Sampled: Mar-08-  | 14 09:00, Continue | ed    |          |           |       |
| Thorium, dissolved          | < 0.001                       | 0.001              | mg/L  | N/A      | Mar-12-14 |       |
| Tin, dissolved              | 0.015                         | 0.002              | mg/L  | N/A      | Mar-12-14 |       |
| Titanium, dissolved         | < 0.05                        | 0.05               | mg/L  | N/A      | Mar-12-14 |       |
| Uranium, dissolved          | 0.0012                        | 0.0002             | mg/L  | N/A      | Mar-12-14 |       |
| Vanadium, dissolved         | < 0.01                        | 0.01               | mg/L  | N/A      | Mar-12-14 |       |
| Zinc, dissolved             | 0.08                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Zirconium, dissolved        | < 0.001                       | 0.001              | mg/L  | N/A      | Mar-12-14 |       |
| Sample ID: MW05-12 (4030418 | B-08) [Water] Sampled: Mar-07 | -14 12:00          |       |          |           |       |
| Aluminum, dissolved         | < 0.05                        | 0.05               | mg/L  | N/A      | Mar-12-14 |       |
| Antimony, dissolved         | < 0.001                       | 0.001              |       | N/A      | Mar-12-14 |       |
| Arsenic, dissolved          | < 0.005                       | 0.005              |       | N/A      | Mar-12-14 |       |
| Barium, dissolved           | 0.16                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Beryllium, dissolved        | < 0.001                       | 0.001              |       | N/A      | Mar-12-14 |       |
| Bismuth, dissolved          | < 0.001                       | 0.001              |       | N/A      | Mar-12-14 |       |
| Boron, dissolved            | < 0.04                        |                    | mg/L  | N/A      | Mar-12-14 |       |
| Cadmium, dissolved          | < 0.0001                      | 0.0001             |       | N/A      | Mar-12-14 |       |
| Calcium, dissolved          | 74.1                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Chromium, dissolved         | < 0.005                       | 0.005              |       | N/A      | Mar-12-14 |       |
| Cobalt, dissolved           | < 0.0005                      | 0.0005             |       | N/A      | Mar-12-14 |       |
| Copper, dissolved           | < 0.002                       | 0.002              |       | N/A      | Mar-12-14 |       |
| ron, dissolved              | < 0.10                        |                    | mg/L  | N/A      | Mar-12-14 |       |
| _ead, dissolved             | < 0.001                       | 0.001              |       | N/A      | Mar-12-14 |       |
| _ithium, dissolved          | 0.004                         | 0.001              |       | N/A      | Mar-12-14 |       |
| Magnesium, dissolved        | 24.7                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Manganese, dissolved        | < 0.002                       | 0.002              |       | N/A      | Mar-12-14 |       |
| Mercury, dissolved          | < 0.0002                      | 0.0002             |       | N/A      | Mar-12-14 |       |
| Molybdenum, dissolved       | 0.004                         | 0.001              |       | N/A      | Mar-12-14 |       |
| Nickel, dissolved           | < 0.002                       | 0.002              |       | N/A      | Mar-12-14 |       |
| Phosphorus, dissolved       | < 0.2                         |                    | mg/L  | N/A      | Mar-12-14 |       |
| Potassium, dissolved        | 4.0                           |                    | mg/L  | N/A      | Mar-12-14 |       |
| Selenium, dissolved         | < 0.005                       | 0.005              |       | N/A      | Mar-12-14 |       |
| Silicon, dissolved          | 8                             |                    | mg/L  | N/A      | Mar-12-14 |       |
| Silver, dissolved           | < 0.0005                      | 0.0005             |       | N/A      | Mar-12-14 |       |
| Sodium, dissolved           | 273                           |                    | mg/L  | N/A      | Mar-12-14 |       |
| Strontium, dissolved        | 0.40                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Sulfur, dissolved           | < 10                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Fellurium, dissolved        | < 0.002                       | 0.002              |       | N/A      | Mar-12-14 |       |
| Thallium, dissolved         | < 0.0002                      | 0.0002             |       | N/A      | Mar-12-14 |       |
| Thorium, dissolved          | < 0.001                       | 0.001              |       | N/A      | Mar-12-14 |       |
| Fin, dissolved              | < 0.002                       | 0.002              |       | N/A      | Mar-12-14 |       |
| Fitanium, dissolved         | < 0.05                        |                    | mg/L  | N/A      | Mar-12-14 |       |
| Jranium, dissolved          | 0.0009                        | 0.0002             |       | N/A      | Mar-12-14 |       |
| /anadium, dissolved         | < 0.01                        |                    | mg/L  | N/A      | Mar-12-14 |       |
| Zinc, dissolved             | < 0.04                        |                    | mg/L  | N/A      | Mar-12-14 |       |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                                 | Result /<br>Recovery                | MRL /<br><i>Limit</i> | Units | Prepared   | Analyzed     | Notes |
|-----------------------------------------|-------------------------------------|-----------------------|-------|------------|--------------|-------|
| Dissolved Metals, Cont                  | inued                               |                       |       |            |              |       |
| Sample ID: MW05-12 (4                   | .030418-08) [Water] Sampled: Mar-07 | -14 12:00. Continu    | ıed   |            |              |       |
| Zirconium, dissolved                    | < 0.001                             | 0.001                 |       | N/A        | Mar-12-14    |       |
| Zircomum, dissolved                     | 1 0.001                             | 0.001                 | mg/L  | 14/74      | WIGH-12-14   |       |
| Sample ID: MW07-28S                     | (4030418-09) [Water] Sampled: Mar-0 | 7-14 12:00            |       |            |              |       |
| Aluminum, dissolved                     | < 0.05                              | 0.05                  | mg/L  | N/A        | Mar-12-14    |       |
| Antimony, dissolved                     | < 0.001                             | 0.001                 | mg/L  | N/A        | Mar-12-14    |       |
| Arsenic, dissolved                      | < 0.005                             | 0.005                 | mg/L  | N/A        | Mar-12-14    |       |
| Barium, dissolved                       | 0.22                                | 0.05                  | mg/L  | N/A        | Mar-12-14    |       |
| Beryllium, dissolved                    | < 0.001                             | 0.001                 | mg/L  | N/A        | Mar-12-14    |       |
| Bismuth, dissolved                      | < 0.001                             | 0.001                 | mg/L  | N/A        | Mar-12-14    |       |
| Boron, dissolved                        | < 0.04                              | 0.04                  | mg/L  | N/A        | Mar-12-14    |       |
| Cadmium, dissolved                      | < 0.0001                            | 0.0001                | mg/L  | N/A        | Mar-12-14    |       |
| Calcium, dissolved                      | 156                                 |                       | mg/L  | N/A        | Mar-12-14    |       |
| Chromium, dissolved                     | < 0.005                             | 0.005                 |       | N/A        | Mar-12-14    |       |
| Cobalt, dissolved                       | < 0.0005                            | 0.0005                |       | N/A        | Mar-12-14    |       |
| Copper, dissolved                       | < 0.002                             | 0.002                 |       | N/A        | Mar-12-14    |       |
| Iron, dissolved                         | < 0.10                              |                       | mg/L  | N/A        | Mar-12-14    |       |
| Lead, dissolved                         | < 0.001                             | 0.001                 |       | N/A        | Mar-12-14    |       |
| Lithium, dissolved                      | 0.004                               | 0.001                 | -     | N/A        | Mar-12-14    |       |
| Magnesium, dissolved                    | 52.4                                |                       | mg/L  | N/A        | Mar-12-14    |       |
| Manganese, dissolved                    | 0.032                               | 0.002                 |       | N/A        | Mar-12-14    |       |
| Mercury, dissolved                      | < 0.0002                            | 0.0002                |       | N/A        | Mar-12-14    |       |
| Molybdenum, dissolved                   | 0.001                               | 0.001                 |       | N/A        | Mar-12-14    |       |
| Nickel, dissolved                       | < 0.002                             | 0.002                 |       | N/A        | Mar-12-14    |       |
| Phosphorus, dissolved                   | < 0.2                               |                       | mg/L  | N/A        | Mar-12-14    |       |
| Potassium, dissolved                    | 5.3                                 |                       | mg/L  | N/A        | Mar-12-14    |       |
| Selenium, dissolved                     | < 0.005                             | 0.005                 |       | N/A        | Mar-12-14    |       |
| Silicon, dissolved                      | 8                                   |                       | mg/L  | N/A        | Mar-12-14    |       |
| Silver, dissolved                       | < 0.0005                            | 0.0005                |       | N/A        | Mar-12-14    |       |
| Sodium, dissolved                       | 308                                 |                       | mg/L  | N/A        | Mar-12-14    |       |
| Strontium, dissolved                    | 0.85                                |                       | mg/L  | N/A        | Mar-12-14    |       |
| Sulfur, dissolved                       | < 10                                |                       | mg/L  | N/A        | Mar-12-14    |       |
| Tellurium, dissolved                    | < 0.002                             | 0.002                 |       | N/A        | Mar-12-14    |       |
| Thallium, dissolved                     | < 0.0002                            | 0.0002                |       | N/A        | Mar-12-14    |       |
| Thorium, dissolved                      | < 0.001                             | 0.002                 |       | N/A        | Mar-12-14    |       |
| Tin, dissolved                          | < 0.002                             | 0.001                 |       | N/A        | Mar-12-14    |       |
| Titanium, dissolved                     | < 0.05                              |                       | mg/L  | N/A        | Mar-12-14    |       |
| Uranium, dissolved                      | 0.0013                              | 0.0002                |       | N/A        | Mar-12-14    |       |
| Vanadium, dissolved                     | < 0.01                              |                       | mg/L  | N/A        | Mar-12-14    |       |
| Zinc, dissolved                         | < 0.04                              |                       | mg/L  | N/A<br>N/A | Mar-12-14    |       |
| Zirc, dissolved<br>Zirconium, dissolved | < 0.04                              | 0.04                  |       | N/A        | Mar-12-14    |       |
| ·                                       |                                     |                       | mg/L  | IN/A       | IVIGIT 12-14 |       |
| ·                                       | (4030418-10) [Water] Sampled: Mar-0 |                       |       | A1/A       | Man 40 44    |       |
| Aluminum, dissolved                     | < 0.05                              |                       | mg/L  | N/A        | Mar-12-14    |       |
| Antimony, dissolved                     | < 0.001                             | 0.001                 |       | N/A        | Mar-12-14    |       |
| Arsenic, dissolved                      | < 0.005                             | 0.005                 |       | N/A        | Mar-12-14    |       |
| Barium, dissolved                       | < 0.05                              | 0.05                  | mg/L  | N/A        | Mar-12-14    |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-049

WORK ORDER REPORTED

| Analyte                               | Result /<br>Recovery          | MRL /<br><i>Limit</i> | Units | Prepared | Analyzed  | Notes |
|---------------------------------------|-------------------------------|-----------------------|-------|----------|-----------|-------|
| Dissolved Metals, Continued           |                               |                       |       |          |           |       |
| Sample ID: MW07-28D (40304            | 18-10) [Water] Sampled: Mar-0 | 7-14 12:00, Contir    | nued  |          |           |       |
| Beryllium, dissolved                  | < 0.001                       | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Bismuth, dissolved                    | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14 |       |
| Boron, dissolved                      | < 0.04                        |                       | mg/L  | N/A      | Mar-12-14 |       |
| Cadmium, dissolved                    | < 0.0001                      | 0.0001                |       | N/A      | Mar-12-14 |       |
| Calcium, dissolved                    | 50.9                          |                       | mg/L  | N/A      | Mar-12-14 |       |
| Chromium, dissolved                   | < 0.005                       | 0.005                 |       | N/A      | Mar-12-14 |       |
| Cobalt, dissolved                     | < 0.0005                      | 0.0005                |       | N/A      | Mar-12-14 |       |
| Copper, dissolved                     | < 0.002                       | 0.002                 |       | N/A      | Mar-12-14 |       |
| ron, dissolved                        | < 0.10                        |                       | mg/L  | N/A      | Mar-12-14 |       |
| _ead, dissolved                       | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14 |       |
| Lithium, dissolved                    | 0.001                         | 0.001                 |       | N/A      | Mar-12-14 |       |
| Magnesium, dissolved                  | 37.5                          |                       | mg/L  | N/A      | Mar-12-14 |       |
| Manganese, dissolved                  | 0.042                         | 0.002                 |       | N/A      | Mar-12-14 |       |
| Mercury, dissolved                    | < 0.002                       | 0.0002                |       | N/A      | Mar-12-14 |       |
| Molybdenum, dissolved                 | 0.004                         | 0.001                 |       | N/A      | Mar-12-14 |       |
| Nickel, dissolved                     | < 0.002                       | 0.002                 |       | N/A      | Mar-12-14 |       |
| Phosphorus, dissolved                 | < 0.2                         |                       | mg/L  | N/A      | Mar-12-14 |       |
| Potassium, dissolved                  | 3.9                           |                       | mg/L  | N/A      | Mar-12-14 |       |
| Selenium, dissolved                   | < 0.005                       | 0.005                 |       | N/A      | Mar-12-14 |       |
| Silicon, dissolved                    | 12                            |                       |       | N/A      | Mar-12-14 |       |
| Silver, dissolved                     | < 0.0005                      | 0.0005                | mg/L  | N/A      | Mar-12-14 |       |
| · · · · · · · · · · · · · · · · · · · |                               |                       | mg/L  | N/A      |           |       |
| Sodium, dissolved                     | 19.9                          |                       |       | N/A      | Mar-12-14 |       |
| Strontium, dissolved                  | 0.40                          |                       | mg/L  |          | Mar-12-14 |       |
| Sulfur, dissolved                     | < 10                          |                       | mg/L  | N/A      | Mar-12-14 |       |
| Tellurium, dissolved                  | < 0.002                       | 0.002                 |       | N/A      | Mar-12-14 |       |
| hallium, dissolved                    | < 0.0002                      | 0.0002                |       | N/A      | Mar-12-14 |       |
| horium, dissolved                     | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14 |       |
| in, dissolved                         | < 0.002                       | 0.002                 |       | N/A      | Mar-12-14 |       |
| Titanium, dissolved                   | < 0.05                        |                       | mg/L  | N/A      | Mar-12-14 |       |
| Jranium, dissolved                    | 0.0025                        | 0.0002                |       | N/A      | Mar-12-14 |       |
| /anadium, dissolved                   | < 0.01                        |                       | mg/L  | N/A      | Mar-12-14 |       |
| Zinc, dissolved                       | < 0.04                        |                       | mg/L  | N/A      | Mar-12-14 |       |
| Zirconium, dissolved                  | < 0.001                       | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| ample ID: MW07-29D (40304             | 18-11) [Water] Sampled: Mar-0 |                       |       |          |           |       |
| Aluminum, dissolved                   | < 0.05                        | 0.05                  | mg/L  | N/A      | Mar-12-14 |       |
| Antimony, dissolved                   | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14 |       |
| Arsenic, dissolved                    | < 0.005                       | 0.005                 | mg/L  | N/A      | Mar-12-14 |       |
| Barium, dissolved                     | < 0.05                        | 0.05                  | mg/L  | N/A      | Mar-12-14 |       |
| Beryllium, dissolved                  | < 0.001                       | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Bismuth, dissolved                    | < 0.001                       | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Boron, dissolved                      | < 0.04                        | 0.04                  | mg/L  | N/A      | Mar-12-14 |       |
| Cadmium, dissolved                    | < 0.0001                      | 0.0001                |       | N/A      | Mar-12-14 |       |
| Calcium, dissolved                    | 37.1                          |                       | mg/L  | N/A      | Mar-12-14 |       |
| Chromium, dissolved                   | < 0.005                       | 0.005                 |       | N/A      | Mar-12-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-049

WORK ORDER REPORTED

| Analyte                                  | Result /<br>Recovery         | MRL /<br><i>Limit</i> | Units        | Prepared   | Analyzed               | Notes |
|------------------------------------------|------------------------------|-----------------------|--------------|------------|------------------------|-------|
| Dissolved Metals, Continued              |                              |                       |              |            |                        |       |
| Sample ID: MW07-29D (403041              | 8-11) [Water] Sampled: Mar-0 | 7-14 12:00, Contir    | nued         |            |                        |       |
| Cobalt, dissolved                        | < 0.0005                     | 0.0005                | mg/L         | N/A        | Mar-12-14              |       |
| Copper, dissolved                        | < 0.002                      | 0.002                 | mg/L         | N/A        | Mar-12-14              |       |
| Iron, dissolved                          | < 0.10                       | 0.10                  | mg/L         | N/A        | Mar-12-14              |       |
| _ead, dissolved                          | < 0.001                      | 0.001                 | mg/L         | N/A        | Mar-12-14              |       |
| _ithium, dissolved                       | 0.001                        | 0.001                 | mg/L         | N/A        | Mar-12-14              |       |
| Magnesium, dissolved                     | 29.7                         | 0.1                   | mg/L         | N/A        | Mar-12-14              |       |
| Manganese, dissolved                     | 0.029                        | 0.002                 | mg/L         | N/A        | Mar-12-14              |       |
| Mercury, dissolved                       | < 0.0002                     | 0.0002                | mg/L         | N/A        | Mar-12-14              |       |
| Molybdenum, dissolved                    | 0.003                        | 0.001                 | mg/L         | N/A        | Mar-12-14              |       |
| Nickel, dissolved                        | < 0.002                      | 0.002                 | mg/L         | N/A        | Mar-12-14              |       |
| Phosphorus, dissolved                    | < 0.2                        |                       | mg/L         | N/A        | Mar-12-14              |       |
| Potassium, dissolved                     | 2.1                          |                       | mg/L         | N/A        | Mar-12-14              |       |
| Selenium, dissolved                      | < 0.005                      | 0.005                 |              | N/A        | Mar-12-14              |       |
| Silicon, dissolved                       | 11                           |                       | mg/L         | N/A        | Mar-12-14              |       |
| Silver, dissolved                        | 0.0009                       | 0.0005                |              | N/A        | Mar-12-14              |       |
| Sodium, dissolved                        | 18.9                         |                       | mg/L         | N/A        | Mar-12-14              |       |
| Strontium, dissolved                     | 0.49                         |                       | mg/L         | N/A        | Mar-12-14              |       |
| Sulfur, dissolved                        | < 10                         |                       | mg/L         | N/A        | Mar-12-14              |       |
| Tellurium, dissolved                     | < 0.002                      | 0.002                 |              | N/A        | Mar-12-14              |       |
| Fhallium, dissolved                      | < 0.0002                     | 0.0002                |              | N/A        | Mar-12-14              |       |
| Thorium, dissolved                       | < 0.001                      | 0.001                 |              | N/A        | Mar-12-14              |       |
| Fin, dissolved                           | < 0.002                      | 0.002                 |              | N/A        | Mar-12-14              |       |
| Fitanium, dissolved                      | < 0.05                       |                       | mg/L         | N/A        | Mar-12-14              |       |
| Jranium, dissolved                       | 0.0009                       | 0.0002                |              | N/A        | Mar-12-14              |       |
| Vanadium, dissolved                      | < 0.01                       |                       | mg/L         | N/A        | Mar-12-14              |       |
| Zinc, dissolved                          | < 0.04                       |                       | mg/L         | N/A        | Mar-12-14              |       |
| Zirconium, dissolved                     | < 0.001                      | 0.001                 |              | N/A        | Mar-12-14              |       |
| ·                                        | I2) [Water] Sampled: Mar-07- |                       | 9/ =         | 1471       | - Wai 12 11            |       |
| Aluminum, dissolved                      | < 0.05                       |                       | mg/L         | N/A        | Mar-12-14              |       |
| Antimony, dissolved                      | < 0.001                      | 0.001                 |              | N/A        | Mar-12-14              |       |
| Arsenic, dissolved                       | < 0.005                      | 0.005                 |              | N/A        | Mar-12-14              |       |
| Barium, dissolved                        | < 0.05                       |                       | mg/L         | N/A        | Mar-12-14              |       |
| Beryllium, dissolved                     | < 0.001                      | 0.001                 |              | N/A        | Mar-12-14              |       |
| Bismuth, dissolved                       | < 0.001                      | 0.001                 |              | N/A        | Mar-12-14              |       |
| Boron, dissolved                         | < 0.04                       |                       | mg/L         | N/A        | Mar-12-14              |       |
| Cadmium, dissolved                       | < 0.0001                     | 0.0001                |              | N/A        | Mar-12-14              |       |
| Calcium, dissolved                       | 34.9                         |                       | mg/L         | N/A        | Mar-12-14              |       |
| Chromium, dissolved                      | < 0.005                      | 0.005                 |              | N/A        | Mar-12-14              |       |
| Cobalt, dissolved                        | < 0.0005                     | 0.0005                |              | N/A        | Mar-12-14              |       |
| Copper, dissolved                        | < 0.002                      | 0.003                 |              | N/A        | Mar-12-14              |       |
| ron, dissolved                           | < 0.10                       |                       | mg/L         | N/A        | Mar-12-14              |       |
| _ead, dissolved                          | < 0.10                       | 0.001                 |              | N/A<br>N/A |                        |       |
| · · · · · · · · · · · · · · · · · · ·    |                              | 0.001                 |              |            | Mar-12-14              |       |
| Lithium, dissolved  Magnesium, dissolved | 0.001<br>29.5                |                       | mg/L<br>mg/L | N/A<br>N/A | Mar-12-14<br>Mar-12-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                     | Result / Recovery            | MRL /<br>Limit     | Units | Prepared | Analyzed  | Notes |
|-----------------------------|------------------------------|--------------------|-------|----------|-----------|-------|
|                             |                              |                    |       |          |           |       |
| Dissolved Metals, Continued |                              |                    |       |          |           |       |
| Sample ID: MWDUP (4030418-  | 12) [Water] Sampled: Mar-07- | 14 12:00, Continue | ed    |          |           |       |
| Manganese, dissolved        | 0.028                        | 0.002              | mg/L  | N/A      | Mar-12-14 |       |
| Mercury, dissolved          | < 0.0002                     | 0.0002             | mg/L  | N/A      | Mar-12-14 |       |
| Molybdenum, dissolved       | 0.003                        | 0.001              | mg/L  | N/A      | Mar-12-14 |       |
| Nickel, dissolved           | < 0.002                      | 0.002              | mg/L  | N/A      | Mar-12-14 |       |
| Phosphorus, dissolved       | < 0.2                        | 0.2                | mg/L  | N/A      | Mar-12-14 |       |
| Potassium, dissolved        | 2.1                          | 0.2                | mg/L  | N/A      | Mar-12-14 |       |
| Selenium, dissolved         | < 0.005                      | 0.005              | mg/L  | N/A      | Mar-12-14 |       |
| Silicon, dissolved          | 11                           | 5                  | mg/L  | N/A      | Mar-12-14 |       |
| Silver, dissolved           | < 0.0005                     | 0.0005             |       | N/A      | Mar-12-14 |       |
| Sodium, dissolved           | 18.8                         |                    | mg/L  | N/A      | Mar-12-14 |       |
| Strontium, dissolved        | 0.49                         | 0.01               | mg/L  | N/A      | Mar-12-14 |       |
| Sulfur, dissolved           | < 10                         |                    | mg/L  | N/A      | Mar-12-14 |       |
| Tellurium, dissolved        | < 0.002                      | 0.002              |       | N/A      | Mar-12-14 |       |
| Thallium, dissolved         | < 0.0002                     | 0.0002             |       | N/A      | Mar-12-14 |       |
| Thorium, dissolved          | < 0.001                      | 0.001              |       | N/A      | Mar-12-14 |       |
| Tin, dissolved              | < 0.002                      | 0.002              |       | N/A      | Mar-12-14 |       |
| Titanium, dissolved         | < 0.05                       |                    | mg/L  | N/A      | Mar-12-14 |       |
| Jranium, dissolved          | 0.0008                       | 0.0002             |       | N/A      | Mar-12-14 |       |
| Vanadium, dissolved         | < 0.01                       |                    | mg/L  | N/A      | Mar-12-14 |       |
| Zinc, dissolved             | < 0.04                       |                    | mg/L  | N/A      | Mar-12-14 |       |
| Zirconium, dissolved        | < 0.001                      | 0.001              |       | N/A      | Mar-12-14 |       |
|                             | 0.40) 504 4 5 0 1 4 5 4      | T 44 40 00         |       |          |           |       |
|                             | 8-13) [Water] Sampled: Mar-0 |                    |       |          |           |       |
| Aluminum, dissolved         | < 0.05                       |                    | mg/L  | N/A      | Mar-12-14 |       |
| Antimony, dissolved         | < 0.001                      | 0.001              |       | N/A      | Mar-12-14 |       |
| Arsenic, dissolved          | < 0.005                      | 0.005              |       | N/A      | Mar-12-14 |       |
| Barium, dissolved           | 0.09                         |                    | mg/L  | N/A      | Mar-12-14 |       |
| Beryllium, dissolved        | < 0.001                      | 0.001              | mg/L  | N/A      | Mar-12-14 |       |
| Bismuth, dissolved          | < 0.001                      | 0.001              | mg/L  | N/A      | Mar-12-14 |       |
| Boron, dissolved            | < 0.04                       |                    | mg/L  | N/A      | Mar-12-14 |       |
| Cadmium, dissolved          | < 0.0001                     | 0.0001             | mg/L  | N/A      | Mar-12-14 |       |
| Calcium, dissolved          | 101                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Chromium, dissolved         | < 0.005                      | 0.005              | mg/L  | N/A      | Mar-12-14 |       |
| Cobalt, dissolved           | < 0.0005                     | 0.0005             | mg/L  | N/A      | Mar-12-14 |       |
| Copper, dissolved           | 0.002                        | 0.002              | mg/L  | N/A      | Mar-12-14 |       |
| ron, dissolved              | < 0.10                       | 0.10               | mg/L  | N/A      | Mar-12-14 |       |
| _ead, dissolved             | < 0.001                      | 0.001              | mg/L  | N/A      | Mar-12-14 |       |
| ithium, dissolved           | 0.003                        | 0.001              | mg/L  | N/A      | Mar-12-14 |       |
| Magnesium, dissolved        | 34.3                         | 0.1                | mg/L  | N/A      | Mar-12-14 |       |
| Manganese, dissolved        | < 0.002                      | 0.002              | mg/L  | N/A      | Mar-12-14 |       |
| Mercury, dissolved          | < 0.0002                     | 0.0002             | mg/L  | N/A      | Mar-12-14 |       |
| Molybdenum, dissolved       | < 0.001                      | 0.001              | mg/L  | N/A      | Mar-12-14 |       |
| Nickel, dissolved           | < 0.002                      | 0.002              |       | N/A      | Mar-12-14 |       |
| Phosphorus, dissolved       | < 0.2                        |                    | mg/L  | N/A      | Mar-12-14 |       |
| Potassium, dissolved        | 2.9                          |                    | mg/L  | N/A      | Mar-12-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-049

WORK ORDER REPORTED

| Analyte                     | Result /<br>Recovery          | MRL /<br><i>Limit</i> | Units  | Prepared   | Analyzed  | Notes |
|-----------------------------|-------------------------------|-----------------------|--------|------------|-----------|-------|
| Dissolved Metals, Continued |                               |                       |        |            |           |       |
| Sample ID: MW07-32S (40304) | 18-13) [Water] Sampled: Mar-0 | 7-14 12:00, Contir    | nued   |            |           |       |
| Selenium, dissolved         | < 0.005                       | 0.005                 | mg/L   | N/A        | Mar-12-14 |       |
| Silicon, dissolved          | 8                             | 5                     | mg/L   | N/A        | Mar-12-14 |       |
| Silver, dissolved           | < 0.0005                      | 0.0005                |        | N/A        | Mar-12-14 |       |
| Sodium, dissolved           | 36.0                          |                       | mg/L   | N/A        | Mar-12-14 |       |
| Strontium, dissolved        | 0.57                          |                       | mg/L   | N/A        | Mar-12-14 |       |
| Sulfur, dissolved           | < 10                          |                       | mg/L   | N/A        | Mar-12-14 |       |
| Fellurium, dissolved        | < 0.002                       | 0.002                 |        | N/A        | Mar-12-14 |       |
| Γhallium, dissolved         | < 0.0002                      | 0.0002                |        | N/A        | Mar-12-14 |       |
| Thorium, dissolved          | < 0.001                       | 0.001                 |        | N/A        | Mar-12-14 |       |
| Fin, dissolved              | < 0.002                       | 0.002                 |        | N/A        | Mar-12-14 |       |
| Fitanium, dissolved         | < 0.05                        |                       | mg/L   | N/A        | Mar-12-14 |       |
| Jranium, dissolved          | 0.0007                        | 0.0002                |        | N/A        | Mar-12-14 |       |
| /anadium, dissolved         | < 0.01                        |                       | mg/L   | N/A        | Mar-12-14 |       |
| Zinc, dissolved             | < 0.04                        |                       | mg/L   | N/A        | Mar-12-14 |       |
| Zirconium, dissolved        | < 0.001                       | 0.001                 |        | N/A        | Mar-12-14 |       |
| Lifeorium, dissolved        | V 0.001                       | 0.001                 | IIIg/L | IN/A       | Wai-12-14 |       |
| ample ID: MW07-32D (40304   | 18-14) [Water] Sampled: Mar-0 | 7-14 12:00            |        |            |           |       |
| Aluminum, dissolved         | < 0.05                        | 0.05                  | mg/L   | N/A        | Mar-12-14 |       |
| Antimony, dissolved         | < 0.001                       | 0.001                 | mg/L   | N/A        | Mar-12-14 |       |
| Arsenic, dissolved          | < 0.005                       | 0.005                 | mg/L   | N/A        | Mar-12-14 |       |
| Barium, dissolved           | 0.09                          | 0.05                  | mg/L   | N/A        | Mar-12-14 |       |
| Beryllium, dissolved        | < 0.001                       | 0.001                 | mg/L   | N/A        | Mar-12-14 |       |
| Bismuth, dissolved          | < 0.001                       | 0.001                 | mg/L   | N/A        | Mar-12-14 |       |
| Boron, dissolved            | < 0.04                        | 0.04                  | mg/L   | N/A        | Mar-12-14 |       |
| Cadmium, dissolved          | < 0.0001                      | 0.0001                | mg/L   | N/A        | Mar-12-14 |       |
| Calcium, dissolved          | 95.2                          | 2.0                   | mg/L   | N/A        | Mar-12-14 |       |
| Chromium, dissolved         | < 0.005                       | 0.005                 |        | N/A        | Mar-12-14 |       |
| Cobalt, dissolved           | < 0.0005                      | 0.0005                |        | N/A        | Mar-12-14 |       |
| Copper, dissolved           | < 0.002                       | 0.002                 |        | N/A        | Mar-12-14 |       |
| ron, dissolved              | < 0.10                        |                       | mg/L   | N/A        | Mar-12-14 |       |
| ead, dissolved              | < 0.001                       | 0.001                 |        | N/A        | Mar-12-14 |       |
| Lithium, dissolved          | 0.003                         | 0.001                 |        | N/A        | Mar-12-14 |       |
| Magnesium, dissolved        | 31.8                          |                       | mg/L   | N/A        | Mar-12-14 |       |
| Manganese, dissolved        | < 0.002                       | 0.002                 |        | N/A        | Mar-12-14 |       |
| Mercury, dissolved          | < 0.002                       | 0.002                 |        | N/A        | Mar-12-14 |       |
| Molybdenum, dissolved       | 0.002                         | 0.002                 |        | N/A        | Mar-12-14 |       |
| Nickel, dissolved           | < 0.002                       | 0.001                 |        | N/A<br>N/A | Mar-12-14 |       |
| <u> </u>                    |                               |                       |        |            |           |       |
| Phosphorus, dissolved       | < 0.2                         |                       | mg/L   | N/A        | Mar-12-14 |       |
| Potassium, dissolved        | 2.9                           |                       | mg/L   | N/A        | Mar-12-14 |       |
| Selenium, dissolved         | < 0.005                       | 0.005                 |        | N/A        | Mar-12-14 |       |
| Silicon, dissolved          | 7                             |                       | mg/L   | N/A        | Mar-12-14 |       |
| Silver, dissolved           | < 0.0005                      | 0.0005                |        | N/A        | Mar-12-14 |       |
| Sodium, dissolved           | 32.9                          |                       | mg/L   | N/A        | Mar-12-14 |       |
| Strontium, dissolved        | 0.54                          |                       | mg/L   | N/A        | Mar-12-14 |       |
| Sulfur, dissolved           | < 10                          | 10                    | mg/L   | N/A        | Mar-12-14 |       |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER 4030418 REPORTED Mar-19-14

| Analyte                                 | Result /<br>Recovery          | MRL /<br><i>Limit</i> | Units | Prepared | Analyzed  | Notes |
|-----------------------------------------|-------------------------------|-----------------------|-------|----------|-----------|-------|
| Dissolved Metals, Continued             |                               |                       |       |          |           |       |
| Sample ID: MW07-32D (40304 <sup>2</sup> | 18-14) [Water] Sampled: Mar-0 | 7-14 12:00, Contir    | nued  |          |           |       |
| Tellurium, dissolved                    | < 0.002                       | 0.002                 | mg/L  | N/A      | Mar-12-14 |       |
| Thallium, dissolved                     | < 0.0002                      | 0.0002                |       | N/A      | Mar-12-14 |       |
| Thorium, dissolved                      | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14 |       |
| Fin, dissolved                          | < 0.002                       | 0.002                 |       | N/A      | Mar-12-14 |       |
| Fitanium, dissolved                     | < 0.05                        |                       | mg/L  | N/A      | Mar-12-14 |       |
| Jranium, dissolved                      | 0.0007                        | 0.0002                |       | N/A      | Mar-12-14 |       |
| Vanadium, dissolved                     | < 0.01                        |                       | mg/L  | N/A      | Mar-12-14 |       |
| Zinc, dissolved                         | < 0.04                        |                       | mg/L  | N/A      | Mar-12-14 |       |
| Zirconium, dissolved                    | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14 |       |
| Sample ID: MW08-42 (4030418             | -15) [Water] Sampled: Mar-07  | -14 12:00             |       |          |           |       |
| Aluminum, dissolved                     | < 0.05                        | 0.05                  | mg/L  | N/A      | Mar-12-14 |       |
| Antimony, dissolved                     | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14 |       |
| Arsenic, dissolved                      | < 0.005                       | 0.005                 |       | N/A      | Mar-12-14 |       |
| Barium, dissolved                       | 0.08                          |                       | mg/L  | N/A      | Mar-12-14 |       |
| Beryllium, dissolved                    | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14 |       |
| Bismuth, dissolved                      | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14 |       |
| Boron, dissolved                        | < 0.04                        |                       | mg/L  | N/A      | Mar-12-14 |       |
| Cadmium, dissolved                      | < 0.0001                      | 0.0001                |       | N/A      | Mar-12-14 |       |
| Calcium, dissolved                      | 88.1                          |                       | mg/L  | N/A      | Mar-12-14 |       |
| Chromium, dissolved                     | < 0.005                       | 0.005                 |       | N/A      | Mar-12-14 |       |
| Cobalt, dissolved                       | < 0.0005                      | 0.0005                |       | N/A      | Mar-12-14 |       |
| Copper, dissolved                       | < 0.002                       | 0.002                 |       | N/A      | Mar-12-14 |       |
| ron, dissolved                          | < 0.10                        |                       | mg/L  | N/A      | Mar-12-14 |       |
| _ead, dissolved                         | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14 |       |
| Lithium, dissolved                      | 0.002                         | 0.001                 |       | N/A      | Mar-12-14 |       |
| Magnesium, dissolved                    | 42.5                          |                       | mg/L  | N/A      | Mar-12-14 |       |
| Manganese, dissolved                    | < 0.002                       | 0.002                 |       | N/A      | Mar-12-14 |       |
| Mercury, dissolved                      | < 0.0002                      | 0.0002                |       | N/A      | Mar-12-14 |       |
| Molybdenum, dissolved                   | 0.001                         | 0.001                 |       | N/A      | Mar-12-14 |       |
| Nickel, dissolved                       | < 0.002                       | 0.002                 |       | N/A      | Mar-12-14 |       |
| Phosphorus, dissolved                   | < 0.2                         |                       | mg/L  | N/A      | Mar-12-14 |       |
| Potassium, dissolved                    | 2.0                           |                       | mg/L  | N/A      | Mar-12-14 |       |
| Selenium, dissolved                     | < 0.005                       | 0.005                 |       | N/A      | Mar-12-14 |       |
| Silicon, dissolved                      | 6                             |                       | mg/L  | N/A      | Mar-12-14 |       |
| Silver, dissolved                       | < 0.0005                      | 0.0005                |       | N/A      | Mar-12-14 |       |
| Sodium, dissolved                       | 37.6                          |                       | mg/L  | N/A      | Mar-12-14 |       |
| Strontium, dissolved                    | 0.69                          |                       | mg/L  | N/A      | Mar-12-14 |       |
| Sulfur, dissolved                       | < 10                          |                       | mg/L  | N/A      | Mar-12-14 |       |
| Fellurium, dissolved                    | < 0.002                       | 0.002                 |       | N/A      | Mar-12-14 |       |
| Fhallium, dissolved                     | < 0.0002                      | 0.0002                |       | N/A      | Mar-12-14 |       |
| Thorium, dissolved                      | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14 |       |
| Tin, dissolved                          | < 0.002                       | 0.002                 |       | N/A      | Mar-12-14 |       |
| Titanium, dissolved                     | < 0.05                        |                       | mg/L  | N/A      | Mar-12-14 |       |
| Jranium, dissolved                      | 0.0007                        | 0.0002                |       | N/A      | Mar-12-14 |       |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

4030418 Mar-19-14

| Analyte                     | Result /<br>Recovery           | MRL /<br><i>Limit</i> | Units | Prepared | Analyzed  | Notes |
|-----------------------------|--------------------------------|-----------------------|-------|----------|-----------|-------|
| Dissolved Metals, Continued |                                |                       |       |          |           |       |
| Sample ID: MW08-42 (403041  | 8-15) [Water] Sampled: Mar-07- | 14 12։00, Continւ     | ıed   |          |           |       |
| Vanadium, dissolved         | < 0.01                         |                       | mg/L  | N/A      | Mar-12-14 |       |
| Zinc, dissolved             | < 0.04                         |                       | mg/L  | N/A      | Mar-12-14 |       |
| Zirconium, dissolved        | < 0.001                        | 0.001                 |       | N/A      | Mar-12-14 |       |
| Sample ID: MW08-43 (403041  | 8-16) [Water] Sampled: Mar-07- | 14 12:00              |       |          |           |       |
| Aluminum, dissolved         | < 0.05                         | 0.05                  | mg/L  | N/A      | Mar-12-14 |       |
| Antimony, dissolved         | 0.001                          | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Arsenic, dissolved          | < 0.005                        | 0.005                 | mg/L  | N/A      | Mar-12-14 |       |
| Barium, dissolved           | 0.09                           | 0.05                  | mg/L  | N/A      | Mar-12-14 |       |
| Beryllium, dissolved        | < 0.001                        | 0.001                 |       | N/A      | Mar-12-14 |       |
| Bismuth, dissolved          | < 0.001                        | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Boron, dissolved            | < 0.04                         | 0.04                  | mg/L  | N/A      | Mar-12-14 |       |
| Cadmium, dissolved          | < 0.0001                       | 0.0001                | mg/L  | N/A      | Mar-12-14 |       |
| Calcium, dissolved          | 113                            | 2.0                   | mg/L  | N/A      | Mar-12-14 |       |
| Chromium, dissolved         | < 0.005                        | 0.005                 | mg/L  | N/A      | Mar-12-14 |       |
| Cobalt, dissolved           | < 0.0005                       | 0.0005                | mg/L  | N/A      | Mar-12-14 |       |
| Copper, dissolved           | < 0.002                        | 0.002                 | mg/L  | N/A      | Mar-12-14 |       |
| ron, dissolved              | < 0.10                         | 0.10                  | mg/L  | N/A      | Mar-12-14 |       |
| _ead, dissolved             | < 0.001                        | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Lithium, dissolved          | 0.004                          | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Magnesium, dissolved        | 37.7                           | 0.1                   | mg/L  | N/A      | Mar-12-14 |       |
| Manganese, dissolved        | < 0.002                        | 0.002                 | mg/L  | N/A      | Mar-12-14 |       |
| Mercury, dissolved          | < 0.0002                       | 0.0002                | mg/L  | N/A      | Mar-12-14 |       |
| Molybdenum, dissolved       | 0.002                          | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Nickel, dissolved           | < 0.002                        | 0.002                 | mg/L  | N/A      | Mar-12-14 |       |
| Phosphorus, dissolved       | < 0.2                          | 0.2                   | mg/L  | N/A      | Mar-12-14 |       |
| Potassium, dissolved        | 3.1                            |                       | mg/L  | N/A      | Mar-12-14 |       |
| Selenium, dissolved         | < 0.005                        | 0.005                 |       | N/A      | Mar-12-14 |       |
| Silicon, dissolved          | 8                              |                       | mg/L  | N/A      | Mar-12-14 |       |
| Silver, dissolved           | < 0.0005                       | 0.0005                |       | N/A      | Mar-12-14 |       |
| Sodium, dissolved           | 49.1                           | 0.2                   | mg/L  | N/A      | Mar-12-14 |       |
| Strontium, dissolved        | 0.68                           |                       | mg/L  | N/A      | Mar-12-14 |       |
| Sulfur, dissolved           | < 10                           |                       | mg/L  | N/A      | Mar-12-14 |       |
| Tellurium, dissolved        | < 0.002                        | 0.002                 |       | N/A      | Mar-12-14 |       |
| Thallium, dissolved         | < 0.0002                       | 0.0002                |       | N/A      | Mar-12-14 |       |
| Thorium, dissolved          | < 0.001                        | 0.001                 |       | N/A      | Mar-12-14 |       |
| Tin, dissolved              | < 0.002                        | 0.002                 |       | N/A      | Mar-12-14 |       |
| Titanium, dissolved         | < 0.05                         |                       | mg/L  | N/A      | Mar-12-14 |       |
| Jranium, dissolved          | 0.0008                         | 0.0002                |       | N/A      | Mar-12-14 |       |
| Vanadium, dissolved         | < 0.01                         |                       | mg/L  | N/A      | Mar-12-14 |       |
| Zinc, dissolved             | < 0.04                         |                       | mg/L  | N/A      | Mar-12-14 |       |
| Zirconium, dissolved        | < 0.001                        | 0.001                 |       | N/A      | Mar-12-14 |       |

Total Recoverable Metals



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                          | Result /<br>Recovery            | MRL /<br><i>Limit</i> | Units | Prepared  | Analyzed  | Notes |
|----------------------------------|---------------------------------|-----------------------|-------|-----------|-----------|-------|
| Total Recoverable Metals, Contin | ued                             |                       |       |           |           |       |
| Sample ID: SW1 (4030418-01) [W   | /ater] Sampled: Mar-03-14 16:00 |                       |       |           |           |       |
| Aluminum, total                  | 0.08                            | 0.05                  | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Antimony, total                  | < 0.001                         | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| Arsenic, total                   | < 0.005                         | 0.005                 |       | Mar-11-14 | Mar-13-14 |       |
| Barium, total                    | < 0.05                          |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Beryllium, total                 | < 0.001                         | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| Bismuth, total                   | < 0.001                         | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| Boron, total                     | < 0.04                          |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Cadmium, total                   | < 0.0001                        | 0.0001                |       | Mar-11-14 | Mar-13-14 |       |
| Calcium, total                   | 46.2                            |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Chromium, total                  | < 0.005                         | 0.005                 |       | Mar-11-14 | Mar-13-14 |       |
| Cobalt, total                    | < 0.0005                        | 0.0005                |       | Mar-11-14 | Mar-13-14 |       |
| Copper, total                    | 0.002                           | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| Iron, total                      | 0.27                            |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Lead, total                      | < 0.001                         | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| Lithium, total                   | 0.002                           | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| Magnesium, total                 | 15.0                            |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Manganese, total                 | 0.005                           | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| Mercury, total                   | < 0.0002                        | 0.0002                |       | Mar-11-14 | Mar-13-14 |       |
| Molybdenum, total                | 0.003                           | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| Nickel, total                    | < 0.002                         | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| Phosphorus, total                | < 0.2                           |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Potassium, total                 | 2.6                             |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Selenium, total                  | < 0.005                         | 0.005                 |       | Mar-11-14 | Mar-13-14 |       |
| Silicon, total                   | 14                              |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Silver, total                    | < 0.0005                        | 0.0005                |       | Mar-11-14 | Mar-13-14 |       |
| Sodium, total                    | 12.5                            |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Strontium, total                 | 0.19                            |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Sulfur, total                    | < 10                            |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Tellurium, total                 | < 0.002                         | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| Thallium, total                  | < 0.002                         | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| <u> </u>                         |                                 |                       |       |           |           |       |
| Thorium, total                   | < 0.001                         | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| Tin, total                       | < 0.002<br>< 0.05               | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| Titanium, total                  |                                 |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Uranium, total                   | 0.0010                          | 0.0002                |       | Mar-11-14 | Mar-13-14 |       |
| Vanadium, total                  | < 0.01                          |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Zinc, total                      | < 0.04                          |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Zirconium, total                 | < 0.001                         | 0.001                 | ing/L | Mar-11-14 | Mar-13-14 |       |
|                                  | /ater] Sampled: Mar-03-14 16:00 |                       |       |           |           |       |
| Aluminum, total                  | 0.09                            |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Antimony, total                  | < 0.001                         | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| Arsenic, total                   | < 0.005                         | 0.005                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Barium, total                    | < 0.05                          | 0.05                  | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Beryllium, total                 | < 0.001                         | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Bismuth, total                   | < 0.001                         | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd

PROJECT 14-0493 WORK ORDER

REPORTED

| Analyte                    | Result /<br>Recovery            | MRL /<br><i>Limit</i> | Units | Prepared  | Analyzed  | Notes |
|----------------------------|---------------------------------|-----------------------|-------|-----------|-----------|-------|
| otal Recoverable Metals, C | ontinued                        |                       |       |           |           |       |
| ample ID: SW2 (4030418-0   | 2) [Water] Sampled: Mar-03-14 1 | 6:00, Continued       |       |           |           |       |
| Boron, total               | < 0.04                          | 0.04                  | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Cadmium, total             | < 0.0001                        | 0.0001                | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Calcium, total             | 46.8                            | 2.0                   | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Chromium, total            | < 0.005                         | 0.005                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Cobalt, total              | < 0.0005                        | 0.0005                | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Copper, total              | 0.002                           | 0.002                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| on, total                  | 0.29                            | 0.10                  | mg/L  | Mar-11-14 | Mar-13-14 |       |
| ead, total                 | < 0.001                         | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| ithium, total              | 0.002                           | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| lagnesium, total           | 16.2                            | 0.1                   | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Manganese, total           | 0.006                           | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| Mercury, total             | < 0.0002                        | 0.0002                |       | Mar-11-14 | Mar-13-14 |       |
| lolybdenum, total          | 0.004                           | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| lickel, total              | < 0.002                         | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| hosphorus, total           | < 0.2                           |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| otassium, total            | 2.8                             |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| elenium, total             | < 0.005                         | 0.005                 |       | Mar-11-14 | Mar-13-14 |       |
| ilicon, total              | 15                              |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| ilver, total               | < 0.0005                        | 0.0005                |       | Mar-11-14 | Mar-13-14 |       |
| odium, total               | 13.2                            |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| trontium, total            | 0.20                            |                       |       | Mar-11-14 | Mar-13-14 |       |
| ulfur, total               | < 10                            |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| ellurium, total            | < 0.002                         | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| hallium, total             | < 0.0002                        | 0.0002                |       | Mar-11-14 | Mar-13-14 |       |
| horium, total              | < 0.001                         | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| in, total                  | < 0.002                         | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| itanium, total             | < 0.05                          |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| ranium, total              | 0.0011                          | 0.0002                |       | Mar-11-14 | Mar-13-14 |       |
| anadium, total             | < 0.01                          | 0.01                  |       | Mar-11-14 | Mar-13-14 |       |
| inc, total                 | < 0.04                          |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| irconium, total            | < 0.001                         | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| ·                          | 3) [Water] Sampled: Mar-03-14 1 |                       |       |           |           |       |
| luminum, total             | 0.09                            |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| ntimony, total             | < 0.001                         | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| rsenic, total              | < 0.005                         | 0.005                 |       | Mar-11-14 | Mar-13-14 |       |
| arium, total               | < 0.05                          |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| eryllium, total            | < 0.001                         | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| ismuth, total              | < 0.001                         | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| oron, total                | < 0.04                          |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Cadmium, total             | < 0.0001                        | 0.0001                |       | Mar-11-14 | Mar-13-14 |       |
| Calcium, total             | 69.1                            |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Chromium, total            | < 0.005                         | 0.005                 |       | Mar-11-14 | Mar-13-14 |       |
| cobalt, total              | < 0.005                         | 0.0005                |       | Mar-11-14 | Mar-13-14 |       |
| Copper, total              | 0.003                           | 0.003                 |       | Mar-11-14 | Mar-13-14 |       |

4030418



REPORTED TOColumbia Environmental Consulting LtdWORK ORDER4030418PROJECT14-0493REPORTEDMar-19-14

| Analyte                                                          | Result /<br>Recovery                                 | MRL /<br><i>Limit</i> | Units        | Prepared  | Analyzed     | Notes |
|------------------------------------------------------------------|------------------------------------------------------|-----------------------|--------------|-----------|--------------|-------|
| Total Recoverable Metals,                                        | Continued                                            |                       |              |           |              |       |
| Sample ID: SW3 (4030418                                          | -03) [Water] Sampled: Mar-03-14 10                   | 6:00. Continued       |              |           |              |       |
| Iron, total                                                      | < 0.10                                               |                       | mg/L         | Mar-11-14 | Mar-13-14    |       |
| Lead, total                                                      | < 0.001                                              | 0.001                 |              | Mar-11-14 | Mar-13-14    |       |
| Lithium, total                                                   | 0.001                                                | 0.001                 |              | Mar-11-14 | Mar-13-14    |       |
| Magnesium, total                                                 | 18.5                                                 |                       | mg/L         | Mar-11-14 | Mar-13-14    |       |
| Manganese, total                                                 | < 0.002                                              | 0.002                 |              | Mar-11-14 | Mar-13-14    |       |
| Mercury, total                                                   | < 0.0002                                             | 0.0002                |              | Mar-11-14 | Mar-13-14    |       |
| Molybdenum, total                                                | 0.006                                                | 0.001                 |              | Mar-11-14 | Mar-13-14    |       |
| Nickel, total                                                    | < 0.002                                              | 0.002                 |              | Mar-11-14 | Mar-13-14    |       |
| Phosphorus, total                                                | < 0.2                                                |                       | mg/L         | Mar-11-14 | Mar-13-14    |       |
| Potassium, total                                                 | 2.1                                                  |                       | mg/L         | Mar-11-14 | Mar-13-14    |       |
| Selenium, total                                                  | < 0.005                                              | 0.005                 |              | Mar-11-14 | Mar-13-14    |       |
| Silicon, total                                                   | 10                                                   |                       | mg/L         | Mar-11-14 | Mar-13-14    |       |
| Silver, total                                                    | < 0.0005                                             | 0.0005                |              | Mar-11-14 | Mar-13-14    |       |
| Sodium, total                                                    | 15.3                                                 |                       | mg/L         | Mar-11-14 | Mar-13-14    |       |
| Strontium, total                                                 | 0.26                                                 |                       | mg/L         | Mar-11-14 | Mar-13-14    |       |
| Sulfur, total                                                    | < 10                                                 |                       | mg/L         | Mar-11-14 | Mar-13-14    |       |
| Tellurium, total                                                 | < 0.002                                              | 0.002                 |              | Mar-11-14 | Mar-13-14    |       |
| Thallium, total                                                  | < 0.0002                                             | 0.0002                |              | Mar-11-14 | Mar-13-14    |       |
| Thorium, total                                                   | < 0.001                                              | 0.001                 |              | Mar-11-14 | Mar-13-14    |       |
| Tin, total                                                       | < 0.002                                              | 0.002                 |              | Mar-11-14 | Mar-13-14    |       |
| Titanium, total                                                  | < 0.05                                               |                       | mg/L         | Mar-11-14 | Mar-13-14    |       |
| Uranium, total                                                   | 0.0010                                               | 0.0002                |              | Mar-11-14 | Mar-13-14    |       |
| Vanadium, total                                                  | < 0.01                                               |                       | mg/L         | Mar-11-14 | Mar-13-14    |       |
| Zinc, total                                                      | < 0.04                                               |                       | mg/L         | Mar-11-14 | Mar-13-14    |       |
| Zirconium, total                                                 | < 0.001                                              | 0.001                 |              | Mar-11-14 | Mar-13-14    |       |
| aggregate Organic Param<br>sample ID: SW1 (4030418<br>VHw (6-10) | eters<br>-01) [Water] Sampled: Mar-03-14 10<br>< 100 |                       | ug/L         | N/A       | Mar-13-14    |       |
| Sample ID: SW2 (4030418                                          | -02) [Water] Sampled: Mar-03-14 10                   | 6:00                  |              |           |              |       |
| VHw (6-10)                                                       | < 100                                                |                       | ug/L         | N/A       | Mar-13-14    |       |
| ,                                                                | -03) [Water] Sampled: Mar-03-14 10                   |                       | - 3          |           |              |       |
| VHw (6-10)                                                       | < 100                                                |                       | ug/L         | N/A       | Mar-13-14    |       |
| · · · · ·                                                        | 418-04) [Water] Sampled: Mar-07-1                    |                       | - ug/L       | 1071      | Mai 10 11    |       |
| VHw (6-10)                                                       | < 100                                                |                       | ug/L         | N/A       | Mar-14-14    |       |
| ,                                                                |                                                      |                       | ug/L         | 14/74     | IVIGITITE IT |       |
| ampie ID: WWDUP2 (403                                            | 0418-05) [Water] Sampled: Mar-07                     |                       |              | N/A       | Man 44 44    |       |
| · · · · · · · · · · · · · · · · · · ·                            | < 100                                                | 100                   | HQ/I         |           |              |       |
| VHw (6-10)                                                       | < 100                                                |                       | ug/L         | IN/A      | Mar-14-14    |       |
| VHw (6-10)                                                       | < 100<br>418-06) [Water] Sampled: Mar-07-1<br>< 100  | 4 17:00               | ug/L<br>ug/L | N/A       | Mar-14-14    |       |



Columbia Environmental Consulting Ltd REPORTED TO **WORK ORDER** 4030418 **PROJECT** 14-0493 REPORTED Mar-19-14

| Analyte                                                                  | Result /<br>Recovery        | MRL /<br><i>Limit</i> | Units        | Prepared               | Analyzed               | Notes |
|--------------------------------------------------------------------------|-----------------------------|-----------------------|--------------|------------------------|------------------------|-------|
| Aggregate Organic Parameters, C                                          | ontinued                    |                       |              |                        |                        |       |
| Sample ID: MW14-3 (4030418-07)                                           | [Water] Sampled: Mar-08-14  | 1 09:00               |              |                        |                        |       |
| VHw (6-10)                                                               | < 100                       |                       | ug/L         | N/A                    | Mar-14-14              |       |
|                                                                          |                             |                       | - <b>J</b>   |                        |                        |       |
| COME OWS Botroloum Hudrooch                                              | ono                         |                       |              |                        |                        |       |
| <i>CCME CWS Petroleum Hydrocarb</i><br>Sample ID: SW1  (4030418-01)  [Wa |                             | :00                   |              |                        |                        |       |
| CCME PHC F1 (C6-C10)                                                     | < 100                       |                       | ug/L         | N/A                    | Mar-13-14              |       |
| CCME PHC F2 (C10-C16)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| CCME PHC F3 (C16-C34)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| CCME PHC F4 (C34-C50)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| Sample ID: SW2 (4030418-02) [Wa                                          | ater] Sampled: Mar-03-14 16 | :00                   |              |                        |                        |       |
| CCME PHC F1 (C6-C10)                                                     | < 100                       |                       | ug/L         | N/A                    | Mar-13-14              |       |
| CCME PHC F2 (C10-C16)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| CCME PHC F3 (C16-C34)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| CCME PHC F4 (C34-C50)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| Sample ID: SW3 (4030418-03) [Wa                                          | aterl Sampled: Mar-03-14 16 | :00                   |              |                        |                        |       |
| CCME PHC F1 (C6-C10)                                                     | < 100                       |                       | ug/L         | N/A                    | Mar-13-14              |       |
| CCME PHC F2 (C10-C16)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| CCME PHC F3 (C16-C34)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| CCME PHC F4 (C34-C50)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| Sample ID: MW14-1 (4030418-04)                                           | [Water] Sampled: Mar-07-14  | l 17:00               |              |                        |                        |       |
| CCME PHC F1 (C6-C10)                                                     | < 100                       |                       | ug/L         | N/A                    | Mar-14-14              |       |
| CCME PHC F2 (C10-C16)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| CCME PHC F3 (C16-C34)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| CCME PHC F4 (C34-C50)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| Sample ID: MWDUP2 (4030418-05                                            | ) [Water] Sampled: Mar-07-  | 14 17:00              |              |                        |                        |       |
| CCME PHC F1 (C6-C10)                                                     | < 100                       |                       | ug/L         | N/A                    | Mar-14-14              |       |
| CCME PHC F2 (C10-C16)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| CCME PHC F3 (C16-C34)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| CCME PHC F4 (C34-C50)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| Sample ID: MW14-2 (4030418-06)                                           | [Water] Sampled: Mar-07-14  |                       |              |                        |                        |       |
| CCME PHC F1 (C6-C10)                                                     | < 100                       |                       | ug/L         | N/A                    | Mar-14-14              |       |
| CCME PHC F2 (C10-C16)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| CCME PHC F3 (C16-C34)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| CCME PHC F4 (C34-C50)                                                    | < 100                       |                       | ug/L         | Mar-11-14              | Mar-14-14              |       |
| , ,                                                                      |                             |                       | <i></i>      |                        |                        |       |
| Sample ID: MW14-3 (4030418-07)  CCME PHC F1 (C6-C10)                     | < 100                       |                       | ua/l         | N/A                    | Mar-14-14              |       |
| <u> </u>                                                                 | < 100                       |                       | ug/L<br>ug/L | Mar-11-14              | Mar-14-14              |       |
| CCME PHC F2 (C10-C16)  CCME PHC F3 (C16-C34)                             | < 100                       |                       | ug/L<br>ug/L |                        |                        |       |
| CCME PHC F3 (C16-C34)  CCME PHC F4 (C34-C50)                             | < 100                       |                       |              | Mar-11-14<br>Mar-11-14 | Mar-14-14<br>Mar-14-14 |       |
| COIVIE FITO F4 (C34-C30)                                                 | > 100                       | 100                   | ug/L         | ivial-11-14            | IVIAI - 14- 14         |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030418 Mar-19-14

| Analyte                         | Result /<br>Recovery                     | MRL /<br>Limit | Units | Prepared                | Analyzed    | Notes |
|---------------------------------|------------------------------------------|----------------|-------|-------------------------|-------------|-------|
| Polycyclic Aromatic Hydrocarbon | s (PAH)                                  |                |       |                         |             |       |
| Sample ID: SW1 (4030418-01) [Wa |                                          |                |       |                         |             |       |
| Acenaphthene                    | < 0.02                                   | 0.02           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Acenaphthylene                  | < 0.02                                   | 0.02           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Acridine                        | < 0.05                                   | 0.05           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Anthracene                      | < 0.01                                   | 0.01           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Benzo (a) anthracene            | < 0.01                                   | 0.01           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Benzo (a) pyrene                | < 0.01                                   | 0.01           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Benzo (b) fluoranthene          | < 0.02                                   | 0.02           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Benzo (g,h,i) perylene          | < 0.02                                   | 0.02           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Benzo (k) fluoranthene          | < 0.02                                   | 0.02           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Chrysene                        | < 0.02                                   | 0.02           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Dibenz (a,h) anthracene         | < 0.02                                   | 0.02           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Fluoranthene                    | < 0.02                                   | 0.02           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Fluorene                        | < 0.02                                   | 0.02           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Indeno (1,2,3-cd) pyrene        | < 0.02                                   | 0.02           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Naphthalene                     | < 0.05                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Phenanthrene                    | < 0.05                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Pyrene                          | < 0.02                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Quinoline                       | < 0.05                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Surrogate: Naphthalene-d8       | 55 %                                     | 40-96          |       | Mar-11-14               | Mar-13-14   |       |
| Surrogate: Acenaphthene-d10     | 58 %                                     | 45-92          |       | Mar-11-14               | Mar-13-14   |       |
| Surrogate: Phenanthrene-d10     | 65 %                                     | 48-90          |       | Mar-11-14               | Mar-13-14   |       |
| Surrogate: Chrysene-d12         | 73 %                                     | 41-96          |       | Mar-11-14               | Mar-13-14   |       |
| Surrogate: Perylene-d12         | 69 %                                     | 47-104         |       | Mar-11-14               | Mar-13-14   |       |
|                                 |                                          | 47-104         |       | IVIAI-TI-T <del>-</del> | IVIAI-13-14 |       |
| Sample ID: SW2 (4030418-02) [Wa | ater] Sampled: Mar-03-14 16:00<br>< 0.02 | 0.02           | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Acenaphtheles                   |                                          |                |       |                         |             |       |
| Acenaphthylene                  | < 0.02                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Acridine                        | < 0.05                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Anthracene                      | < 0.01                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Benzo (a) anthracene            | < 0.01                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Benzo (a) pyrene                | < 0.01                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Benzo (b) fluoranthene          | < 0.02                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Benzo (g,h,i) perylene          | < 0.02                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Benzo (k) fluoranthene          | < 0.02                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Chrysene                        | < 0.02                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Dibenz (a,h) anthracene         | < 0.02                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Fluoranthene                    | < 0.02                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Fluorene                        | < 0.02                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Indeno (1,2,3-cd) pyrene        | < 0.02                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Naphthalene                     | < 0.05                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Phenanthrene                    | < 0.05                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Pyrene                          | < 0.02                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Quinoline                       | < 0.05                                   |                | ug/L  | Mar-11-14               | Mar-13-14   |       |
| Surrogate: Naphthalene-d8       | 61 %                                     | 40-96          |       | Mar-11-14               | Mar-13-14   |       |
| Surrogate: Acenaphthene-d10     | 62 %                                     | 45-92          |       | Mar-11-14               | Mar-13-14   |       |

Page 21 of 37



REPORTED TO Columbia Environmental Consulting Ltd

PROJECT 14-0493 WORK ORDER

REPORTED

| Analyte                         | Result /<br>Recovery        | MRL /<br><i>Limit</i> | Units | Prepared  | Analyzed  | Notes |
|---------------------------------|-----------------------------|-----------------------|-------|-----------|-----------|-------|
| Polycyclic Aromatic Hydrocarbon | s (PAH), Continued          |                       |       |           |           |       |
| Sample ID: SW2 (4030418-02) [Wa | ater] Sampled: Mar-03-14 16 | 3:00, Continued       |       |           |           |       |
| Surrogate: Phenanthrene-d10     | 67 %                        | 48-90                 |       | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Chrysene-d12         | 72 %                        | 41-96                 |       | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Perylene-d12         | 68 %                        | 47-104                |       | Mar-11-14 | Mar-13-14 |       |
| Sample ID: SW3 (4030418-03) [Wa | ater] Sampled: Mar-03-14 16 | 3:00                  |       |           |           |       |
| Acenaphthene                    | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Acenaphthylene                  | < 0.02                      | 0.02                  | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Acridine                        | < 0.05                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Anthracene                      | < 0.01                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) anthracene            | < 0.01                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) pyrene                | < 0.01                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Benzo (b) fluoranthene          | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Benzo (g,h,i) perylene          | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Benzo (k) fluoranthene          | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Chrysene                        | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Dibenz (a,h) anthracene         | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Fluoranthene                    | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Fluorene                        | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Indeno (1,2,3-cd) pyrene        | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Naphthalene                     | < 0.05                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Phenanthrene                    | < 0.05                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Pyrene                          | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Quinoline                       | < 0.05                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Naphthalene-d8       | 62 %                        | 40-96                 | ~3/-  | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Acenaphthene-d10     | 64 %                        | 45-92                 |       | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Phenanthrene-d10     | 70 %                        | 48-90                 |       | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Chrysene-d12         | 74 %                        | 41-96                 |       | Mar-11-14 | Mar-13-14 |       |
|                                 |                             |                       |       |           |           |       |
| Surrogate: Perylene-d12         | 70 %                        | 47-104                |       | Mar-11-14 | Mar-13-14 |       |
| Sample ID: MW14-1 (4030418-04)  | <u> </u>                    |                       |       |           |           |       |
| Acenaphthene                    | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Acenaphthylene                  | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Acridine                        | < 0.05                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Anthracene                      | < 0.01                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) anthracene            | < 0.01                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) pyrene                | < 0.01                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Benzo (b) fluoranthene          | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Benzo (g,h,i) perylene          | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Benzo (k) fluoranthene          | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Chrysene                        | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Dibenz (a,h) anthracene         | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Fluoranthene                    | < 0.02                      |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Fluorene                        | < 0.02                      | 0.02                  | ug/L  | Mar-11-14 | Mar-13-14 |       |
| Indeno (1,2,3-cd) pyrene        | < 0.02                      | 0.02                  | ug/L  | Mar-11-14 | Mar-13-14 |       |
|                                 | 0.19                        |                       | ug/L  | Mar-11-14 | Mar-13-14 |       |

4030418



REPORTED TOColumbia Environmental Consulting LtdWORK ORDER4030418PROJECT14-0493REPORTEDMar-19-14

| Analyte                         | Result /<br>Recovery        | MRL /<br><i>Limit</i> | Units        | Prepared               | Analyzed               | Notes |
|---------------------------------|-----------------------------|-----------------------|--------------|------------------------|------------------------|-------|
| Polycyclic Aromatic Hydrocarbo  | ns (PAH), Continued         |                       |              |                        |                        |       |
| Sample ID: MW14-1 (4030418-04)  | [Water] Sampled: Mar-07-1   | 4 17:00, Continue     | ed           |                        |                        |       |
| Phenanthrene                    | < 0.05                      | 0.05                  | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Pyrene                          | < 0.02                      | 0.02                  | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Quinoline                       | < 0.05                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Surrogate: Naphthalene-d8       | 61 %                        | 40-96                 |              | Mar-11-14              | Mar-13-14              |       |
| Surrogate: Acenaphthene-d10     | 62 %                        | 45-92                 |              | Mar-11-14              | Mar-13-14              |       |
| Surrogate: Phenanthrene-d10     | 68 %                        | 48-90                 |              | Mar-11-14              | Mar-13-14              |       |
| Surrogate: Chrysene-d12         | 72 %                        | 41-96                 |              | Mar-11-14              | Mar-13-14              |       |
| Surrogate: Perylene-d12         | 73 %                        | 47-104                |              | Mar-11-14              | Mar-13-14              |       |
| Sample ID: MWDUP2 (4030418-0    | 5) [Water] Sampled: Mar-07- | 14 17:00              |              |                        |                        |       |
| Acenaphthene                    | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Acenaphthylene                  | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Acridine                        | < 0.05                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Anthracene                      | < 0.01                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Benzo (a) anthracene            | < 0.01                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Benzo (a) pyrene                | < 0.01                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Benzo (b) fluoranthene          | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Benzo (g,h,i) perylene          | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Benzo (k) fluoranthene          | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Chrysene                        | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Dibenz (a,h) anthracene         | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Fluoranthene                    | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Fluorene                        | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Indeno (1,2,3-cd) pyrene        | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Naphthalene                     | 0.24                        |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Phenanthrene                    | < 0.05                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Pyrene                          | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Quinoline                       | < 0.05                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Surrogate: Naphthalene-d8       | 78 %                        | 40-96                 |              | Mar-11-14              | Mar-13-14              |       |
| Surrogate: Acenaphthene-d10     | 77 %                        | 45-92                 |              | Mar-11-14              | Mar-13-14              |       |
| Surrogate: Phenanthrene-d10     | 81 %                        | 48-90                 |              | Mar-11-14              | Mar-13-14              |       |
| Surrogate: Chrysene-d12         | 84 %                        | 41-96                 |              | Mar-11-14              | Mar-13-14              |       |
| Surrogate: Perylene-d12         | 81 %                        | 47-104                |              | Mar-11-14              | Mar-13-14              |       |
|                                 |                             |                       |              | IVIAI-TI-T4            | Wai-13-14              |       |
| Sample ID: MW14-2 (4030418-06)  |                             |                       | //           | Mac 44 4 4             | Man 40 44              |       |
| Acenaphthene                    | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Acenaphthylene                  | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Acridine                        | < 0.05                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Anthracene                      | < 0.01                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Benzo (a) anthracene            | < 0.01                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Benzo (a) pyrene                | < 0.01                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Benzo (b) fluoranthene          | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Benzo (g,h,i) perylene          | < 0.02                      |                       | ug/L         | Mar-11-14              | Mar-13-14              |       |
| Benzo (k) fluoranthene Chrysene | < 0.02<br>< 0.02            |                       | ug/L<br>ug/L | Mar-11-14<br>Mar-11-14 | Mar-13-14<br>Mar-13-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030418 Mar-19-14

| Analyte | Result / Recovery | MRL /<br>Units | Prepared | Analyzed | Notes |
|---------|-------------------|----------------|----------|----------|-------|
|         | Necovery          | Lilling        |          |          |       |

### Polycyclic Aromatic Hydrocarbons (PAH), Continued

### Sample ID: MW14-2 (4030418-06) [Water] Sampled: Mar-07-14 17:00, Continued

| Dibenz (a,h) anthracene     | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
|-----------------------------|--------|-----------|-----------|-----------|
| Fluoranthene                | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Fluorene                    | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Indeno (1,2,3-cd) pyrene    | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Naphthalene                 | < 0.05 | 0.05 ug/L | Mar-11-14 | Mar-13-14 |
| Phenanthrene                | < 0.05 | 0.05 ug/L | Mar-11-14 | Mar-13-14 |
| Pyrene                      | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Quinoline                   | < 0.05 | 0.05 ug/L | Mar-11-14 | Mar-13-14 |
| Surrogate: Naphthalene-d8   | 67 %   | 40-96     | Mar-11-14 | Mar-13-14 |
| Surrogate: Acenaphthene-d10 | 68 %   | 45-92     | Mar-11-14 | Mar-13-14 |
| Surrogate: Phenanthrene-d10 | 72 %   | 48-90     | Mar-11-14 | Mar-13-14 |
| Surrogate: Chrysene-d12     | 77 %   | 41-96     | Mar-11-14 | Mar-13-14 |
| Surrogate: Perylene-d12     | 76 %   | 47-104    | Mar-11-14 | Mar-13-14 |

#### Sample ID: MW14-3 (4030418-07) [Water] Sampled: Mar-08-14 09:00

| Acridine < 0.05 0.05 ug/L Mar-11-14 Mar-13-14 Anthracene < 0.01 0.01 ug/L Mar-11-14 Mar-13-14 Benzo (a) anthracene < 0.01 0.01 ug/L Mar-11-14 Mar-13-14 Benzo (a) pyrene < 0.01 0.01 ug/L Mar-11-14 Mar-13-14 Benzo (b) fluoranthene < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 Benzo (g,h,i) perylene < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 Benzo (k) fluoranthene < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 Chrysene < 0.05 0.05 ug/L Mar-11-14 Mar-13-14                                                                                                                                               | Acenaphthene                | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|-----------|-----------|-----------|
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Acenaphthylene              | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Senzo (a) anthracene   < 0.01   0.01   ug/L   Mar-11-14   Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Acridine                    | < 0.05 | 0.05 ug/L | Mar-11-14 | Mar-13-14 |
| Benzo (a) pyrene         < 0.01         0.01 ug/L         Mar-11-14         Mar-13-14           Benzo (b) fluoranthene         < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Anthracene                  | < 0.01 | 0.01 ug/L | Mar-11-14 | Mar-13-14 |
| Serzo (b) fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzo (a) anthracene        | < 0.01 | 0.01 ug/L | Mar-11-14 | Mar-13-14 |
| Benzo (g,h,i) perylene         < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzo (a) pyrene            | < 0.01 | 0.01 ug/L | Mar-11-14 | Mar-13-14 |
| Benzo (k) fluoranthene         < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzo (b) fluoranthene      | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Chrysene       < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzo (g,h,i) perylene      | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Dibenz (a,h) anthracene       < 0.02       0.02 ug/L       Mar-11-14       Mar-13-14         Fluoranthene       < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzo (k) fluoranthene      | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Fluoranthene < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 Fluorene < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 | Chrysene                    | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Fluorene < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dibenz (a,h) anthracene     | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Indeno (1,2,3-cd) pyrene         < 0.02         0.02 ug/L         Mar-11-14         Mar-13-14           Naphthalene         0.26         0.05 ug/L         Mar-11-14         Mar-13-14           Phenanthrene         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fluoranthene                | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Naphthalene         0.26         0.05 ug/L         Mar-11-14 Mar-13-14           Phenanthrene         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fluorene                    | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Phenanthrene       < 0.05       0.05 ug/L       Mar-11-14 Mar-13-14         Pyrene       < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ndeno (1,2,3-cd) pyrene     | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Pyrene         < 0.02         0.02 ug/L         Mar-11-14         Mar-13-14           Quinoline         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Naphthalene                 | 0.26   | 0.05 ug/L | Mar-11-14 | Mar-13-14 |
| Quinoline         < 0.05         0.05 ug/L         Mar-11-14 Mar-13-14           Surrogate: Naphthalene-d8         69 %         40-96         Mar-11-14 Mar-13-14           Surrogate: Acenaphthene-d10         72 %         45-92         Mar-11-14 Mar-13-14           Surrogate: Phenanthrene-d10         76 %         48-90         Mar-11-14 Mar-13-14           Surrogate: Chrysene-d12         80 %         41-96         Mar-11-14 Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phenanthrene                | < 0.05 | 0.05 ug/L | Mar-11-14 | Mar-13-14 |
| Surrogate: Naphthalene-d8       69 %       40-96       Mar-11-14       Mar-13-14         Surrogate: Acenaphthene-d10       72 %       45-92       Mar-11-14       Mar-13-14         Surrogate: Phenanthrene-d10       76 %       48-90       Mar-11-14       Mar-13-14         Surrogate: Chrysene-d12       80 %       41-96       Mar-11-14       Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pyrene                      | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Surrogate: Acenaphthene-d10       72 %       45-92       Mar-11-14       Mar-13-14         Surrogate: Phenanthrene-d10       76 %       48-90       Mar-11-14       Mar-13-14         Surrogate: Chrysene-d12       80 %       41-96       Mar-11-14       Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quinoline                   | < 0.05 | 0.05 ug/L | Mar-11-14 | Mar-13-14 |
| Surrogate: Phenanthrene-d10         76 %         48-90         Mar-11-14         Mar-13-14           Surrogate: Chrysene-d12         80 %         41-96         Mar-11-14         Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Surrogate: Naphthalene-d8   | 69 %   | 40-96     | Mar-11-14 | Mar-13-14 |
| Surrogate: Chrysene-d12 80 % 41-96 Mar-11-14 Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Surrogate: Acenaphthene-d10 | 72 %   | 45-92     | Mar-11-14 | Mar-13-14 |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Surrogate: Phenanthrene-d10 | 76 %   | 48-90     | Mar-11-14 | Mar-13-14 |
| Surrogate: Perylene-d12 77 % 47-104 Mar-11-14 Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surrogate: Chrysene-d12     | 80 %   | 41-96     | Mar-11-14 | Mar-13-14 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Surrogate: Perylene-d12     | 77 %   | 47-104    | Mar-11-14 | Mar-13-14 |

### Volatile Organic Compounds (VOC)

### Sample ID: SW1 (4030418-01) [Water] Sampled: Mar-03-14 16:00

| Benzene      | < 0.5 | 0.5 ug/L | N/A | Mar-13-14 |  |
|--------------|-------|----------|-----|-----------|--|
| Ethylbenzene | < 1.0 | 1.0 ug/L | N/A | Mar-13-14 |  |
| Toluene      | < 1.0 | 1.0 ug/L | N/A | Mar-13-14 |  |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                                     | Result / Recovery                | MRL /<br><i>Limit</i> | Units | Prepared   | Analyzed               | Notes |
|---------------------------------------------|----------------------------------|-----------------------|-------|------------|------------------------|-------|
| /olatile Organic Compounds (VOC             | ), Continued                     |                       |       |            |                        |       |
| Sample ID: SW1 (4030418-01) [Wat            | er] Sampled: Mar-03-14 1         | 6:00, Continued       |       |            |                        |       |
| Xylenes (total)                             | < 2.0                            | 2.0                   | ug/L  | N/A        | Mar-13-14              |       |
| Surrogate: Toluene-d8                       | 89 %                             | 70-130                |       | N/A        | Mar-13-14              |       |
| Surrogate: 4-Bromofluorobenzene             | 87 %                             | 70-130                |       | N/A        | Mar-13-14              |       |
| Sample ID: SW2 (4030418-02) [Wat            | ter] Sampled: Mar-03-14 1        | 6:00                  |       |            |                        |       |
| Benzene                                     | < 0.5                            | 0.5                   | ug/L  | N/A        | Mar-13-14              |       |
| Ethylbenzene                                | < 1.0                            | 1.0                   | ug/L  | N/A        | Mar-13-14              |       |
| Toluene                                     | < 1.0                            |                       | ug/L  | N/A        | Mar-13-14              |       |
| Xylenes (total)                             | < 2.0                            |                       | ug/L  | N/A        | Mar-13-14              |       |
| Surrogate: Toluene-d8                       | 93 %                             | 70-130                |       | N/A        | Mar-13-14              |       |
| Surrogate: 4-Bromofluorobenzene             | 92 %                             | 70-130                |       | N/A        | Mar-13-14              |       |
| Sample ID: SW3 (4030418-03) [Wat            | terl Sampled: Mar-03-14 1        | 6:00                  |       |            |                        |       |
| Benzene                                     | < 0.5                            |                       | ug/L  | N/A        | Mar-13-14              |       |
| Ethylbenzene                                | < 1.0                            |                       | ug/L  | N/A        | Mar-13-14              |       |
| Toluene                                     | < 1.0                            |                       | ug/L  | N/A        | Mar-13-14              |       |
| Xylenes (total)                             | < 2.0                            |                       | ug/L  | N/A        | Mar-13-14              |       |
| Surrogate: Toluene-d8                       | 94 %                             | 70-130                |       | N/A        | Mar-13-14              |       |
| Surrogate: 4-Bromofluorobenzene             | 94 %                             | 70-130                |       | N/A        | Mar-13-14              |       |
| Sample ID: MW14-1 (4030418-04) [            | Waterl Sampled: Mar-07-          | 14 17:00              |       |            |                        |       |
| Benzene                                     | < 0.5                            |                       | ug/L  | N/A        | Mar-14-14              |       |
| Ethylbenzene                                | < 1.0                            |                       | ug/L  | N/A        | Mar-14-14              |       |
| Toluene                                     | 4.0                              |                       | ug/L  | N/A        | Mar-14-14              |       |
| Xylenes (total)                             | 3.1                              |                       | ug/L  | N/A        | Mar-14-14              |       |
| Surrogate: Toluene-d8                       | 96 %                             | 70-130                | ug/L  | N/A        | Mar-14-14              |       |
| Surrogate: 4-Bromofluorobenzene             | 99 %                             | 70-130                |       | N/A        | Mar-14-14              |       |
| -                                           |                                  |                       |       | 7 1 7 1    | War II II              |       |
| Sample ID: MWDUP2 (4030418-05)              |                                  |                       | //    | NI/A       | Mor 14 14              |       |
| Benzene                                     | < 0.5<br>< 1.0                   |                       | ug/L  | N/A<br>N/A | Mar-14-14<br>Mar-14-14 |       |
| Ethylbenzene                                |                                  |                       | ug/L  |            |                        |       |
| Toluene Yylonos (total)                     | 3.6                              |                       | ug/L  | N/A        | Mar-14-14              |       |
| Xylenes (total) Surrogate: Toluene-d8       | 2.7                              |                       | ug/L  | N/A<br>N/A | Mar-14-14              |       |
| <u> </u>                                    | 89 %                             | 70-130<br>70-130      |       | N/A<br>N/A | Mar-14-14<br>Mar-14-14 |       |
| Surrogate: 4-Bromofluorobenzene             | 91 %                             |                       |       | IV/A       | IVIAI-14-14            |       |
| Sample ID: MW14-2 (4030418-06) [<br>Benzene | Water] Sampled: Mar-07-<br>< 0.5 |                       | ug/L  | N/A        | Mar-14-14              |       |
|                                             | < 1.0                            |                       |       |            |                        |       |
| Ethylbenzene                                | < 1.0                            |                       | ug/L  | N/A        | Mar-14-14              |       |
| Toluene Yulongo (total)                     |                                  |                       | ug/L  | N/A        | Mar-14-14              |       |
| Xylenes (total)                             | < 2.0                            |                       | ug/L  | N/A        | Mar-14-14              |       |
| Surrogate: Toluene-d8                       | 94 %                             | 70-130                |       | N/A        | Mar-14-14              |       |
| Surrogate: 4-Bromofluorobenzene             | 92 %                             | 70-130                |       | N/A        | Mar-14-14              |       |
| Sample ID: MW14-3 (4030418-07) [            | Water] Sampled: Mar-08-          | 14 09:00              |       |            |                        |       |
| Benzene                                     | < 0.5                            | 0.5                   | ug/L  | N/A        | Mar-14-14              |       |



REPORTED TO Columbia Environmental Consulting Ltd PROJECT 14-0493

WORK ORDER REPORTED 4030418 Mar-19-14

| Analyte | Result / | Units Prepared Analyzed Notes |          |           |       |
|---------|----------|-------------------------------|----------|-----------|-------|
| Analyte | Recovery | Limit                         | riepaieu | Allalyzeu | Notes |

#### Volatile Organic Compounds (VOC), Continued

#### Sample ID: MW14-3 (4030418-07) [Water] Sampled: Mar-08-14 09:00, Continued

| Ethylbenzene                    | < 1.0 | 1.0 ug/L | N/A | Mar-14-14 |
|---------------------------------|-------|----------|-----|-----------|
| Toluene                         | 1.5   | 1.0 ug/L | N/A | Mar-14-14 |
| Xylenes (total)                 | < 2.0 | 2.0 ug/L | N/A | Mar-14-14 |
| Surrogate: Toluene-d8           | 92 %  | 70-130   | N/A | Mar-14-14 |
| Surrogate: 4-Bromofluorobenzene | 91 %  | 70-130   | N/A | Mar-14-14 |

#### Sample / Analysis Qualifiers:

HT The sample was prepared / analyzed past the recommended holding time.



REPORTED TO PROJECT

Columbia Environmental Consulting Ltd

14-0493

WORK ORDER
REPORTED

4030418 Mar-19-14

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment
- **Duplicate (Dup)**: Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.
- Blank Spike (BS): A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).
- Standard Reference Material (SRM): A material of similar matrix to the samples, externally certified for the parameter(s) listed.
   Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

| Analyte                                    | Result    | MRL Units       | Spike<br>Level | Source<br>Result | % REC       | REC<br>Limit | RPD  | RPD<br>Limit | Notes |
|--------------------------------------------|-----------|-----------------|----------------|------------------|-------------|--------------|------|--------------|-------|
| Aggregate Organic Parameters, Batc         | h B4C0511 |                 |                |                  |             |              |      |              |       |
| Blank (B4C0511-BLK1)                       |           |                 | Prepared       | l: Mar-13-       | 14, Analyze | ed: Mar-13   | 3-14 |              |       |
| VHw (6-10)                                 | < 100     | 100 ug/L        |                |                  |             |              |      |              |       |
| LCS (B4C0511-BS2)                          |           |                 | Prepared       | l: Mar-13-       | 14, Analyze | ed: Mar-13   | 3-14 |              |       |
| VHw (6-10)                                 | 2340      | 100 ug/L        | 2930           |                  | 80          | 57-107       |      |              |       |
| Duplicate (B4C0511-DUP1)                   | Soul      | rce: 4030418-03 | Prepared       | l: Mar-13-       | 14, Analyze | ed: Mar-13   | 3-14 |              |       |
| VHw (6-10)                                 | < 100     | 100 ug/L        |                | < 100            |             |              |      | 27           |       |
| Anions, Batch B4C0397 Blank (B4C0397-BLK1) |           |                 | Prepared       | l: Mar-11-1      | I4, Analyze | ed: Mar-11   | -14  |              |       |
| Chloride                                   | < 0.10    | 0.10 mg/L       |                |                  |             |              |      |              |       |
| Fluoride                                   | < 0.10    | 0.10 mg/L       |                |                  |             |              |      |              |       |
| Nitrogen, Nitrate as N                     | < 0.010   | 0.010 mg/L      |                |                  |             |              |      |              |       |
| Nitrogen, Nitrite as N                     | < 0.010   | 0.010 mg/L      |                |                  |             |              |      |              |       |
| Phosphate, Ortho as P                      | < 0.01    | 0.01 mg/L       |                |                  |             |              |      |              |       |
| Sulfate                                    | < 1.0     | 1.0 mg/L        |                |                  |             |              |      |              |       |
| Blank (B4C0397-BLK2)                       |           |                 | Prepared       | l: Mar-11-1      | 14, Analyze | ed: Mar-11   | -14  |              |       |
| Chloride                                   | < 0.10    | 0.10 mg/L       |                |                  |             |              |      |              |       |
| Fluoride                                   | < 0.10    | 0.10 mg/L       |                |                  |             |              |      |              |       |
| Nitrogen, Nitrate as N                     | < 0.010   | 0.010 mg/L      |                |                  |             |              |      |              |       |
| Nitrogen, Nitrite as N                     | < 0.010   | 0.010 mg/L      |                |                  |             |              |      |              |       |
| Phosphate, Ortho as P                      | < 0.01    | 0.01 mg/L       |                |                  |             |              |      |              |       |
| Sulfate                                    | < 1.0     | 1.0 mg/L        |                |                  |             |              |      |              |       |
| Blank (B4C0397-BLK3)                       |           |                 | Prepared       | l: Mar-12-       | 14, Analyze | ed: Mar-12   | 2-14 |              |       |
| Chloride                                   | < 0.10    | 0.10 mg/L       |                |                  |             |              |      |              |       |
| Fluoride                                   | < 0.10    | 0.10 mg/L       |                |                  |             |              |      |              |       |
| Nitrogen, Nitrate as N                     | < 0.010   | 0.010 mg/L      |                |                  |             |              |      |              |       |
| Nitrogen, Nitrite as N                     | < 0.010   | 0.010 mg/L      |                |                  |             |              |      |              |       |
| Phosphate, Ortho as P                      | < 0.01    | 0.01 mg/L       |                |                  |             |              |      |              |       |
| Sulfate                                    | < 1.0     | 1.0 mg/L        |                |                  |             |              |      |              |       |



| REPORTED TO | Columbia Environmental Consulting Ltd | <b>WORK ORDER</b> | 4030418   |
|-------------|---------------------------------------|-------------------|-----------|
| PROJECT     | 14-0493                               | REPORTED          | Mar-19-14 |

| Analyte                                                                                                                                                                                                                                                                                               | Result                                                                   | MRL Units                                                | Spike<br>Level                                 | Source % RI<br>Result                                                         | EC REC<br>Limit                                                         | RPD                  | RPD<br>Limit | Notes |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------|--------------|-------|
| Anions, Batch B4C0397, Continued                                                                                                                                                                                                                                                                      | 1                                                                        |                                                          |                                                |                                                                               |                                                                         |                      |              |       |
| LCS (B4C0397-BS1)                                                                                                                                                                                                                                                                                     |                                                                          |                                                          | Prepared                                       | I: Mar-11-14, Ana                                                             | alyzed: Mar-11                                                          | -14                  |              |       |
| Chloride                                                                                                                                                                                                                                                                                              | 15.8                                                                     | 0.10 mg/L                                                | 16.0                                           | 99                                                                            | 85-115                                                                  |                      |              |       |
| Fluoride                                                                                                                                                                                                                                                                                              | 3.97                                                                     | 0.10 mg/L                                                | 4.00                                           | 99                                                                            | 85-115                                                                  |                      |              |       |
| Nitrogen, Nitrate as N                                                                                                                                                                                                                                                                                | 4.09                                                                     | 0.010 mg/L                                               | 4.00                                           | 102                                                                           | 2 85-115                                                                |                      |              |       |
| Nitrogen, Nitrite as N                                                                                                                                                                                                                                                                                | 1.94                                                                     | 0.010 mg/L                                               | 2.00                                           | 97                                                                            | 85-115                                                                  |                      |              |       |
| Phosphate, Ortho as P                                                                                                                                                                                                                                                                                 | 1.98                                                                     | 0.01 mg/L                                                | 2.00                                           | 99                                                                            | 85-115                                                                  |                      |              |       |
| Sulfate                                                                                                                                                                                                                                                                                               | 15.6                                                                     | 1.0 mg/L                                                 | 16.0                                           | 98                                                                            | 85-115                                                                  |                      |              |       |
| _CS (B4C0397-BS2)                                                                                                                                                                                                                                                                                     |                                                                          |                                                          | Prepared                                       | I: Mar-11-14, Ana                                                             | alvzed: Mar-11                                                          | -14                  |              |       |
| Chloride                                                                                                                                                                                                                                                                                              | 15.7                                                                     | 0.10 mg/L                                                | 16.0                                           | 98                                                                            | ,                                                                       |                      |              |       |
| Fluoride                                                                                                                                                                                                                                                                                              | 3.85                                                                     | 0.10 mg/L                                                | 4.00                                           | 96                                                                            |                                                                         |                      |              |       |
| Nitrogen, Nitrate as N                                                                                                                                                                                                                                                                                | 4.09                                                                     | 0.010 mg/L                                               | 4.00                                           | 102                                                                           |                                                                         |                      |              |       |
| Nitrogen, Nitrite as N                                                                                                                                                                                                                                                                                | 1.91                                                                     | 0.010 mg/L                                               | 2.00                                           | 95                                                                            |                                                                         |                      |              |       |
| Phosphate, Ortho as P                                                                                                                                                                                                                                                                                 | 1.89                                                                     | 0.01 mg/L                                                | 2.00                                           | 94                                                                            |                                                                         |                      |              |       |
| Sulfate                                                                                                                                                                                                                                                                                               | 15.5                                                                     | 1.0 mg/L                                                 | 16.0                                           | 97                                                                            |                                                                         |                      |              |       |
| .CS (B4C0397-BS3)                                                                                                                                                                                                                                                                                     |                                                                          |                                                          |                                                | I: Mar-12-14, Ana                                                             |                                                                         | 2_1/                 |              |       |
| Chloride                                                                                                                                                                                                                                                                                              | 15.9                                                                     | 0.10 mg/L                                                | 16.0                                           | 99                                                                            | -                                                                       | 1                    |              |       |
| Fluoride                                                                                                                                                                                                                                                                                              |                                                                          | 0.10 mg/L<br>0.10 mg/L                                   | 4.00                                           |                                                                               |                                                                         |                      |              |       |
|                                                                                                                                                                                                                                                                                                       | 3.95                                                                     |                                                          |                                                | 99                                                                            |                                                                         |                      |              |       |
| Nitrogen, Nitrate as N                                                                                                                                                                                                                                                                                | 4.10                                                                     | 0.010 mg/L                                               | 4.00                                           | 103                                                                           |                                                                         |                      |              |       |
| Nitrogen, Nitrite as N                                                                                                                                                                                                                                                                                | 1.92                                                                     | 0.010 mg/L                                               | 2.00                                           | 96                                                                            |                                                                         |                      |              |       |
| Phosphate, Ortho as P                                                                                                                                                                                                                                                                                 | 1.85                                                                     | 0.01 mg/L                                                | 2.00                                           | 93                                                                            |                                                                         |                      |              |       |
| Sulfate                                                                                                                                                                                                                                                                                               | 15.6                                                                     | 1.0 mg/L                                                 | 16.0                                           | 97                                                                            | 85-115                                                                  |                      |              |       |
| Duplicate (B4C0397-DUP2)                                                                                                                                                                                                                                                                              | Sou                                                                      | rce: 4030418-14                                          | Prepared                                       | I: Mar-11-14, Ana                                                             | alyzed: Mar-11                                                          | -14                  |              |       |
| Chloride                                                                                                                                                                                                                                                                                              | 120                                                                      | 0.10 mg/L                                                |                                                | 119                                                                           |                                                                         | < 1                  | 10           |       |
| Fluoride                                                                                                                                                                                                                                                                                              | 0.11                                                                     | 0.10 mg/L                                                |                                                | 0.11                                                                          |                                                                         |                      | 10           |       |
| Nitrogen, Nitrate as N                                                                                                                                                                                                                                                                                | 0.382                                                                    | 0.010 mg/L                                               |                                                | 0.370                                                                         |                                                                         | 3                    | 10           |       |
| Nitrogen, Nitrite as N                                                                                                                                                                                                                                                                                | < 0.010                                                                  | 0.010 mg/L                                               |                                                | < 0.010                                                                       |                                                                         |                      | 10           |       |
| Phosphate, Ortho as P                                                                                                                                                                                                                                                                                 | < 0.01                                                                   | 0.01 mg/L                                                |                                                | < 0.01                                                                        |                                                                         |                      | 20           |       |
| N. 16-4-                                                                                                                                                                                                                                                                                              | 29.2                                                                     | 1.0 mg/L                                                 |                                                | 28.4                                                                          |                                                                         | 3                    | 10           |       |
| Sulfate                                                                                                                                                                                                                                                                                               |                                                                          |                                                          |                                                |                                                                               |                                                                         |                      |              |       |
| CME CWS Petroleum Hydrocarbon<br>Blank (B4C0359-BLK1)                                                                                                                                                                                                                                                 | ·<br>                                                                    | 100"                                                     | Prepared                                       | l: Mar-11-14, Ana                                                             | alyzed: Mar-14                                                          | I-14                 |              |       |
| CME CWS Petroleum Hydrocarbon<br>Blank (B4C0359-BLK1)<br>CCME PHC F2 (C10-C16)                                                                                                                                                                                                                        | < 100                                                                    | 100 ug/L                                                 | Prepared                                       | l: Mar-11-14, Ana                                                             | alyzed: Mar-14                                                          | l-14                 |              |       |
| CME CWS Petroleum Hydrocarbon<br>Blank (B4C0359-BLK1)<br>CCME PHC F2 (C10-C16)<br>CCME PHC F3 (C16-C34)                                                                                                                                                                                               | < 100<br>< 100                                                           | 100 ug/L                                                 | Prepared                                       | l: Mar-11-14, Ana                                                             | alyzed: Mar-14                                                          | l-14                 |              |       |
| CME CWS Petroleum Hydrocarbon<br>Blank (B4C0359-BLK1)<br>CCME PHC F2 (C10-C16)<br>CCME PHC F3 (C16-C34)                                                                                                                                                                                               | < 100                                                                    |                                                          | •                                              |                                                                               |                                                                         |                      |              |       |
| CME CWS Petroleum Hydrocarbon<br>Blank (B4C0359-BLK1)<br>CCME PHC F2 (C10-C16)<br>CCME PHC F3 (C16-C34)<br>CCME PHC F4 (C34-C50)                                                                                                                                                                      | < 100<br>< 100                                                           | 100 ug/L                                                 | •                                              | l: Mar-11-14, Ana<br>l: Mar-11-14, Ana                                        |                                                                         |                      |              |       |
| CME CWS Petroleum Hydrocarbon Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16) CCME PHC F3 (C16-C34) CCME PHC F4 (C34-C50) LCS (B4C0359-BS2) CCME PHC F2 (C10-C16)                                                                                                                                          | < 100<br>< 100                                                           | 100 ug/L                                                 | •                                              |                                                                               | alyzed: Mar-14                                                          |                      |              |       |
| CME CWS Petroleum Hydrocarbon Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16) CCME PHC F3 (C16-C34) CCME PHC F4 (C34-C50)  CCS (B4C0359-BS2) CCME PHC F2 (C10-C16)                                                                                                                                         | < 100<br>< 100<br>< 100                                                  | 100 ug/L<br>100 ug/L<br>100 ug/L                         | Prepared                                       | l: Mar-11-14, Ana                                                             | alyzed: Mar-14<br>41-112                                                |                      |              |       |
| CME CWS Petroleum Hydrocarbon  Blank (B4C0359-BLK1)  CCME PHC F2 (C10-C16)  CCME PHC F3 (C16-C34)  CCME PHC F4 (C34-C50)  CCS (B4C0359-BS2)  CCME PHC F2 (C10-C16)  CCME PHC F3 (C16-C34)                                                                                                             | < 100<br>< 100<br>< 100<br>< 100                                         | 100 ug/L<br>100 ug/L                                     | Prepared                                       | l: Mar-11-14, Ana<br>53                                                       | alyzed: Mar-14<br>41-112<br>45-100                                      |                      |              |       |
| CME CWS Petroleum Hydrocarbon Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16) CCME PHC F3 (C16-C34) CCME PHC F4 (C34-C50)  LCS (B4C0359-BS2) CCME PHC F2 (C10-C16) CCME PHC F3 (C16-C34) CCME PHC F4 (C34-C50)  CME CWS Petroleum Hydrocarbon                                                              | < 100<br>< 100<br>< 100<br>1090<br>3910<br>276                           | 100 ug/L<br>100 ug/L<br>100 ug/L<br>100 ug/L             | Prepared 2050 7450 500                         | l: Mar-11-14, Ana<br>53<br>53<br>55                                           | alyzed: Mar-14<br>41-112<br>45-100<br>44-122                            | I-14                 |              |       |
| CME CWS Petroleum Hydrocarbon Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16) CCME PHC F3 (C16-C34) CCME PHC F4 (C34-C50)  LCS (B4C0359-BS2) CCME PHC F2 (C10-C16) CCME PHC F3 (C16-C34) CCME PHC F4 (C34-C50)  CME CWS Petroleum Hydrocarbon Blank (B4C0511-BLK1)                                         | <100<br><100<br><100<br><100<br>1090<br>3910<br>276<br>ns, Batch B4C0511 | 100 ug/L<br>100 ug/L<br>100 ug/L<br>100 ug/L<br>100 ug/L | Prepared 2050 7450 500                         | l: Mar-11-14, Ana<br>53<br>53                                                 | alyzed: Mar-14<br>41-112<br>45-100<br>44-122                            | I-14                 |              |       |
| CME CWS Petroleum Hydrocarbon Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16) CCME PHC F3 (C16-C34) CCME PHC F4 (C34-C50)  LCS (B4C0359-BS2) CCME PHC F2 (C10-C16) CCME PHC F3 (C16-C34) CCME PHC F4 (C34-C50)  CME CWS Petroleum Hydrocarbon Blank (B4C0511-BLK1)                                         | < 100<br>< 100<br>< 100<br>1090<br>3910<br>276                           | 100 ug/L<br>100 ug/L<br>100 ug/L<br>100 ug/L             | Prepared 2050 7450 500                         | l: Mar-11-14, Ana<br>53<br>53<br>55                                           | alyzed: Mar-14<br>41-112<br>45-100<br>44-122                            | I-14                 |              |       |
| CME CWS Petroleum Hydrocarbon Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16) CCME PHC F3 (C16-C34) CCME PHC F4 (C34-C50)  LCS (B4C0359-BS2) CCME PHC F2 (C10-C16) CCME PHC F3 (C16-C34) CCME PHC F4 (C34-C50)  CME CWS Petroleum Hydrocarbon                                                              | <100<br><100<br><100<br><100<br>1090<br>3910<br>276<br>ns, Batch B4C0511 | 100 ug/L<br>100 ug/L<br>100 ug/L<br>100 ug/L<br>100 ug/L | Prepared 2050 7450 500 Prepared                | l: Mar-11-14, Ana<br>53<br>53<br>55                                           | alyzed: Mar-14<br>41-112<br>45-100<br>44-122<br>alyzed: Mar-13          | I-14<br>3-14         |              |       |
| CME CWS Petroleum Hydrocarbon Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16) CCME PHC F3 (C16-C34) CCME PHC F4 (C34-C50)  LCS (B4C0359-BS2) CCME PHC F2 (C10-C16) CCME PHC F3 (C16-C34) CCME PHC F4 (C34-C50)  CME CWS Petroleum Hydrocarbon Blank (B4C0511-BLK1) CCME PHC F1 (C6-C10)  LCS (B4C0511-BS2) | <100<br><100<br><100<br><100<br>1090<br>3910<br>276<br>ns, Batch B4C0511 | 100 ug/L<br>100 ug/L<br>100 ug/L<br>100 ug/L<br>100 ug/L | Prepared 2050 7450 500 Prepared                | l: Mar-11-14, Ana<br>53<br>53<br>55<br>1: Mar-13-14, Ana                      | alyzed: Mar-14<br>41-112<br>45-100<br>44-122<br>alyzed: Mar-13          | I-14<br>3-14         |              |       |
| CME CWS Petroleum Hydrocarbon Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16) CCME PHC F3 (C16-C34) CCME PHC F4 (C34-C50)  LCS (B4C0359-BS2) CCME PHC F2 (C10-C16) CCME PHC F3 (C16-C34) CCME PHC F4 (C34-C50)  CME CWS Petroleum Hydrocarbon Blank (B4C0511-BLK1) CCME PHC F1 (C6-C10)                    | <100 <100 <100 <100  1090 3910 276  as, Batch B4C0511  <100              | 100 ug/L<br>100 ug/L<br>100 ug/L<br>100 ug/L<br>100 ug/L | Prepared 2050 7450 500  Prepared Prepared 2930 | l: Mar-11-14, Ana<br>53<br>53<br>55<br>1: Mar-13-14, Ana<br>I: Mar-13-14, Ana | alyzed: Mar-14<br>41-112<br>45-100<br>44-122<br>alyzed: Mar-13<br>60-99 | I-14<br>3-14<br>3-14 |              |       |

Dissolved Metals, Batch B4C0352



Prepared: Mar-12-14, Analyzed: Mar-12-14

**REPORTED TO** Columbia Environmental Consulting Ltd

14-0493 **PROJECT** 

Potassium, dissolved

Selenium, dissolved

Thallium, dissolved

Thorium, dissolved

**WORK ORDER REPORTED** 

4030418 Mar-19-14

| Analyte                        | Result       | MRL Units   | Spike<br>Level | Source<br>Result | % REC       | REC<br>Limit | RPD  | RPD<br>Limit | Notes |
|--------------------------------|--------------|-------------|----------------|------------------|-------------|--------------|------|--------------|-------|
| Dissolved Metals, Batch B4C035 | 2, Continued |             |                |                  |             |              |      |              |       |
| Blank (B4C0352-BLK1)           |              |             | Prepared       | d: Mar-12-1      | 14, Analyze | ed: Mar-12   | 2-14 |              |       |
| Aluminum, dissolved            | < 0.05       | 0.05 mg/L   |                |                  |             |              |      |              |       |
| Antimony, dissolved            | < 0.001      | 0.001 mg/L  |                |                  |             |              |      |              |       |
| Arsenic, dissolved             | < 0.005      | 0.005 mg/L  |                |                  |             |              |      |              |       |
| Barium, dissolved              | < 0.05       | 0.05 mg/L   |                |                  |             |              |      |              |       |
| Beryllium, dissolved           | < 0.001      | 0.001 mg/L  |                |                  |             |              |      |              |       |
| Bismuth, dissolved             | < 0.001      | 0.001 mg/L  |                |                  |             |              |      |              |       |
| Boron, dissolved               | < 0.04       | 0.04 mg/L   |                |                  |             |              |      |              |       |
| Cadmium, dissolved             | < 0.0001     | 0.0001 mg/L |                |                  |             |              |      |              |       |
| Calcium, dissolved             | < 2.0        | 2.0 mg/L    |                |                  |             |              |      |              |       |
| Chromium, dissolved            | < 0.005      | 0.005 mg/L  |                |                  |             |              |      |              |       |
| Cobalt, dissolved              | < 0.0005     | 0.0005 mg/L |                |                  |             |              |      |              |       |

0.2 mg/L

0.005 mg/L

0.0002 mg/L

0.0002 mg/L

0.001 mg/L

| Copper, dissolved     | < 0.002  | 0.002 mg/L  |
|-----------------------|----------|-------------|
| Iron, dissolved       | < 0.10   | 0.10 mg/L   |
| Lead, dissolved       | < 0.001  | 0.001 mg/L  |
| Lithium, dissolved    | < 0.001  | 0.001 mg/L  |
| Magnesium, dissolved  | < 0.1    | 0.1 mg/L    |
| Manganese, dissolved  | < 0.002  | 0.002 mg/L  |
| Mercury, dissolved    | < 0.0002 | 0.0002 mg/L |
| Molybdenum, dissolved | < 0.001  | 0.001 mg/L  |
| Nickel, dissolved     | < 0.002  | 0.002 mg/L  |
| Phosphorus, dissolved | < 0.2    | 0.2 mg/L    |
|                       |          |             |

< 0.2

< 0.005

< 0.001

< 0.0002

Silicon, dissolved < 5 5 mg/L 0.0005 mg/L Silver, dissolved < 0.0005 Sodium, dissolved < 0.2 0.2 mg/L < 0.01 0.01 mg/L Strontium, dissolved < 10 Sulfur, dissolved 10 mg/L Tellurium, dissolved < 0.002 0.002 mg/L < 0.0002

Tin, dissolved < 0.002 0.002 mg/L < 0.05 0.05 mg/L Titanium, dissolved Uranium, dissolved < 0.0002 0.0002 mg/L Vanadium, dissolved < 0.01 0.01 mg/L Zinc. dissolved < 0.04 0.04 mg/L Zirconium, dissolved < 0.001 0.001 mg/L

Blank (B4C0352-BLK2) 0.05 mg/L Aluminum, dissolved < 0.05 Antimony, dissolved < 0.001 0.001 mg/L Arsenic, dissolved < 0.005 0.005 mg/L Barium, dissolved < 0.05 0.05 mg/L Beryllium, dissolved < 0.001 0.001 mg/L Bismuth, dissolved < 0.001 0.001 mg/L

0.04 mg/L Boron, dissolved < 0.04 Cadmium, dissolved < 0.0001 0.0001 mg/L Calcium, dissolved < 2.0 2.0 mg/L < 0.005 0.005 mg/L Chromium, dissolved Cobalt, dissolved < 0.0005 0.0005 mg/L Copper, dissolved < 0.002 0.002 mg/L 0.10 mg/L Iron, dissolved < 0.10 0.001 mg/L Lead, dissolved < 0.001 Lithium, dissolved < 0.001 0.001 mg/L < 0.1 Magnesium, dissolved 0.1 mg/L < 0.002 0.002 mg/L Manganese, dissolved

Mercury, dissolved



Dissolved Metals, Batch B4C0352, Continued

# **QUALITY CONTROL DATA**

REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

|  | Α | nalyte | Result | MRL Units | Spike<br>Level | Source<br>Result | % REC | REC<br>Limit | RPD | RPD<br>Limit | Notes |
|--|---|--------|--------|-----------|----------------|------------------|-------|--------------|-----|--------------|-------|
|--|---|--------|--------|-----------|----------------|------------------|-------|--------------|-----|--------------|-------|

| Blank (B4C0352-BLK2), Continued |          |             | Prepared: Mar-12-14, Analyzed: Mar-12-14 |
|---------------------------------|----------|-------------|------------------------------------------|
| Molybdenum, dissolved           | < 0.001  | 0.001 mg/L  |                                          |
| Nickel, dissolved               | < 0.002  | 0.002 mg/L  |                                          |
| Phosphorus, dissolved           | < 0.2    | 0.2 mg/L    |                                          |
| Potassium, dissolved            | < 0.2    | 0.2 mg/L    |                                          |
| Selenium, dissolved             | < 0.005  | 0.005 mg/L  |                                          |
| Silicon, dissolved              | < 5      | 5 mg/L      |                                          |
| Silver, dissolved               | < 0.0005 | 0.0005 mg/L |                                          |
| Sodium, dissolved               | < 0.2    | 0.2 mg/L    |                                          |
| Strontium, dissolved            | < 0.01   | 0.01 mg/L   |                                          |
| Sulfur, dissolved               | < 10     | 10 mg/L     |                                          |
| Tellurium, dissolved            | < 0.002  | 0.002 mg/L  |                                          |
| Thallium, dissolved             | < 0.0002 | 0.0002 mg/L |                                          |

| Sullui, dissolved    | < 10     | 10 Hig/L    |
|----------------------|----------|-------------|
| Tellurium, dissolved | < 0.002  | 0.002 mg/L  |
| Thallium, dissolved  | < 0.0002 | 0.0002 mg/L |
| Thorium, dissolved   | < 0.001  | 0.001 mg/L  |
| Tin, dissolved       | < 0.002  | 0.002 mg/L  |
| Titanium, dissolved  | < 0.05   | 0.05 mg/L   |
| Uranium, dissolved   | < 0.0002 | 0.0002 mg/L |
| Vanadium, dissolved  | < 0.01   | 0.01 mg/L   |
| Zinc, dissolved      | < 0.04   | 0.04 mg/L   |
| Zirconium, dissolved | < 0.001  | 0.001 mg/L  |
|                      |          |             |

| Zinc, dissolved          | < 0.04   | 0.04 mg/L        |                              |               |    |  |
|--------------------------|----------|------------------|------------------------------|---------------|----|--|
| Zirconium, dissolved     | < 0.001  | 0.001 mg/L       |                              |               |    |  |
| Duplicate (B4C0352-DUP1) | Sou      | ırce: 4030418-05 | Prepared: Mar-12-14, Analyzo | ed: Mar-12-14 |    |  |
| Aluminum, dissolved      | < 0.05   | 0.05 mg/L        | < 0.05                       |               | 16 |  |
| Antimony, dissolved      | < 0.001  | 0.001 mg/L       | 0.001                        |               | 21 |  |
| Arsenic, dissolved       | < 0.005  | 0.005 mg/L       | < 0.005                      |               | 10 |  |
| Barium, dissolved        | < 0.05   | 0.05 mg/L        | < 0.05                       |               | 6  |  |
| Beryllium, dissolved     | < 0.001  | 0.001 mg/L       | < 0.001                      |               | 20 |  |
| Bismuth, dissolved       | < 0.001  | 0.001 mg/L       | < 0.001                      |               | 20 |  |
| Boron, dissolved         | 0.06     | 0.04 mg/L        | 0.04                         |               | 13 |  |
| Cadmium, dissolved       | < 0.0001 | 0.0001 mg/L      | < 0.0001                     |               | 24 |  |
| Calcium, dissolved       | 61.1     | 2.0 mg/L         | 59.9                         | 2             | 10 |  |
| Chromium, dissolved      | < 0.005  | 0.005 mg/L       | < 0.005                      |               | 7  |  |
| Cobalt, dissolved        | < 0.0005 | 0.0005 mg/L      | < 0.0005                     |               | 12 |  |
| Copper, dissolved        | 0.002    | 0.002 mg/L       | 0.002                        |               | 20 |  |
| ron, dissolved           | < 0.10   | 0.10 mg/L        | < 0.10                       |               | 10 |  |
| _ead, dissolved          | < 0.001  | 0.001 mg/L       | < 0.001                      |               | 14 |  |
| ithium, dissolved        | 0.004    | 0.001 mg/L       | 0.004                        |               | 15 |  |
| Magnesium, dissolved     | 24.1     | 0.1 mg/L         | 24.0                         | < 1           | 9  |  |
| Manganese, dissolved     | 0.012    | 0.002 mg/L       | 0.012                        | < 1           | 10 |  |
| Mercury, dissolved       | 0.0003   | 0.0002 mg/L      | < 0.0002                     |               | 20 |  |
| Molybdenum, dissolved    | 0.008    | 0.001 mg/L       | 0.008                        | 4             | 16 |  |
| Nickel, dissolved        | < 0.002  | 0.002 mg/L       | < 0.002                      |               | 14 |  |
| Phosphorus, dissolved    | < 0.2    | 0.2 mg/L         | < 0.2                        |               | 23 |  |
| Potassium, dissolved     | 2.9      | 0.2 mg/L         | 2.9                          | 2             | 17 |  |
| Selenium, dissolved      | < 0.005  | 0.005 mg/L       | < 0.005                      |               | 23 |  |
| Silicon, dissolved       | 10       | 5 mg/L           | 10                           |               | 10 |  |
| Silver, dissolved        | 0.0006   | 0.0005 mg/L      | 0.0011                       |               | 20 |  |
| Sodium, dissolved        | 17.0     | 0.2 mg/L         | 16.9                         | < 1           | 9  |  |
| Strontium, dissolved     | 0.32     | 0.01 mg/L        | 0.32                         | < 1           | 9  |  |
| Sulfur, dissolved        | < 10     | 10 mg/L          | < 10                         |               | 27 |  |
| Tellurium, dissolved     | < 0.002  | 0.002 mg/L       | < 0.002                      |               | 20 |  |
| Thallium, dissolved      | < 0.0002 | 0.0002 mg/L      | < 0.0002                     |               | 12 |  |
| Thorium, dissolved       | < 0.001  | 0.001 mg/L       | < 0.001                      |               | 20 |  |
| Tin, dissolved           | < 0.002  | 0.002 mg/L       | < 0.002                      |               | 20 |  |
| Titanium, dissolved      | < 0.05   | 0.05 mg/L        | < 0.05                       |               | 20 |  |
| Uranium, dissolved       | 0.0028   | 0.0002 mg/L      | 0.0026                       | 5             | 11 |  |
| Vanadium, dissolved      | < 0.01   | 0.01 mg/L        | < 0.01                       |               | 14 |  |
| Zinc, dissolved          | < 0.04   | 0.04 mg/L        | < 0.04                       |               | 11 |  |
|                          |          |                  |                              |               |    |  |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                                  | Result           | MRL Units                | Spike<br>Level | Source<br>Result    | % REC        | REC<br>Limit | RPD  | RPD<br>Limit | Notes |
|------------------------------------------|------------------|--------------------------|----------------|---------------------|--------------|--------------|------|--------------|-------|
| Dissolved Metals, Batch B4C0352, Contin  | ued              |                          |                |                     |              |              |      |              |       |
| Duplicate (B4C0352-DUP1), Continued      | Sou              | ırce: 4030418-05         | Prenared       | l· Mar₋12-1         | 14, Analyze  | ed: Mar-12   | P-14 |              |       |
| Zirconium, dissolved                     | < 0.001          | 0.001 mg/L               | Перагес        | < 0.001             | 14, Allaiy20 | Ju. 1VIAI-12 | - 17 | 20           |       |
| ,                                        |                  |                          |                |                     |              |              |      |              |       |
| Duplicate (B4C0352-DUP2)                 |                  | irce: 4030418-15         | Prepared       |                     | 14, Analyze  | ed: Mar-12   | 2-14 |              |       |
| Aluminum, dissolved                      | < 0.05           | 0.05 mg/L                |                | < 0.05              |              |              |      | 16           |       |
| Antimony, dissolved                      | < 0.001          | 0.001 mg/L               |                | < 0.001             |              |              |      | 21           |       |
| Arsenic, dissolved                       | < 0.005          | 0.005 mg/L               |                | < 0.005             |              |              |      | 10           |       |
| Barium, dissolved                        | 0.08             | 0.05 mg/L                |                | 0.08                |              |              |      | 6            |       |
| Beryllium, dissolved                     | < 0.001          | 0.001 mg/L               |                | < 0.001             |              |              |      | 20           |       |
| Bismuth, dissolved                       | < 0.001          | 0.001 mg/L               |                | < 0.001             |              |              |      | 20<br>13     |       |
| Boron, dissolved                         | < 0.04           | 0.04 mg/L                |                | < 0.04              |              |              |      | 24           |       |
| Cadmium, dissolved                       | < 0.0001<br>91.7 | 0.0001 mg/L              |                | < 0.0001<br>88.1    |              |              | 4    | 10           |       |
| Calcium, dissolved                       | < 0.005          | 2.0 mg/L<br>0.005 mg/L   |                |                     |              |              | 4    | 7            |       |
| Chromium, dissolved                      |                  |                          |                | < 0.005<br>< 0.0005 |              |              |      | 12           |       |
| Copper dissolved                         | < 0.0005         | 0.0005 mg/L              |                |                     |              |              |      | 20           |       |
| Copper, dissolved                        | 0.002<br>< 0.10  | 0.002 mg/L               |                | 0.002<br>< 0.10     |              |              |      | 10           |       |
| ron, dissolved<br>_ead, dissolved        | < 0.10           | 0.10 mg/L                |                | < 0.10              |              |              |      | 14           |       |
| Lead, dissolved                          | 0.001            | 0.001 mg/L<br>0.001 mg/L |                | 0.001               |              |              |      | 15           |       |
| Magnesium, dissolved                     | 44.7             | 0.001 mg/L<br>0.1 mg/L   |                | 42.5                |              |              | 5    | 9            |       |
| <u> </u>                                 | < 0.002          | 0.002 mg/L               |                | < 0.002             |              |              | 3    | 10           |       |
| Manganese, dissolved                     | < 0.002          | 0.002 mg/L               |                | < 0.002             |              |              |      | 20           |       |
| Mercury, dissolved Molybdenum, dissolved | 0.002            | 0.0002 mg/L              |                | 0.0002              |              |              |      | 16           |       |
| Nickel, dissolved                        | < 0.002          | 0.001 mg/L<br>0.002 mg/L |                | < 0.001             |              |              |      | 14           |       |
| Phosphorus, dissolved                    | < 0.002          | 0.002 mg/L               |                | < 0.002             |              |              |      | 23           |       |
| Potassium, dissolved                     | 2.1              | 0.2 mg/L                 |                | 2.0                 |              |              | 4    | 17           |       |
| Selenium, dissolved                      | < 0.005          | 0.005 mg/L               |                | < 0.005             |              |              | - 4  | 23           |       |
| Silicon, dissolved                       | 7                | 5 mg/L                   |                | 6                   |              |              |      | 10           |       |
| Silver, dissolved                        | < 0.0005         | 0.0005 mg/L              |                | < 0.0005            |              |              |      | 20           |       |
| Sodium, dissolved                        | 39.0             | 0.2 mg/L                 |                | 37.6                |              |              | 4    | 9            |       |
| Strontium, dissolved                     | 0.72             | 0.01 mg/L                |                | 0.69                |              |              | 4    | 9            |       |
| Sulfur, dissolved                        | < 10             | 10 mg/L                  |                | < 10                |              |              |      | 27           |       |
| Fellurium, dissolved                     | < 0.002          | 0.002 mg/L               |                | < 0.002             |              |              |      | 20           |       |
| Fhallium, dissolved                      | < 0.0002         | 0.002 mg/L               |                | < 0.0002            |              |              |      | 12           |       |
| Thorium, dissolved                       | < 0.001          | 0.001 mg/L               |                | < 0.0002            |              |              |      | 20           |       |
| Fin, dissolved                           | < 0.002          | 0.002 mg/L               |                | < 0.002             |              |              |      | 20           |       |
| Fitanium, dissolved                      | < 0.05           | 0.05 mg/L                |                | < 0.05              |              |              |      | 20           |       |
| Jranium, dissolved                       | 0.0007           | 0.0002 mg/L              |                | 0.0007              |              |              |      | 11           |       |
| /anadium, dissolved                      | < 0.01           | 0.002 mg/L               |                | < 0.01              |              |              |      | 14           |       |
| Zinc, dissolved                          | < 0.04           | 0.04 mg/L                |                | < 0.04              |              |              |      | 11           |       |
| Zirconium, dissolved                     | < 0.001          | 0.001 mg/L               |                | < 0.001             |              |              |      | 20           |       |
| Matrix Spike (B4C0352-MS1)               |                  | irce: 4030418-06         | Prepared       |                     | 14, Analyze  | ed: Mar-12   | 2-14 |              |       |
| Antimony, dissolved                      | 0.378            | 0.001 mg/L               | 0.400          | < 0.001             | 94           | 71-112       |      |              |       |
| Arsenic, dissolved                       | 0.187            | 0.005 mg/L               | 0.200          | < 0.005             | 93           | 82-112       |      |              |       |
| Barium, dissolved                        | 0.95             | 0.05 mg/L                | 1.00           | < 0.05              | 93           | 80-109       |      |              |       |
| Beryllium, dissolved                     | 0.094            | 0.001 mg/L               | 0.100          | < 0.001             | 94           | 75-111       |      |              |       |
| Cadmium, dissolved                       | 0.0927           | 0.0001 mg/L              | 0.100          | < 0.0001            | 93           | 84-109       |      |              |       |
| Chromium, dissolved                      | 0.386            | 0.005 mg/L               | 0.400          | < 0.005             | 96           | 87-115       |      |              |       |
| Cobalt, dissolved                        | 0.385            | 0.0005 mg/L              | 0.400          | < 0.0005            | 96           | 85-118       |      |              |       |
| Copper, dissolved                        | 0.388            | 0.002 mg/L               | 0.400          | 0.003               | 96           | 84-121       |      |              |       |
| ron, dissolved                           | 1.90             | 0.10 mg/L                | 2.00           | < 0.10              | 95           | 71-129       |      |              |       |
| Lead, dissolved                          | 0.182            | 0.001 mg/L               | 0.200          | < 0.001             | 91           | 81-111       |      |              |       |
| Manganese, dissolved                     | 0.383            | 0.002 mg/L               | 0.400          | 0.002               | 95           | 66-125       |      |              |       |
| Nickel, dissolved                        | 0.374            | 0.002 mg/L               | 0.400          | < 0.002             | 94           | 85-115       |      |              |       |
| Selenium, dissolved                      | 0.087            | 0.005 mg/L               | 0.100          | < 0.005             | 87           | 77-113       |      |              |       |
| Silver, dissolved                        | 0.0868           | 0.0005 mg/L              | 0.100          | < 0.0005            | 87           | 52-131       |      |              |       |
| Thallium, dissolved                      | 0.0923           | 0.0002 mg/L              | 0.100          | < 0.0002            | 92           | 82-111       |      |              |       |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                                  | Result | MRL Units        | Spike<br>Level | Source<br>Result | % REC       | REC<br>Limit | RPD | RPD<br>Limit | Notes |
|------------------------------------------|--------|------------------|----------------|------------------|-------------|--------------|-----|--------------|-------|
| Dissolved Metals, Batch B4C0352, Continu | ed     |                  |                |                  |             |              |     |              |       |
| Matrix Spike (B4C0352-MS1), Continued    | Sou    | ırce: 4030418-06 | Prepared       | d: Mar-12-1      | 14, Analyze | ed: Mar-12   | -14 |              |       |
| Vanadium, dissolved                      | 0.38   | 0.01 mg/L        | 0.400          | < 0.01           | 95          | 85-111       |     |              |       |
| Zinc, dissolved                          | 0.96   | 0.04 mg/L        | 1.00           | < 0.04           | 96          | 85-115       |     |              |       |
| Matrix Spike (B4C0352-MS2)               | Soi    | ırce: 4030418-16 | Prepared       | d: Mar-12-1      | 14, Analyze | ed: Mar-12   | -14 |              |       |
| Antimony, dissolved                      | 0.369  | 0.001 mg/L       | 0.400          | 0.001            | 92          | 71-112       |     |              |       |
| Arsenic, dissolved                       | 0.182  | 0.005 mg/L       | 0.200          | < 0.005          | 91          | 82-112       |     |              |       |
| Barium, dissolved                        | 1.00   | 0.05 mg/L        | 1.00           | 0.09             | 91          | 80-109       |     |              |       |
| Beryllium, dissolved                     | 0.090  | 0.001 mg/L       | 0.100          | < 0.001          | 90          | 75-111       |     |              |       |
| Cadmium, dissolved                       | 0.0913 | 0.0001 mg/L      | 0.100          | < 0.0001         | 91          | 84-109       |     |              |       |
| Chromium, dissolved                      | 0.375  | 0.005 mg/L       | 0.400          | < 0.005          | 93          | 87-115       |     |              |       |
| Cobalt, dissolved                        | 0.376  | 0.0005 mg/L      | 0.400          | < 0.0005         | 94          | 85-118       |     |              |       |
| Copper, dissolved                        | 0.379  | 0.002 mg/L       | 0.400          | < 0.002          | 94          | 84-121       |     |              |       |
| Iron, dissolved                          | 1.86   | 0.10 mg/L        | 2.00           | < 0.10           | 93          | 71-129       |     |              |       |
| Lead, dissolved                          | 0.176  | 0.001 mg/L       | 0.200          | < 0.001          | 88          | 81-111       |     |              |       |
| Manganese, dissolved                     | 0.360  | 0.002 mg/L       | 0.400          | < 0.002          | 90          | 66-125       |     |              |       |
| Nickel, dissolved                        | 0.366  | 0.002 mg/L       | 0.400          | < 0.002          | 91          | 85-115       |     |              |       |
| Selenium, dissolved                      | 0.087  | 0.005 mg/L       | 0.100          | < 0.005          | 87          | 77-113       |     |              |       |
| Silver, dissolved                        | 0.0846 | 0.0005 mg/L      | 0.100          | < 0.0005         | 84          | 52-131       |     |              |       |
| Thallium, dissolved                      | 0.0880 | 0.0002 mg/L      | 0.100          | < 0.0002         | 88          | 82-111       |     |              |       |
| Vanadium, dissolved                      | 0.38   | 0.01 mg/L        | 0.400          | < 0.01           | 94          | 85-111       |     |              |       |
| Zinc, dissolved                          | 0.93   | 0.04 mg/L        | 1.00           | < 0.04           | 93          | 85-115       |     |              |       |
| Reference (B4C0352-SRM1)                 |        |                  | Prepared       | d: Mar-12-1      | 14, Analyze | ed: Mar-12   | -14 |              |       |
| Aluminum, dissolved                      | 0.24   | 0.05 mg/L        | 0.233          |                  | 105         | 58-142       |     |              |       |
| Antimony, dissolved                      | 0.050  | 0.001 mg/L       | 0.0430         |                  | 116         | 75-125       |     |              |       |
| Arsenic, dissolved                       | 0.413  | 0.005 mg/L       | 0.438          |                  | 94          | 81-119       |     |              |       |
| Barium, dissolved                        | 3.18   | 0.05 mg/L        | 3.35           |                  | 95          | 83-117       |     |              |       |
| Beryllium, dissolved                     | 0.200  | 0.001 mg/L       | 0.213          |                  | 94          | 80-120       |     |              |       |
| Boron, dissolved                         | 1.81   | 0.04 mg/L        | 1.74           |                  | 104         | 74-117       |     |              |       |
| Cadmium, dissolved                       | 0.210  | 0.0001 mg/L      | 0.224          |                  | 94          | 83-117       |     |              |       |
| Calcium, dissolved                       | 7.1    | 2.0 mg/L         | 7.69           |                  | 93          | 76-124       |     |              |       |
| Chromium, dissolved                      | 0.421  | 0.005 mg/L       | 0.437          |                  | 96          | 81-119       |     |              |       |
| Cobalt, dissolved                        | 0.126  | 0.0005 mg/L      | 0.128          |                  | 98          | 76-124       |     |              |       |
| Copper, dissolved                        | 0.841  | 0.002 mg/L       | 0.844          |                  | 100         | 84-116       |     |              |       |
| Iron, dissolved                          | 1.18   | 0.10 mg/L        | 1.29           |                  | 91          | 74-126       |     |              |       |
| Lead, dissolved                          | 0.102  | 0.001 mg/L       | 0.112          |                  | 91          | 72-128       |     |              |       |
| Lithium, dissolved                       | 0.103  | 0.001 mg/L       | 0.104          |                  | 99          | 60-140       |     |              |       |
| Magnesium, dissolved                     | 6.8    | 0.1 mg/L         | 6.92           |                  | 98          | 81-119       |     |              |       |
| Manganese, dissolved                     | 0.321  | 0.002 mg/L       | 0.345          |                  | 93          | 84-116       |     |              |       |
| Molybdenum, dissolved                    | 0.403  | 0.001 mg/L       | 0.426          |                  | 95          | 83-117       |     |              |       |
| Nickel, dissolved                        | 0.808  | 0.002 mg/L       | 0.840          |                  | 96          | 74-126       |     |              |       |
| Phosphorus, dissolved                    | 0.6    | 0.2 mg/L         | 0.495          |                  | 120         | 68-132       |     |              |       |
| Potassium, dissolved                     | 2.8    | 0.2 mg/L         | 3.19           |                  | 87          | 74-126       |     |              |       |
| Selenium, dissolved                      | 0.027  | 0.005 mg/L       | 0.0331         |                  | 82          | 70-130       |     |              |       |
| Sodium, dissolved                        | 19.0   | 0.2 mg/L         | 19.1           |                  | 99          | 72-128       |     |              |       |
| Strontium, dissolved                     | 0.87   | 0.01 mg/L        | 0.916          |                  | 95          | 84-113       |     |              |       |
| Thallium, dissolved                      | 0.0354 | 0.0002 mg/L      | 0.0393         |                  | 90          | 57-143       |     |              |       |
| Uranium, dissolved                       | 0.236  | 0.0002 mg/L      | 0.266          |                  | 89          | 85-115       |     |              |       |
| Vanadium, dissolved                      | 0.82   | 0.01 mg/L        | 0.869          |                  | 95          | 87-113       |     |              |       |
| Zinc, dissolved                          | 0.83   | 0.04 mg/L        | 0.881          |                  | 94          | 72-128       |     |              |       |
| Reference (B4C0352-SRM2)                 |        |                  |                | d: Mar-12-1      | 14, Analyze |              | -14 |              |       |
| Aluminum, dissolved                      | 0.24   | 0.05 mg/L        | 0.233          |                  | 101         | 58-142       |     |              |       |
| Antimony, dissolved                      | 0.049  | 0.001 mg/L       | 0.0430         |                  | 114         | 75-125       |     |              |       |
| Arsenic, dissolved                       | 0.411  | 0.005 mg/L       | 0.438          |                  | 94          | 81-119       |     |              |       |
| Barium, dissolved                        | 3.15   | 0.05 mg/L        | 3.35           |                  | 94          | 83-117       |     |              |       |
| Beryllium, dissolved                     | 0.205  | 0.001 mg/L       | 0.213          |                  | 96          | 80-120       |     |              |       |
|                                          |        |                  |                |                  |             |              |     |              |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030418 Mar-19-14

| Analyte   | Result | MRL Units | Spike | Source | % REC   | REC   | RPD | RPD   | Notes  |
|-----------|--------|-----------|-------|--------|---------|-------|-----|-------|--------|
| 7 mary to | Hoodin |           | Level | Result | /0 IXES | Limit | 5   | Limit | 110100 |

#### Dissolved Metals, Batch B4C0352, Continued

| Reference (B4C0352-SRM2), Continued |        |             | Prepared: M | ar-12-14, Analyz | ed: Mar-12-14 |  |
|-------------------------------------|--------|-------------|-------------|------------------|---------------|--|
| Boron, dissolved                    | 1.86   | 0.04 mg/L   | 1.74        | 107              | 74-117        |  |
| Cadmium, dissolved                  | 0.207  | 0.0001 mg/L | 0.224       | 92               | 83-117        |  |
| Calcium, dissolved                  | 7.3    | 2.0 mg/L    | 7.69        | 94               | 76-124        |  |
| Chromium, dissolved                 | 0.419  | 0.005 mg/L  | 0.437       | 96               | 81-119        |  |
| Cobalt, dissolved                   | 0.126  | 0.0005 mg/L | 0.128       | 98               | 76-124        |  |
| Copper, dissolved                   | 0.839  | 0.002 mg/L  | 0.844       | 99               | 84-116        |  |
| Iron, dissolved                     | 1.18   | 0.10 mg/L   | 1.29        | 92               | 74-126        |  |
| Lead, dissolved                     | 0.103  | 0.001 mg/L  | 0.112       | 92               | 72-128        |  |
| Lithium, dissolved                  | 0.105  | 0.001 mg/L  | 0.104       | 101              | 60-140        |  |
| Magnesium, dissolved                | 6.7    | 0.1 mg/L    | 6.92        | 97               | 81-119        |  |
| Manganese, dissolved                | 0.322  | 0.002 mg/L  | 0.345       | 93               | 84-116        |  |
| Molybdenum, dissolved               | 0.400  | 0.001 mg/L  | 0.426       | 94               | 83-117        |  |
| Nickel, dissolved                   | 0.800  | 0.002 mg/L  | 0.840       | 95               | 74-126        |  |
| Phosphorus, dissolved               | 0.6    | 0.2 mg/L    | 0.495       | 124              | 68-132        |  |
| Potassium, dissolved                | 2.8    | 0.2 mg/L    | 3.19        | 89               | 74-126        |  |
| Selenium, dissolved                 | 0.030  | 0.005 mg/L  | 0.0331      | 89               | 70-130        |  |
| Sodium, dissolved                   | 18.9   | 0.2 mg/L    | 19.1        | 99               | 72-128        |  |
| Strontium, dissolved                | 0.85   | 0.01 mg/L   | 0.916       | 93               | 84-113        |  |
| Thallium, dissolved                 | 0.0356 | 0.0002 mg/L | 0.0393      | 91               | 57-143        |  |
| Uranium, dissolved                  | 0.236  | 0.0002 mg/L | 0.266       | 89               | 85-115        |  |
| Vanadium, dissolved                 | 0.82   | 0.01 mg/L   | 0.869       | 94               | 87-113        |  |
| Zinc, dissolved                     | 0.83   | 0.04 mg/L   | 0.881       | 94               | 72-128        |  |

#### Polycyclic Aromatic Hydrocarbons (PAH), Batch B4C0359

| Blank (B4C0359-BLK1)        |        |           | Prepared: Mar | -11-14, Analyz | ed: Mar-13-14 |  |
|-----------------------------|--------|-----------|---------------|----------------|---------------|--|
| Acenaphthene                | < 0.02 | 0.02 ug/L |               |                |               |  |
| Acenaphthylene              | < 0.02 | 0.02 ug/L |               |                |               |  |
| Acridine                    | < 0.05 | 0.05 ug/L |               |                |               |  |
| Anthracene                  | < 0.01 | 0.01 ug/L |               |                |               |  |
| Benzo (a) anthracene        | < 0.01 | 0.01 ug/L |               |                |               |  |
| Benzo (a) pyrene            | < 0.01 | 0.01 ug/L |               |                |               |  |
| Benzo (b) fluoranthene      | < 0.02 | 0.02 ug/L |               |                |               |  |
| Benzo (g,h,i) perylene      | < 0.02 | 0.02 ug/L |               |                |               |  |
| Benzo (k) fluoranthene      | < 0.02 | 0.02 ug/L |               |                |               |  |
| Chrysene                    | < 0.02 | 0.02 ug/L |               |                |               |  |
| Dibenz (a,h) anthracene     | < 0.02 | 0.02 ug/L |               |                |               |  |
| Fluoranthene                | < 0.02 | 0.02 ug/L |               |                |               |  |
| Fluorene                    | < 0.02 | 0.02 ug/L |               |                |               |  |
| Indeno (1,2,3-cd) pyrene    | < 0.02 | 0.02 ug/L |               |                |               |  |
| Naphthalene                 | < 0.05 | 0.05 ug/L |               |                |               |  |
| Phenanthrene                | < 0.05 | 0.05 ug/L |               |                |               |  |
| Pyrene                      | < 0.02 | 0.02 ug/L |               |                |               |  |
| Quinoline                   | < 0.05 | 0.05 ug/L |               |                |               |  |
| Surrogate: Naphthalene-d8   | 0.722  | ug/L      | 1.02          | 71             | 40-96         |  |
| Surrogate: Acenaphthene-d10 | 0.726  | ug/L      | 0.995         | 73             | 45-92         |  |
| Surrogate: Phenanthrene-d10 | 0.734  | ug/L      | 0.970         | 76             | 48-90         |  |
| Surrogate: Chrysene-d12     | 0.839  | ug/L      | 0.950         | 88             | 41-96         |  |
| Surrogate: Perylene-d12     | 0.858  | ug/L      | 0.990         | 87             | 47-104        |  |
| LCS (B4C0359-BS1)           |        |           | Prepared: Mar | -11-14, Analyz | ed: Mar-13-14 |  |
| Acenaphthene                | 0.68   | 0.02 ug/L | 1.00          | 68             | 54-92         |  |
| Acenaphthylene              | 0.75   | 0.02 ug/L | 1.00          | 75             | 54-95         |  |
| Acridine                    | 0.61   | 0.05 ug/L | 1.00          | 61             | 49-87         |  |
| Anthracene                  | 0.71   | 0.01 ug/L | 1.00          | 71             | 53-94         |  |
| Benzo (a) anthracene        | 0.74   | 0.01 ug/L | 1.00          | 74             | 52-95         |  |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493 **WORK ORDER** REPORTED

4030418 Mar-19-14

| Analyte                                    | Result        | MRL Units | s | Spike<br>Level | Source<br>Result | % REC | REC<br>Limit | RPD | RPD<br>Limit | Notes |   |
|--------------------------------------------|---------------|-----------|---|----------------|------------------|-------|--------------|-----|--------------|-------|---|
| Polycyclic Aromatic Hydrocarbons (PAH), Ba | atch B4C0359, | Continued |   |                |                  |       |              |     |              |       | _ |

| LCS (B4C0359-BS1), Continued |       |           | Prepared: Ma | r-11-14, Analyz | ed: Mar-13- | -14 |    |  |
|------------------------------|-------|-----------|--------------|-----------------|-------------|-----|----|--|
| Benzo (a) pyrene             | 0.75  | 0.01 ug/L | 1.00         | 75              | 52-103      |     |    |  |
| Benzo (b) fluoranthene       | 0.72  | 0.02 ug/L | 1.00         | 72              | 49-94       |     |    |  |
| Benzo (g,h,i) perylene       | 0.73  | 0.02 ug/L | 1.00         | 73              | 51-98       |     |    |  |
| Benzo (k) fluoranthene       | 0.76  | 0.02 ug/L | 1.00         | 76              | 49-105      |     |    |  |
| Chrysene                     | 0.80  | 0.02 ug/L | 1.00         | 80              | 50-104      |     |    |  |
| Dibenz (a,h) anthracene      | 0.72  | 0.02 ug/L | 1.00         | 72              | 49-96       |     |    |  |
| Fluoranthene                 | 0.75  | 0.02 ug/L | 1.00         | 75              | 53-102      |     |    |  |
| Fluorene                     | 0.71  | 0.02 ug/L | 1.00         | 71              | 54-91       |     |    |  |
| Indeno (1,2,3-cd) pyrene     | 0.72  | 0.02 ug/L | 1.00         | 72              | 51-99       |     |    |  |
| Naphthalene                  | 0.68  | 0.05 ug/L | 1.00         | 68              | 51-91       |     |    |  |
| Phenanthrene                 | 0.70  | 0.05 ug/L | 1.00         | 70              | 56-96       |     |    |  |
| Pyrene                       | 0.72  | 0.02 ug/L | 1.00         | 72              | 51-105      |     |    |  |
| Quinoline                    | 0.62  | 0.05 ug/L | 1.00         | 62              | 48-126      |     |    |  |
| Surrogate: Naphthalene-d8    | 0.742 | ug/L      | 1.02         | 73              | 40-96       |     |    |  |
| Surrogate: Acenaphthene-d10  | 0.713 | ug/L      | 0.995        | 72              | 45-92       |     |    |  |
| Surrogate: Phenanthrene-d10  | 0.753 | ug/L      | 0.970        | 78              | 48-90       |     |    |  |
| Surrogate: Chrysene-d12      | 0.832 | ug/L      | 0.950        | 88              | 41-96       |     |    |  |
| Surrogate: Perylene-d12      | 0.771 | ug/L      | 0.990        | 78              | 47-104      |     |    |  |
| LCS Dup (B4C0359-BSD1)       |       |           | Prepared: Ma | r-11-14, Analyz | ed: Mar-13- | -14 |    |  |
| Acenaphthene                 | 0.58  | 0.02 ug/L | 1.00         | 58              | 54-92       | 16  | 20 |  |
| Acenaphthylene               | 0.64  | 0.02 ug/L | 1.00         | 64              | 54-95       | 17  | 20 |  |

| LCS Dup (B4C0359-BSD1)      |       |           | Prepared, Ma | ir-Tir-14, Analyze | u. Mai-13- | 14 |    |  |
|-----------------------------|-------|-----------|--------------|--------------------|------------|----|----|--|
| Acenaphthene                | 0.58  | 0.02 ug/L | 1.00         | 58                 | 54-92      | 16 | 20 |  |
| Acenaphthylene              | 0.64  | 0.02 ug/L | 1.00         | 64                 | 54-95      | 17 | 20 |  |
| Acridine                    | 0.54  | 0.05 ug/L | 1.00         | 54                 | 49-87      | 13 | 20 |  |
| Anthracene                  | 0.59  | 0.01 ug/L | 1.00         | 59                 | 53-94      | 18 | 20 |  |
| Benzo (a) anthracene        | 0.64  | 0.01 ug/L | 1.00         | 64                 | 52-95      | 14 | 20 |  |
| Benzo (a) pyrene            | 0.65  | 0.01 ug/L | 1.00         | 65                 | 52-103     | 13 | 20 |  |
| Benzo (b) fluoranthene      | 0.61  | 0.02 ug/L | 1.00         | 61                 | 49-94      | 17 | 20 |  |
| Benzo (g,h,i) perylene      | 0.62  | 0.02 ug/L | 1.00         | 62                 | 51-98      | 16 | 20 |  |
| Benzo (k) fluoranthene      | 0.66  | 0.02 ug/L | 1.00         | 66                 | 49-105     | 13 | 20 |  |
| Chrysene                    | 0.70  | 0.02 ug/L | 1.00         | 70                 | 50-104     | 13 | 20 |  |
| Dibenz (a,h) anthracene     | 0.62  | 0.02 ug/L | 1.00         | 62                 | 49-96      | 14 | 20 |  |
| Fluoranthene                | 0.62  | 0.02 ug/L | 1.00         | 62                 | 53-102     | 18 | 20 |  |
| Fluorene                    | 0.60  | 0.02 ug/L | 1.00         | 60                 | 54-91      | 16 | 20 |  |
| Indeno (1,2,3-cd) pyrene    | 0.66  | 0.02 ug/L | 1.00         | 66                 | 51-99      | 9  | 20 |  |
| Naphthalene                 | 0.58  | 0.05 ug/L | 1.00         | 58                 | 51-91      | 16 | 20 |  |
| Phenanthrene                | 0.58  | 0.05 ug/L | 1.00         | 58                 | 56-96      | 18 | 20 |  |
| Pyrene                      | 0.60  | 0.02 ug/L | 1.00         | 60                 | 51-105     | 18 | 20 |  |
| Quinoline                   | 0.55  | 0.05 ug/L | 1.00         | 55                 | 48-126     | 11 | 20 |  |
| Surrogate: Naphthalene-d8   | 0.603 | ug/L      | 1.02         | 59                 | 40-96      |    |    |  |
| Surrogate: Acenaphthene-d10 | 0.584 | ug/L      | 0.995        | 59                 | 45-92      |    |    |  |
| Surrogate: Phenanthrene-d10 | 0.609 | ug/L      | 0.970        | 63                 | 48-90      |    |    |  |
| Surrogate: Chrysene-d12     | 0.712 | ug/L      | 0.950        | 75                 | 41-96      |    |    |  |
| Surrogate: Perylene-d12     | 0.672 | ug/L      | 0.990        | 68                 | 47-104     |    |    |  |
|                             |       |           |              |                    |            |    |    |  |

#### Total Recoverable Metals, Batch B4C0354

| Blank (B4C0354-BLK1) |          |             | Prepared: Mar-11-14, Analyzed: Mar-12-14 |
|----------------------|----------|-------------|------------------------------------------|
| Aluminum, total      | < 0.05   | 0.05 mg/L   |                                          |
| Antimony, total      | < 0.001  | 0.001 mg/L  |                                          |
| Arsenic, total       | < 0.005  | 0.005 mg/L  |                                          |
| Barium, total        | < 0.05   | 0.05 mg/L   |                                          |
| Beryllium, total     | < 0.001  | 0.001 mg/L  |                                          |
| Bismuth, total       | < 0.001  | 0.001 mg/L  |                                          |
| Boron, total         | < 0.04   | 0.04 mg/L   |                                          |
| Cadmium, total       | < 0.0001 | 0.0001 mg/L |                                          |
| Calcium, total       | < 2.0    | 2.0 mg/L    |                                          |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493 **WORK ORDER** REPORTED

4030418 Mar-19-14

| Analyte   | Result  | MRL Units | Spike | Source | % REC   | REC   | RPD | RPD   | Notes |
|-----------|---------|-----------|-------|--------|---------|-------|-----|-------|-------|
| - many to | 1100011 |           | Level | Result | 70 1120 | Limit |     | Limit |       |

| Analyte                               | Result         | MRL Units        | Level    | Result      | % REC      | Limit     | RPD | Limit | Notes |
|---------------------------------------|----------------|------------------|----------|-------------|------------|-----------|-----|-------|-------|
| Total Recoverable Metals, Batch B4C03 | 354, Continued |                  |          |             |            |           |     |       |       |
| Blank (B4C0354-BLK1), Continued       |                |                  | Prepared | l: Mar-11-1 | 4, Analyze | d: Mar-12 | -14 |       |       |
| Chromium, total                       | < 0.005        | 0.005 mg/L       |          |             |            |           |     |       |       |
| Cobalt, total                         | < 0.0005       | 0.0005 mg/L      |          |             |            |           |     |       |       |
| Copper, total                         | < 0.002        | 0.002 mg/L       |          |             |            |           |     |       |       |
| ron, total                            | < 0.10         | 0.10 mg/L        |          |             |            |           |     |       |       |
| _ead, total                           | < 0.001        | 0.001 mg/L       |          |             |            |           |     |       |       |
| ithium, total                         | < 0.001        | 0.001 mg/L       |          |             |            |           |     |       |       |
| Magnesium, total                      | < 0.1          | 0.1 mg/L         |          |             |            |           |     |       |       |
| Manganese, total                      | < 0.002        | 0.002 mg/L       |          |             |            |           |     |       |       |
| Mercury, total                        | < 0.0002       | 0.0002 mg/L      |          |             |            |           |     |       |       |
| Molybdenum, total                     | < 0.001        | 0.001 mg/L       |          |             |            |           |     |       |       |
| Nickel, total                         | < 0.002        | 0.002 mg/L       |          |             |            |           |     |       |       |
| Phosphorus, total                     | < 0.2          | 0.2 mg/L         |          |             |            |           |     |       |       |
| Potassium, total                      | < 0.2          | 0.2 mg/L         |          |             |            |           |     |       |       |
| Selenium, total                       | < 0.005        | 0.005 mg/L       |          |             |            |           |     |       |       |
| Silicon, total                        | < 5            | 5 mg/L           |          |             |            |           |     |       |       |
| Silver, total                         | < 0.0005       | 0.0005 mg/L      |          |             |            |           |     |       |       |
| Sodium, total                         | < 0.2          | 0.2 mg/L         |          |             |            |           |     |       |       |
| Strontium, total                      | < 0.01         | 0.01 mg/L        |          |             |            |           |     |       |       |
| Sulfur, total                         | < 10           | 10 mg/L          |          |             |            |           |     |       |       |
| Fellurium, total                      | < 0.002        | 0.002 mg/L       |          |             |            |           |     |       |       |
| Γhallium, total                       | < 0.0002       | 0.0002 mg/L      |          |             |            |           |     |       |       |
| Thorium, total                        | < 0.001        | 0.001 mg/L       |          |             |            |           |     |       |       |
| Γin, total                            | < 0.002        | 0.002 mg/L       |          |             |            |           |     |       |       |
| Fitanium, total                       | < 0.05         | 0.05 mg/L        |          |             |            |           |     |       |       |
| Jranium, total                        | < 0.0002       | 0.0002 mg/L      |          |             |            |           |     |       |       |
| /anadium, total                       | < 0.01         | 0.01 mg/L        |          |             |            |           |     |       |       |
| Zinc, total                           | < 0.04         | 0.04 mg/L        |          |             |            |           |     |       |       |
| Zirconium, total                      | < 0.001        | 0.001 mg/L       |          |             |            |           |     |       |       |
| Duplicate (B4C0354-DUP1)              | Sou            | ırce: 4030418-01 | Prepared | I: Mar-11-1 | 4, Analyze | d: Mar-13 | -14 |       |       |
| Aluminum, total                       | 0.07           | 0.05 mg/L        |          | 0.08        |            |           |     | 27    |       |
| Antimony, total                       | < 0.001        | 0.001 mg/L       |          | < 0.001     |            |           |     | 24    |       |
| Arsenic, total                        | < 0.005        | 0.005 mg/L       |          | < 0.005     |            |           |     | 14    |       |
| Barium, total                         | < 0.05         | 0.05 mg/L        |          | < 0.05      |            |           |     | 16    |       |
| Beryllium, total                      | < 0.001        | 0.001 mg/L       |          | < 0.001     |            |           |     | 20    |       |
| 3ismuth, total                        | < 0.001        | 0.001 mg/L       |          | < 0.001     |            |           |     | 20    |       |
| 3oron, total                          | < 0.04         | 0.04 mg/L        |          | < 0.04      |            |           |     | 15    |       |
| Cadmium, total                        | < 0.0001       | 0.0001 mg/L      |          | < 0.0001    |            |           |     | 40    |       |
| Calcium, total                        | 43.8           | 2.0 mg/L         |          | 46.2        |            |           | 5   | 14    |       |
| Chromium, total                       | < 0.005        | 0.005 mg/L       |          | < 0.005     |            |           |     | 17    |       |
| Cobalt, total                         | < 0.0005       | 0.0005 mg/L      |          | < 0.0005    |            |           |     | 17    |       |
| Copper, total                         | 0.002          | 0.002 mg/L       |          | 0.002       |            |           |     | 30    |       |
| ron, total                            | 0.25           | 0.10 mg/L        |          | 0.27        |            |           |     | 28    |       |
| _ead, total                           | < 0.001        | 0.001 mg/L       |          | < 0.001     |            |           |     | 19    |       |
| _ithium, total                        | 0.002          | 0.001 mg/L       |          | 0.002       |            |           |     | 18    |       |
| Magnesium, total                      | 15.4           | 0.1 mg/L         |          | 15.0        |            |           | 2   | 13    |       |
| Manganese, total                      | 0.004          | 0.002 mg/L       |          | 0.005       |            |           |     | 19    |       |
| Mercury, total                        | < 0.0002       | 0.0002 mg/L      |          | < 0.0002    |            |           |     | 40    |       |
| Molybdenum, total                     | 0.003          | 0.001 mg/L       |          | 0.003       |            |           |     | 24    |       |
| Nickel, total                         | < 0.002        | 0.002 mg/L       |          | < 0.002     |            |           |     | 33    |       |
| Phosphorus, total                     | < 0.2          | 0.2 mg/L         |          | < 0.2       |            |           |     | 24    |       |
| Potassium, total                      | 2.8            | 0.2 mg/L         |          | 2.6         |            |           | 5   | 22    |       |
| Selenium, total                       | < 0.005        | 0.005 mg/L       |          | < 0.005     |            |           |     | 21    |       |
| Silicon, total                        | 14             | 5 mg/L           |          | 14          |            |           |     | 25    |       |
| Silver, total                         | < 0.0005       | 0.0005 mg/L      |          | < 0.0005    |            |           |     | 23    |       |
| Sodium, total                         | 12.8           | 0.2 mg/L         |          | 12.5        |            |           | 3   | 17    |       |
| Strontium, total                      | 0.20           | 0.01 mg/L        |          | 0.19        |            |           | 2   | 11    |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER 4030418 REPORTED Mar-19-14

| Analyte                                | Result       | MRL Units        | Spike<br>Level | Source<br>Result | % REC      | REC<br>Limit | RPD | RPD<br>Limit | Notes |
|----------------------------------------|--------------|------------------|----------------|------------------|------------|--------------|-----|--------------|-------|
| otal Recoverable Metals, Batch B4C0354 | l, Continued |                  |                |                  |            |              |     |              |       |
| Duplicate (B4C0354-DUP1), Continued    | Sou          | ırce: 4030418-01 | Prepared       | d: Mar-11-1      | 4, Analyze | ed: Mar-13   | -14 |              |       |
| Sulfur, total                          | < 10         | 10 mg/L          | •              | < 10             |            |              |     | 41           |       |
| Tellurium, total                       | < 0.002      | 0.002 mg/L       |                | < 0.002          |            |              |     | 31           |       |
| Thallium, total                        | < 0.0002     | 0.0002 mg/L      |                | < 0.0002         |            |              |     | 21           |       |
| Thorium, total                         | < 0.001      | 0.001 mg/L       |                | < 0.001          |            |              |     | 46           |       |
| Tin, total                             | < 0.002      | 0.002 mg/L       |                | < 0.002          |            |              |     | 30           |       |
| Titanium, total                        | < 0.05       | 0.05 mg/L        |                | < 0.05           |            |              |     | 60           |       |
| Uranium, total                         | 0.0010       | 0.0002 mg/L      |                | 0.0010           |            |              | < 1 | 17           |       |
| Vanadium, total                        | < 0.01       | 0.01 mg/L        |                | < 0.01           |            |              |     | 27           |       |
| Zinc, total                            | < 0.04       | 0.04 mg/L        |                | < 0.04           |            |              |     | 26           |       |
| Zirconium, total                       | < 0.001      | 0.001 mg/L       |                | < 0.001          |            |              |     | 60           |       |
| Matrix Spike (B4C0354-MS1)             | Sou          | ırce: 4030418-02 | Prepared       | d: Mar-11-1      | 4, Analyze | d: Mar-13    | -14 |              |       |
| Antimony, total                        | 0.383        | 0.001 mg/L       | 0.400          | < 0.001          | 96         | 81-122       |     |              |       |
| Arsenic, total                         | 0.177        | 0.005 mg/L       | 0.200          | < 0.005          | 88         | 81-119       |     |              |       |
| Barium, total                          | 0.95         | 0.05 mg/L        | 1.00           | < 0.05           | 91         | 84-113       |     |              |       |
| Beryllium, total                       | 0.091        | 0.001 mg/L       | 0.100          | < 0.001          | 91         | 77-117       |     |              |       |
| Cadmium, total                         | 0.0906       | 0.0001 mg/L      | 0.100          | < 0.0001         | 91         | 87-112       |     |              |       |
| Chromium, total                        | 0.374        | 0.005 mg/L       | 0.400          | < 0.005          | 94         | 88-119       |     |              |       |
| Cobalt, total                          | 0.377        | 0.0005 mg/L      | 0.400          | < 0.0005         | 94         | 88-118       |     |              |       |
| Copper, total                          | 0.381        | 0.002 mg/L       | 0.400          | 0.002            | 95         | 86-126       |     |              |       |
| Iron, total                            | 2.17         | 0.10 mg/L        | 2.00           | 0.29             | 94         | 70-138       |     |              |       |
| Lead, total                            | 0.192        | 0.001 mg/L       | 0.200          | < 0.001          | 96         | 82-119       |     |              |       |
| Manganese, total                       | 0.414        | 0.002 mg/L       | 0.400          | 0.006            | 102        | 81-125       |     |              |       |
| Nickel, total                          | 0.364        | 0.002 mg/L       | 0.400          | < 0.002          | 91         | 85-121       |     |              |       |
| Selenium, total                        | 0.089        | 0.005 mg/L       | 0.100          | < 0.005          | 89         | 73-121       |     |              |       |
| Silver, total                          | 0.0856       | 0.0005 mg/L      | 0.100          | < 0.0005         | 86         | 83-118       |     |              |       |
| Thallium, total                        | 0.0966       | 0.0002 mg/L      | 0.100          | < 0.0002         | 97         | 85-115       |     |              |       |
| Vanadium, total                        | 0.37         | 0.01 mg/L        | 0.400          | < 0.01           | 92         | 86-116       |     |              |       |
| Zinc, total                            | 0.93         | 0.04 mg/L        | 1.00           | < 0.04           | 93         | 83-123       |     |              |       |
| Reference (B4C0354-SRM1)               |              |                  | Prepared       | d: Mar-11-1      | 4, Analyze | d: Mar-13    | -14 |              |       |
| Aluminum, total                        | 0.31         | 0.05 mg/L        | 0.296          |                  | 106        | 81-129       |     |              |       |
| Antimony, total                        | 0.050        | 0.001 mg/L       | 0.0505         |                  | 99         | 88-114       |     |              |       |
| Arsenic, total                         | 0.121        | 0.005 mg/L       | 0.122          |                  | 99         | 88-114       |     |              |       |
| Barium, total                          | 0.74         | 0.05 mg/L        | 0.777          |                  | 96         | 72-104       |     |              |       |
| Beryllium, total                       | 0.044        | 0.001 mg/L       | 0.0488         |                  | 90         | 76-131       |     |              |       |
| Boron, total                           | 3.33         | 0.04 mg/L        | 3.40           |                  | 98         | 75-121       |     |              |       |
| Cadmium, total                         | 0.0471       | 0.0001 mg/L      | 0.0490         |                  | 96         | 89-111       |     |              |       |
| Calcium, total                         | 9.6          | 2.0 mg/L         | 10.2           |                  | 95         | 86-121       |     |              |       |
| Chromium, total                        | 0.244        | 0.005 mg/L       | 0.242          |                  | 101        | 89-114       |     |              |       |
| Cobalt, total                          | 0.0381       | 0.0005 mg/L      | 0.0366         |                  | 104        | 91-113       |     |              |       |
| Copper, total                          | 0.504        | 0.002 mg/L       | 0.487          |                  | 104        | 91-115       |     |              |       |
| Iron, total                            | 0.43         | 0.10 mg/L        | 0.469          |                  | 92         | 77-124       |     |              |       |
| Lead, total                            | 0.187        | 0.001 mg/L       | 0.193          |                  | 97         | 92-113       |     |              |       |
| Lithium, total                         | 0.364        | 0.001 mg/L       | 0.390          |                  | 93         | 85-115       |     |              |       |
| Magnesium, total                       | 3.5          | 0.1 mg/L         | 3.31           |                  | 105        | 78-120       |     |              |       |
| Manganese, total                       | 0.107        | 0.002 mg/L       | 0.109          |                  | 98         | 90-114       |     |              |       |
| Mercury, total                         | 0.0042       | 0.0002 mg/L      | 0.00456        |                  | 92         | 50-150       |     |              |       |
| Molybdenum, total                      | 0.194        | 0.001 mg/L       | 0.197          |                  | 99         | 90-111       |     |              |       |
| Nickel, total                          | 0.238        | 0.002 mg/L       | 0.242          |                  | 98         | 90-111       |     |              |       |
| Phosphorus, total                      | 0.2          | 0.2 mg/L         | 0.233          |                  | 85         | 85-115       |     |              |       |
| Potassium, total                       | 6.3          | 0.2 mg/L         | 5.93           |                  | 106        | 84-113       |     |              |       |
| Selenium, total                        | 0.107        | 0.005 mg/L       | 0.115          |                  | 93         | 85-115       |     |              |       |
| Sodium, total                          | 8.1          | 0.2 mg/L         | 7.64           |                  | 106        | 82-123       |     |              |       |
| Strontium, total                       | 0.37         | 0.01 mg/L        | 0.363          |                  | 102        | 88-112       |     |              |       |
| Thallium, total                        | 0.0760       | 0.0002 mg/L      | 0.0794         |                  | 96         | 91-114       |     |              |       |
| Uranium, total                         | 0.0163       | 0.0002 mg/L      | 0.0192         |                  | 85         | 85-120       |     |              |       |



Columbia Environmental Consulting Ltd **REPORTED TO** 

**PROJECT** 

**WORK ORDER** REPORTED

4030418 Mar-19-14

| Analyte                                  | Result    | MRL Units       | Spike<br>Level                           | Source<br>Result | % REC       | REC<br>Limit | RPD  | RPD<br>Limit | Notes |
|------------------------------------------|-----------|-----------------|------------------------------------------|------------------|-------------|--------------|------|--------------|-------|
| Total Recoverable Metals, Batch B4C0354, | Continued |                 |                                          |                  |             |              |      |              |       |
| Reference (B4C0354-SRM1), Continued      |           |                 | Prepared                                 | d: Mar-11-1      | 4, Analyze  | ed: Mar-13   | -14  |              |       |
| Vanadium, total                          | 0.37      | 0.01 mg/L       | 0.376                                    |                  | 99          | 86-111       |      |              |       |
| Zinc, total                              | 2.39      | 0.04 mg/L       | 2.42                                     |                  | 99          | 85-111       |      |              |       |
| Volatile Organic Compounds (VOC), Batch  | B4C0511   |                 |                                          |                  |             |              |      |              |       |
| Blank (B4C0511-BLK1)                     |           | Prepared        | d: Mar-13-1                              | 14, Analyze      | ed: Mar-13  | 3-14         |      |              |       |
| Benzene                                  | < 0.5     | 0.5 ug/L        |                                          |                  |             |              |      |              |       |
| Ethylbenzene                             | < 1.0     | 1.0 ug/L        |                                          |                  |             |              |      |              |       |
| Toluene                                  | < 1.0     | 1.0 ug/L        |                                          |                  |             |              |      |              |       |
| Xylenes (total)                          | < 2.0     | 2.0 ug/L        |                                          |                  |             |              |      |              |       |
| Surrogate: Toluene-d8                    | 22.1      | ug/L            | 25.0                                     |                  | 88          | 70-130       |      |              |       |
| Surrogate: 4-Bromofluorobenzene          | 21.7      | ug/L            | 25.0                                     |                  | 87          | 70-130       |      |              |       |
| LCS (B4C0511-BS1)                        |           |                 | Prepared: Mar-13-14, Analyzed: Mar-13-14 |                  |             |              | 3-14 |              |       |
| Benzene                                  | 17.2      | 0.5 ug/L        | 20.0                                     |                  | 86          | 70-130       |      |              |       |
| Ethylbenzene                             | 16.3      | 1.0 ug/L        | 20.0                                     |                  | 82          | 70-130       |      |              |       |
| Toluene                                  | 17.0      | 1.0 ug/L        | 20.0                                     |                  | 85          | 70-130       |      |              |       |
| Xylenes (total)                          | 52.2      | 2.0 ug/L        | 60.0                                     |                  | 87          | 70-130       |      |              |       |
| Surrogate: Toluene-d8                    | 27.7      | ug/L            | 25.0                                     |                  | 111         | 70-130       |      |              |       |
| Surrogate: 4-Bromofluorobenzene          | 28.3      | ug/L            | 25.0                                     |                  | 113         | 70-130       |      |              |       |
| Duplicate (B4C0511-DUP1)                 | Sou       | rce: 4030418-03 | Prepared                                 | d: Mar-13-1      | 14, Analyze | ed: Mar-13   | 3-14 |              |       |
| Benzene                                  | < 0.5     | 0.5 ug/L        |                                          | < 0.5            |             |              |      | 20           |       |
| Ethylbenzene                             | < 1.0     | 1.0 ug/L        |                                          | < 1.0            |             |              |      | 20           |       |
| Toluene                                  | < 1.0     | 1.0 ug/L        |                                          | < 1.0            |             |              |      | 20           |       |
| Xylenes (total)                          | < 2.0     | 2.0 ug/L        |                                          | < 2.0            |             |              |      | 20           |       |
| Surrogate: Toluene-d8                    | 23.4      | ug/L            | 25.0                                     |                  | 94          | 70-130       |      |              |       |
| Surrogate: 4-Bromofluorobenzene          | 23.0      | ug/L            | 25.0                                     |                  | 92          | 70-130       |      |              |       |



#### **CERTIFICATE OF ANALYSIS**

REPORTED TO Columbia Environmental Consulting Ltd

RR #2, Site 55, Compartment 10 **TEL** (778) 476-5656 Penticton, BC V2A 6J7 **FAX** (778) 476-5655

ATTENTION Summer Zawacky WORK ORDER 4030418

PO NUMBER RECEIVED / TEMP Mar-10-14 13:12 / 8°C

 PROJECT
 14-0493
 REPORTED
 Mar-17-14

 PROJECT INFO
 LNIB PII ESA
 COC NUMBER
 B08808, B08809

#### **General Comments:**

CARO Analytical Services employs methods which are conducted according to procedures accepted by appropriate regulatory agencies, and/or are conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts, except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the Chain of Custody or Sample Requisition document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Issued By:

Jennifer Shanko, AScT For Brent Coates, BSc

Shanlio

Business Manager, Richmond

Please contact CARO if more information is needed or to provide feedback on our services.

Locations:

#110 4011 Viking Way #102 3677 Highway 97N 17225 109 Avenue
Richmond, BC V6V 2K9 Kelowna, BC V1X 5C3 Edmonton, AB T5S 1H7

Tel: 604-279-1499 Fax: 604-279-1599 Tel: 250-765-9646 Fax: 250-765-3893 Tel: 780-489-9100 Fax: 780-489-9700

www.caro.ca



### **ANALYSIS INFORMATION**

Columbia Environmental Consulting Ltd 4030418 **REPORTED TO WORK ORDER PROJECT REPORTED** Mar-17-14

| Analysis Description      | Method Reference (* = Preparation | Method Reference (* = modified from) Preparation Analysis |          |  |  |
|---------------------------|-----------------------------------|-----------------------------------------------------------|----------|--|--|
| BTEX in Water             | EPA 5030B / 5021A                 | EPA 8260B (1996)                                          | Richmond |  |  |
| BTEX/VH/VPH in Water Pkg  | N/A                               | BCMOE                                                     | Richmond |  |  |
| CCME PHC F1 in Water      | EPA 5030B / 5021A                 | CCME CWS PHC (2001) *                                     | Richmond |  |  |
| CCME PHC F2 in Water      | EPA 3510C                         | CCME CWS PHC (2001) *                                     | Richmond |  |  |
| Chloride in Water by IC   | N/A                               | APHA 4110 B                                               | Kelowna  |  |  |
| Dissolved Metals          | APHA 3030 B                       | APHA 3125 B                                               | Richmond |  |  |
| Fluoride in Water by IC   | N/A                               | APHA 4110 B                                               | Kelowna  |  |  |
| Hardness as CaCO3 (CALC)  | N/A                               | APHA 2340 B                                               | Richmond |  |  |
| Nitrate-N in Water by IC  | N/A                               | APHA 4110 B                                               | Kelowna  |  |  |
| Nitrite-N in Water by IC  | N/A                               | APHA 4110 B                                               | Kelowna  |  |  |
| Orthophosphate as P by IC | N/A                               | APHA 4110 B                                               | Kelowna  |  |  |
| PAH in Water (low)        | EPA 3510C                         | EPA 8270D (2007)                                          | Richmond |  |  |
| Sulfate in Water by IC    | N/A                               | APHA 4110 B                                               | Kelowna  |  |  |
| Total Recoverable Metals  | APHA 3030E *                      | APHA 3125 B                                               | Richmond |  |  |
| VH in Water               | EPA 5030B / 5021A                 | BCMOE                                                     | Richmond |  |  |

Note: The numbers in brackets represent the year that the method was published/approved

#### **Method Reference Descriptions:**

British Columbia Environmental Laboratory Manual, 2009, British Columbia Ministry of **BCMOE** 

**CCME** Canadian Council of Ministers of the Environment, Canada-wide Standard Reference Methods **APHA** 

Standard Methods for the Examination of Water and Wastewater, American Public Health

Association

**EPA** United States Environmental Protection Agency Test Methods

#### **Glossary of Terms:**

MRL Method Reporting Limit

Less than the Reported Detection Limit (RDL) - the RDL may be higher than the MRL due to

various factors such as dilutions, limited sample volume, high moisture, or interferences

mg/L Milligrams per litre ug/L Micrograms per litre



REPORTED TO Columbia Environmental Consulting Ltd

PROJECT 14-0493

WORK ORDER

REPORTED

| Analyte                                      | Result /<br><i>Recovery</i>   | MRL /<br><i>Limit</i> | Units | Prepared | Analyzed  | Notes |
|----------------------------------------------|-------------------------------|-----------------------|-------|----------|-----------|-------|
| Anions                                       |                               |                       |       |          |           |       |
| Sample ID: MW05-12 (4030418                  | -08) [Water] Sampled: Mar-07  | -14 12:00             |       |          |           |       |
| Chloride                                     | 387                           | 0.10                  | mg/L  | N/A      | Mar-11-14 |       |
| Fluoride                                     | 0.24                          | 0.10                  | mg/L  | N/A      | Mar-11-14 |       |
| Nitrogen, Nitrate as N                       | 1.10                          | 0.010                 | mg/L  | N/A      | Mar-11-14 |       |
| Nitrogen, Nitrite as N                       | < 0.010                       | 0.010                 | mg/L  | N/A      | Mar-11-14 |       |
| Phosphate, Ortho as P                        | < 0.01                        | 0.01                  | mg/L  | N/A      | Mar-11-14 |       |
| Sulfate                                      | 35.3                          | 1.0                   | mg/L  | N/A      | Mar-11-14 |       |
| Sample ID: MW07-28S (403041                  | 8-09) [Water] Sampled: Mar-0  | 7-14 12:00            |       |          |           |       |
| Chloride                                     | 609                           | 0.10                  | mg/L  | N/A      | Mar-11-14 |       |
| Fluoride                                     | 0.13                          | 0.10                  | mg/L  | N/A      | Mar-11-14 |       |
| Nitrogen, Nitrate as N                       | 0.917                         | 0.010                 | mg/L  | N/A      | Mar-11-14 |       |
| Nitrogen, Nitrite as N                       | < 0.010                       | 0.010                 | mg/L  | N/A      | Mar-11-14 |       |
| Phosphate, Ortho as P                        | < 0.01                        | 0.01                  | mg/L  | N/A      | Mar-11-14 |       |
| Sulfate                                      | 38.4                          | 1.0                   | mg/L  | N/A      | Mar-11-14 |       |
| Sample ID: MW07-28D (403041                  | 8-10) [Water] Sampled: Mar-0  | 7-14 12:00            |       |          |           |       |
| Chloride                                     | 1.13                          | 0.10                  | mg/L  | N/A      | Mar-11-14 |       |
| Fluoride                                     | 0.23                          |                       | mg/L  | N/A      | Mar-11-14 |       |
| Nitrogen, Nitrate as N                       | < 0.010                       | 0.010                 |       | N/A      | Mar-11-14 |       |
| Nitrogen, Nitrite as N                       | < 0.010                       | 0.010                 |       | N/A      | Mar-11-14 |       |
| Phosphate, Ortho as P                        | < 0.01                        |                       | mg/L  | N/A      | Mar-11-14 |       |
| Sulfate                                      | 50.9                          |                       | mg/L  | N/A      | Mar-11-14 |       |
| Sample ID: MW07-29D (403041                  | 8-11) [Water] Sampled: Mar-0  | 7-14 12:00            |       |          |           |       |
| Chloride                                     | 1.15                          |                       | mg/L  | N/A      | Mar-11-14 |       |
| Fluoride                                     | 0.20                          | 0.10                  | mg/L  | N/A      | Mar-11-14 |       |
| Nitrogen, Nitrate as N                       | 0.012                         | 0.010                 | mg/L  | N/A      | Mar-11-14 |       |
| Nitrogen, Nitrite as N                       | 0.012                         | 0.010                 | mg/L  | N/A      | Mar-11-14 |       |
| Phosphate, Ortho as P                        | < 0.01                        | 0.01                  | mg/L  | N/A      | Mar-11-14 |       |
| Sulfate                                      | 50.8                          | 1.0                   | mg/L  | N/A      | Mar-11-14 |       |
| Sample ID: MWDUP (4030418-                   | 12) [Water] Sampled: Mar-07-1 | 14 12:00              |       |          |           |       |
| Chloride                                     | 1.22                          |                       | mg/L  | N/A      | Mar-11-14 |       |
| Fluoride                                     | 0.22                          | 0.10                  | mg/L  | N/A      | Mar-11-14 |       |
| Nitrogen, Nitrate as N                       | 0.014                         |                       | mg/L  | N/A      | Mar-11-14 |       |
| Nitrogen, Nitrite as N                       | 0.014                         |                       | mg/L  | N/A      | Mar-11-14 |       |
| Phosphate, Ortho as P                        | < 0.01                        |                       | mg/L  | N/A      | Mar-11-14 |       |
| Sulfate                                      | 49.6                          |                       | mg/L  | N/A      | Mar-11-14 |       |
| Sample ID: MW07-32S (403041                  | 8-13) [Water] Sampled: Mar-0  | 7-14 12:00            |       |          |           |       |
| Chloride                                     | 122                           |                       | mg/L  | N/A      | Mar-11-14 |       |
| Fluoride                                     | 0.12                          |                       | mg/L  | N/A      | Mar-11-14 |       |
| Nitrogen, Nitrate as N                       | 0.407                         |                       | mg/L  | N/A      | Mar-11-14 |       |
|                                              |                               |                       | mg/L  | N/A      | Mar-11-14 |       |
| Nitrogen, Nitrite as N                       | < 0.010                       | 0.010                 |       |          |           |       |
| Nitrogen, Nitrite as N Phosphate, Ortho as P | < 0.010                       |                       | mg/L  | N/A      | Mar-11-14 |       |

4030418



REPORTED TOColumbia Environmental Consulting LtdWORK ORDER4030418PROJECT14-0493REPORTEDMar-17-14

| Analyte                                                                                                                                                                                                                                                                                        | Result /<br>Recovery                                                                                                                                     | MRL /<br><i>Limit</i>                                                                         | Units                                          | Prepared                    | Analyzed                    | Notes |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|-----------------------------|-------|
| Anions, Continued                                                                                                                                                                                                                                                                              |                                                                                                                                                          |                                                                                               |                                                |                             |                             |       |
| Sample ID: MW07-32D (4030418-14                                                                                                                                                                                                                                                                | 4) [Water] Sampled: Mar-0                                                                                                                                | 7-14 12:00                                                                                    |                                                |                             |                             |       |
| Chloride                                                                                                                                                                                                                                                                                       | 119                                                                                                                                                      | 0.10                                                                                          | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Fluoride                                                                                                                                                                                                                                                                                       | 0.11                                                                                                                                                     | 0.10                                                                                          | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Nitrogen, Nitrate as N                                                                                                                                                                                                                                                                         | 0.370                                                                                                                                                    | 0.010                                                                                         | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Nitrogen, Nitrite as N                                                                                                                                                                                                                                                                         | < 0.010                                                                                                                                                  | 0.010                                                                                         | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Phosphate, Ortho as P                                                                                                                                                                                                                                                                          | < 0.01                                                                                                                                                   | 0.01                                                                                          | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Sulfate                                                                                                                                                                                                                                                                                        | 28.4                                                                                                                                                     | 1.0                                                                                           | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Sample ID: MW08-42 (4030418-15)                                                                                                                                                                                                                                                                | [Water] Sampled: Mar-07-                                                                                                                                 | -14 12:00                                                                                     |                                                |                             |                             |       |
| Chloride                                                                                                                                                                                                                                                                                       | 73.1                                                                                                                                                     | 0.10                                                                                          | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Fluoride                                                                                                                                                                                                                                                                                       | 0.14                                                                                                                                                     | 0.10                                                                                          | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Nitrogen, Nitrate as N                                                                                                                                                                                                                                                                         | 0.161                                                                                                                                                    | 0.010                                                                                         |                                                | N/A                         | Mar-11-14                   |       |
| Nitrogen, Nitrite as N                                                                                                                                                                                                                                                                         | < 0.010                                                                                                                                                  | 0.010                                                                                         |                                                | N/A                         | Mar-11-14                   |       |
| Phosphate, Ortho as P                                                                                                                                                                                                                                                                          | < 0.01                                                                                                                                                   | 0.01                                                                                          | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Sulfate                                                                                                                                                                                                                                                                                        | 32.1                                                                                                                                                     | 1.0                                                                                           | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Sample ID: MW08-43 (4030418-16)                                                                                                                                                                                                                                                                | [Water] Sampled: Mar-07-                                                                                                                                 | -14 12:00                                                                                     |                                                |                             |                             |       |
| Chloride                                                                                                                                                                                                                                                                                       | 178                                                                                                                                                      | 0.10                                                                                          | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Fluoride                                                                                                                                                                                                                                                                                       | 0.14                                                                                                                                                     | 0.10                                                                                          | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Nitrogen, Nitrate as N                                                                                                                                                                                                                                                                         | 0.560                                                                                                                                                    | 0.010                                                                                         | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Nitrogen, Nitrite as N                                                                                                                                                                                                                                                                         | < 0.010                                                                                                                                                  | 0.010                                                                                         | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Phosphate, Ortho as P                                                                                                                                                                                                                                                                          | < 0.01                                                                                                                                                   | 0.01                                                                                          | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Sulfate                                                                                                                                                                                                                                                                                        | 28.8                                                                                                                                                     | 1.0                                                                                           | mg/L                                           | N/A                         | Mar-11-14                   |       |
| Calculated Parameters<br>Sample ID: SW1 (4030418-01) [Wa                                                                                                                                                                                                                                       | iter] Sampled: Mar-03-14 1                                                                                                                               | 6:00                                                                                          |                                                |                             |                             |       |
|                                                                                                                                                                                                                                                                                                | < 100                                                                                                                                                    |                                                                                               | ug/L                                           | N/A                         | N/A                         |       |
| VPHw                                                                                                                                                                                                                                                                                           |                                                                                                                                                          | 100                                                                                           | ug/L<br>mg/L                                   | N/A<br>N/A                  | N/A<br>N/A                  |       |
| VPHw<br>Hardness, Total (Total as CaCO3)                                                                                                                                                                                                                                                       | < 100<br>177                                                                                                                                             | 100<br>5.0                                                                                    |                                                |                             |                             |       |
| VPHw<br>Hardness, Total (Total as CaCO3)                                                                                                                                                                                                                                                       | < 100<br>177                                                                                                                                             | 100<br>5.0<br><b>6:00</b>                                                                     |                                                |                             |                             |       |
| VPHw<br>Hardness, Total (Total as CaCO3)<br>Sample ID: SW2 (4030418-02) [Wa                                                                                                                                                                                                                    | < 100<br>177<br>ater] Sampled: Mar-03-14 1                                                                                                               | 100<br>5.0<br><b>6:00</b>                                                                     | mg/L                                           | N/A                         | N/A                         |       |
| VPHw Hardness, Total (Total as CaCO3)  Sample ID: SW2 (4030418-02) [WaVPHw Hardness, Total (Total as CaCO3)                                                                                                                                                                                    | < 100<br>177<br>ater] Sampled: Mar-03-14 1<br>< 100<br>183                                                                                               | 100<br>5.0<br><b>6:00</b><br>100<br>5.0                                                       | mg/L<br>ug/L                                   | N/A                         | N/A<br>N/A                  |       |
| VPHw Hardness, Total (Total as CaCO3)  Sample ID: SW2 (4030418-02) [WaVPHw                                                                                                                                                                                                                     | < 100<br>177<br>ater] Sampled: Mar-03-14 1<br>< 100<br>183                                                                                               | 100<br>5.0<br><b>6:00</b><br>100<br>5.0                                                       | mg/L<br>ug/L                                   | N/A                         | N/A<br>N/A                  |       |
| VPHw Hardness, Total (Total as CaCO3)  Sample ID: SW2 (4030418-02) [WaVPHw Hardness, Total (Total as CaCO3)  Sample ID: SW3 (4030418-03) [Wa                                                                                                                                                   | < 100<br>177<br>ater] Sampled: Mar-03-14 1<br>< 100<br>183<br>ater] Sampled: Mar-03-14 1                                                                 | 100<br>5.0<br><b>6:00</b><br>100<br>5.0<br><b>6:00</b>                                        | mg/L<br>ug/L<br>mg/L                           | N/A<br>N/A<br>N/A           | N/A<br>N/A<br>N/A           |       |
| VPHw Hardness, Total (Total as CaCO3)  Sample ID: SW2 (4030418-02) [WaVPHw Hardness, Total (Total as CaCO3)  Sample ID: SW3 (4030418-03) [WaVPHw Hardness, Total (Total as CaCO3)                                                                                                              | < 100<br>177<br>ater] Sampled: Mar-03-14 1<br>< 100<br>183<br>ater] Sampled: Mar-03-14 1<br>< 100<br>249                                                 | 100<br>5.0<br>6:00<br>100<br>5.0<br>6:00                                                      | mg/L ug/L mg/L                                 | N/A<br>N/A<br>N/A           | N/A<br>N/A<br>N/A           |       |
| VPHw Hardness, Total (Total as CaCO3)  Sample ID: SW2 (4030418-02) [WaVPHw Hardness, Total (Total as CaCO3)  Sample ID: SW3 (4030418-03) [WaVPHw Hardness, Total (Total as CaCO3)                                                                                                              | < 100<br>177<br>ater] Sampled: Mar-03-14 1<br>< 100<br>183<br>ater] Sampled: Mar-03-14 1<br>< 100<br>249                                                 | 100<br>5.0<br>6:00<br>100<br>5.0<br>6:00<br>100<br>5.0                                        | mg/L ug/L mg/L                                 | N/A<br>N/A<br>N/A           | N/A<br>N/A<br>N/A           |       |
| VPHw Hardness, Total (Total as CaCO3)  Sample ID: SW2 (4030418-02) [WaVPHw Hardness, Total (Total as CaCO3)  Sample ID: SW3 (4030418-03) [WaVPHw Hardness, Total (Total as CaCO3)  Sample ID: MW14-1 (4030418-04) [                                                                            | < 100<br>177<br>ater] Sampled: Mar-03-14 1<br>< 100<br>183<br>ater] Sampled: Mar-03-14 1<br>< 100<br>249<br>[Water] Sampled: Mar-07-1                    | 100<br>5.0<br>6:00<br>100<br>5.0<br>6:00<br>100<br>5.0                                        | mg/L ug/L mg/L ug/L mg/L                       | N/A<br>N/A<br>N/A<br>N/A    | N/A N/A N/A N/A             |       |
| VPHw Hardness, Total (Total as CaCO3)  Sample ID: SW2 (4030418-02) [WaVPHw Hardness, Total (Total as CaCO3)  Sample ID: SW3 (4030418-03) [WaVPHw Hardness, Total (Total as CaCO3)  Sample ID: MW14-1 (4030418-04) [VPHw Hardness, Total (Diss. as CaCO3)                                       | < 100 177  Iter] Sampled: Mar-03-14 1 < 100 183  Iter] Sampled: Mar-03-14 1 < 100 249  [Water] Sampled: Mar-07-1 < 100 251                               | 100<br>5.0<br>6:00<br>100<br>5.0<br>6:00<br>100<br>5.0<br>14 17:00                            | mg/L ug/L mg/L ug/L mg/L                       | N/A N/A N/A N/A N/A         | N/A N/A N/A N/A N/A         |       |
| VPHw Hardness, Total (Total as CaCO3)  Sample ID: SW2 (4030418-02) [WaVPHw Hardness, Total (Total as CaCO3)  Sample ID: SW3 (4030418-03) [WaVPHw Hardness, Total (Total as CaCO3)  Sample ID: MW14-1 (4030418-04) [VPHw                                                                        | < 100 177  Iter] Sampled: Mar-03-14 1 < 100 183  Iter] Sampled: Mar-03-14 1 < 100 249  [Water] Sampled: Mar-07-1 < 100 251                               | 100<br>5.0<br>6:00<br>100<br>5.0<br>6:00<br>100<br>5.0<br>14 17:00                            | mg/L ug/L mg/L ug/L mg/L                       | N/A N/A N/A N/A N/A         | N/A N/A N/A N/A N/A         |       |
| VPHw Hardness, Total (Total as CaCO3)  Sample ID: SW2 (4030418-02) [WaVPHw Hardness, Total (Total as CaCO3)  Sample ID: SW3 (4030418-03) [WaVPHw Hardness, Total (Total as CaCO3)  Sample ID: MW14-1 (4030418-04) [VPHw Hardness, Total (Diss. as CaCO3)  Sample ID: MWDUP2 (4030418-05)       | < 100                                                                                                                                                    | 100<br>5.0<br>6:00<br>100<br>5.0<br>6:00<br>100<br>5.0<br>14 17:00<br>100<br>5.0              | mg/L  ug/L  mg/L  mg/L  ug/L  mg/L             | N/A N/A N/A N/A N/A N/A     | N/A N/A N/A N/A N/A N/A     |       |
| VPHw Hardness, Total (Total as CaCO3)  Sample ID: SW2 (4030418-02) [WaVPHw Hardness, Total (Total as CaCO3)  Sample ID: SW3 (4030418-03) [WaVPHw Hardness, Total (Total as CaCO3)  Sample ID: MW14-1 (4030418-04) [VPHw Hardness, Total (Diss. as CaCO3)  Sample ID: MWDUP2 (4030418-05)  VPHw | <100 177  Iter] Sampled: Mar-03-14 1 <100 183  Iter] Sampled: Mar-03-14 1 <100 249  [Water] Sampled: Mar-07-1 <100 251  [Water] Sampled: Mar-07 <100 248 | 100<br>5.0<br>6:00<br>100<br>5.0<br>6:00<br>100<br>5.0<br>14 17:00<br>100<br>5.0<br>-14 17:00 | mg/L  ug/L  mg/L  mg/L  ug/L  ug/L  ug/L  ug/L | N/A N/A N/A N/A N/A N/A N/A | N/A N/A N/A N/A N/A N/A N/A |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030418 Mar-17-14

| Analyte                               | Result /<br>Recovery       | MRL /<br>Limit    | Units | Prepared | Analyzed | Notes |
|---------------------------------------|----------------------------|-------------------|-------|----------|----------|-------|
| Calculated Parameters, Continued      |                            |                   |       |          |          |       |
| Sample ID: MW14-2 (4030418-06)        | [Water] Sampled: Mar-07-1  | 4 17:00, Continue | ed    |          |          |       |
| Hardness, Total (Diss. as CaCO3)      | 284                        | 5.0               | mg/L  | N/A      | N/A      |       |
| Sample ID: MW14-3 (4030418-07)        | [Water] Sampled: Mar-08-1  | 4 09:00           |       |          |          |       |
| VPHw                                  | < 100                      | 100               | ug/L  | N/A      | N/A      |       |
| Hardness, Total (Diss. as CaCO3)      | 240                        | 5.0               | mg/L  | N/A      | N/A      |       |
| Sample ID: MW05-12 (4030418-08)       | [Water] Sampled: Mar-07-   | 14 12:00          |       |          |          |       |
| Hardness, Total (Diss. as CaCO3)      | 287                        | 5.0               | mg/L  | N/A      | N/A      |       |
| Sample ID: MW07-28S (4030418-09       | 9) [Water] Sampled: Mar-07 | 7-14 12:00        |       |          |          |       |
| Hardness, Total (Diss. as CaCO3)      | 605                        | 5.0               | mg/L  | N/A      | N/A      |       |
| Sample ID: MW07-28D (4030418-10       | )) [Water] Sampled: Mar-0  | 7-14 12:00        |       |          |          |       |
| Hardness, Total (Diss. as CaCO3)      | 281                        | 5.0               | mg/L  | N/A      | N/A      |       |
| Sample ID: MW07-29D (4030418-11       | l) [Water] Sampled: Mar-07 | 7-14 12:00        |       |          |          |       |
| Hardness, Total (Diss. as CaCO3)      | 215                        | 5.0               | mg/L  | N/A      | N/A      |       |
| Sample ID: MWDUP (4030418-12)         | [Water] Sampled: Mar-07-1  | 4 12:00           |       |          |          |       |
| Hardness, Total (Diss. as CaCO3)      | 209                        | 5.0               | mg/L  | N/A      | N/A      |       |
| Sample ID: MW07-32S (4030418-13       | 3) [Water] Sampled: Mar-07 | 7-14 12:00        |       |          |          |       |
| Hardness, Total (Diss. as CaCO3)      | 394                        | 5.0               | mg/L  | N/A      | N/A      |       |
| Sample ID: MW07-32D (4030418-14       | 1) [Water] Sampled: Mar-0  | 7-14 12:00        |       |          |          |       |
| Hardness, Total (Diss. as CaCO3)      | 368                        | 5.0               | mg/L  | N/A      | N/A      |       |
| Sample ID: MW08-42 (4030418-15)       | [Water] Sampled: Mar-07-   | 14 12:00          |       |          |          |       |
| Hardness, Total (Diss. as CaCO3)      | 395                        | 5.0               | mg/L  | N/A      | N/A      |       |
| Sample ID: MW08-43 (4030418-16)       | [Water] Sampled: Mar-07-   | 14 12:00          |       |          |          |       |
| Hardness, Total (Diss. as CaCO3)      | 438                        |                   | mg/L  | N/A      | N/A      |       |
| · · · · · · · · · · · · · · · · · · · |                            |                   |       |          |          |       |

#### **Dissolved Metals**

### Sample ID: MW14-1 (4030418-04) [Water] Sampled: Mar-07-14 17:00

| ••••••••••••••••••••••••••••••••••••••• | on, financia cambican man on a |        |      |     |           |
|-----------------------------------------|--------------------------------|--------|------|-----|-----------|
| Aluminum, dissolved                     | < 0.05                         | 0.05   | mg/L | N/A | Mar-12-14 |
| Antimony, dissolved                     | < 0.001                        | 0.001  | mg/L | N/A | Mar-12-14 |
| Arsenic, dissolved                      | < 0.005                        | 0.005  | mg/L | N/A | Mar-12-14 |
| Barium, dissolved                       | < 0.05                         | 0.05   | mg/L | N/A | Mar-12-14 |
| Beryllium, dissolved                    | < 0.001                        | 0.001  | mg/L | N/A | Mar-12-14 |
| Bismuth, dissolved                      | < 0.001                        | 0.001  | mg/L | N/A | Mar-12-14 |
| Boron, dissolved                        | 0.05                           | 0.04   | mg/L | N/A | Mar-12-14 |
| Cadmium, dissolved                      | < 0.0001                       | 0.0001 | mg/L | N/A | Mar-12-14 |
| Calcium, dissolved                      | 59.9                           | 2.0    | mg/L | N/A | Mar-12-14 |
| Chromium, dissolved                     | < 0.005                        | 0.005  | mg/L | N/A | Mar-12-14 |
| Cobalt, dissolved                       | < 0.0005                       | 0.0005 | mg/L | N/A | Mar-12-14 |
| Copper, dissolved                       | < 0.002                        | 0.002  | mg/L | N/A | Mar-12-14 |
|                                         |                                |        |      |     |           |

Page 5 of 36



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

|                              |                               |                    |       |          |           | IVIAI-17-1 |
|------------------------------|-------------------------------|--------------------|-------|----------|-----------|------------|
| Analyte                      | Result / Recovery             | MRL /<br>Limit     | Units | Prepared | Analyzed  | Notes      |
| Dissolved Metals, Continued  |                               |                    |       |          |           |            |
| Sample ID: MW14-1 (4030418-0 | 04) [Water] Sampled: Mar-07-1 | 14 17:00, Continue | ed    |          |           |            |
| Iron, dissolved              | < 0.10                        | 0.10               | mg/L  | N/A      | Mar-12-14 |            |
| Lead, dissolved              | < 0.001                       | 0.001              | mg/L  | N/A      | Mar-12-14 |            |
| Lithium, dissolved           | 0.004                         | 0.001              | mg/L  | N/A      | Mar-12-14 |            |
| Magnesium, dissolved         | 24.7                          | 0.1                | mg/L  | N/A      | Mar-12-14 |            |
| Manganese, dissolved         | 0.012                         | 0.002              | mg/L  | N/A      | Mar-12-14 |            |
| Mercury, dissolved           | < 0.0002                      | 0.0002             | mg/L  | N/A      | Mar-12-14 |            |
| Molybdenum, dissolved        | 0.008                         | 0.001              |       | N/A      | Mar-12-14 |            |
| Nickel, dissolved            | < 0.002                       | 0.002              |       | N/A      | Mar-12-14 |            |
| Phosphorus, dissolved        | < 0.2                         |                    | mg/L  | N/A      | Mar-12-14 |            |
| Potassium, dissolved         | 3.1                           |                    | mg/L  | N/A      | Mar-12-14 |            |
| Selenium, dissolved          | < 0.005                       | 0.005              |       | N/A      | Mar-12-14 |            |
| Silicon, dissolved           | 10                            |                    | mg/L  | N/A      | Mar-12-14 |            |
| Silver, dissolved            | 0.0011                        | 0.0005             |       | N/A      | Mar-12-14 |            |
| Sodium, dissolved            | 17.4                          |                    | mg/L  | N/A      | Mar-12-14 |            |
| Strontium, dissolved         | 0.33                          | 0.01               |       | N/A      | Mar-12-14 |            |
| Sulfur, dissolved            | < 10                          |                    | mg/L  | N/A      | Mar-12-14 |            |
| Tellurium, dissolved         | < 0.002                       | 0.002              |       | N/A      | Mar-12-14 |            |
| Thallium, dissolved          | < 0.002                       | 0.0002             |       | N/A      | Mar-12-14 |            |
| Thorium, dissolved           | < 0.0002                      |                    |       | N/A      | Mar-12-14 |            |
| <u> </u>                     |                               | 0.001              |       |          |           |            |
| Tin, dissolved               | < 0.002                       | 0.002              |       | N/A      | Mar-12-14 |            |
| Titanium, dissolved          | < 0.05                        |                    | mg/L  | N/A      | Mar-12-14 |            |
| Jranium, dissolved           | 0.0026                        | 0.0002             |       | N/A      | Mar-12-14 |            |
| Vanadium, dissolved          | < 0.01                        |                    | mg/L  | N/A      | Mar-12-14 |            |
| Zinc, dissolved              | < 0.04                        |                    | mg/L  | N/A      | Mar-12-14 |            |
| Zirconium, dissolved         | < 0.001                       | 0.001              | mg/L  | N/A      | Mar-12-14 |            |
|                              | -05) [Water] Sampled: Mar-07  |                    |       |          |           |            |
| Aluminum, dissolved          | < 0.05                        |                    | mg/L  | N/A      | Mar-12-14 |            |
| Antimony, dissolved          | < 0.001                       | 0.001              |       | N/A      | Mar-12-14 |            |
| Arsenic, dissolved           | < 0.005                       | 0.005              |       | N/A      | Mar-12-14 |            |
| Barium, dissolved            | < 0.05                        | 0.05               | mg/L  | N/A      | Mar-12-14 |            |
| Beryllium, dissolved         | < 0.001                       | 0.001              | mg/L  | N/A      | Mar-12-14 |            |
| Bismuth, dissolved           | < 0.001                       | 0.001              | mg/L  | N/A      | Mar-12-14 |            |
| Boron, dissolved             | 0.04                          | 0.04               | mg/L  | N/A      | Mar-12-14 |            |
| Cadmium, dissolved           | < 0.0001                      | 0.0001             | mg/L  | N/A      | Mar-12-14 |            |
| Calcium, dissolved           | 59.9                          | 2.0                | mg/L  | N/A      | Mar-12-14 |            |
| Chromium, dissolved          | < 0.005                       | 0.005              | mg/L  | N/A      | Mar-12-14 |            |
| Cobalt, dissolved            | < 0.0005                      | 0.0005             |       | N/A      | Mar-12-14 |            |
| Copper, dissolved            | < 0.002                       | 0.002              |       | N/A      | Mar-12-14 |            |
| ron, dissolved               | < 0.10                        |                    | mg/L  | N/A      | Mar-12-14 |            |
| _ead, dissolved              | < 0.001                       | 0.001              |       | N/A      | Mar-12-14 |            |
| _ithium, dissolved           | 0.004                         | 0.001              |       | N/A      | Mar-12-14 |            |
| Magnesium, dissolved         | 24.0                          |                    | mg/L  | N/A      | Mar-12-14 |            |
| Manganese, dissolved         | 0.012                         | 0.002              |       | N/A      | Mar-12-14 |            |
| Mercury, dissolved           | < 0.0002                      | 0.0002             |       | N/A      | Mar-12-14 |            |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                                                                                                                                                            | Result /<br>Recovery                                     | MRL /<br><i>Limit</i>                    | Units                        | Prepared                        | Analyzed                                                      | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|------------------------------|---------------------------------|---------------------------------------------------------------|-------|
| Dissolved Metals, Continued                                                                                                                                        |                                                          |                                          |                              |                                 |                                                               |       |
| sample ID: MWDUP2 (4030418                                                                                                                                         | B-05) [Water] Sampled: Mar-07                            | -14 17:00, Continu                       | ued                          |                                 |                                                               |       |
| Molybdenum, dissolved                                                                                                                                              | 0.008                                                    | 0.001                                    | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Nickel, dissolved                                                                                                                                                  | < 0.002                                                  | 0.002                                    |                              | N/A                             | Mar-12-14                                                     |       |
| Phosphorus, dissolved                                                                                                                                              | < 0.2                                                    |                                          | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Potassium, dissolved                                                                                                                                               | 2.9                                                      |                                          | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Selenium, dissolved                                                                                                                                                | < 0.005                                                  | 0.005                                    |                              | N/A                             | Mar-12-14                                                     |       |
| Silicon, dissolved                                                                                                                                                 | 10                                                       |                                          | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Silver, dissolved                                                                                                                                                  | 0.0011                                                   | 0.0005                                   |                              | N/A                             | Mar-12-14                                                     |       |
| Sodium, dissolved                                                                                                                                                  | 16.9                                                     | 0.2                                      | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Strontium, dissolved                                                                                                                                               | 0.32                                                     |                                          | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Sulfur, dissolved                                                                                                                                                  | < 10                                                     |                                          | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Tellurium, dissolved                                                                                                                                               | < 0.002                                                  | 0.002                                    |                              | N/A                             | Mar-12-14                                                     |       |
| Thallium, dissolved                                                                                                                                                | < 0.0002                                                 | 0.0002                                   |                              | N/A                             | Mar-12-14                                                     |       |
| Thorium, dissolved                                                                                                                                                 | < 0.001                                                  | 0.001                                    |                              | N/A                             | Mar-12-14                                                     |       |
| Tin, dissolved                                                                                                                                                     | < 0.002                                                  | 0.002                                    |                              | N/A                             | Mar-12-14                                                     |       |
| Fitanium, dissolved                                                                                                                                                | < 0.05                                                   |                                          | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Jranium, dissolved                                                                                                                                                 | 0.0026                                                   | 0.0002                                   |                              | N/A                             | Mar-12-14                                                     |       |
| /anadium, dissolved                                                                                                                                                | < 0.01                                                   |                                          | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Zinc, dissolved                                                                                                                                                    | < 0.04                                                   |                                          | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Zirconium, dissolved                                                                                                                                               | < 0.001                                                  | 0.001                                    |                              | N/A                             | Mar-12-14                                                     |       |
| Aluminum, dissolved                                                                                                                                                | < 0.05                                                   |                                          | mg/L                         | N/A                             | Mar-12-14<br>Mar-12-14                                        |       |
| Antimony, dissolved                                                                                                                                                | < 0.001                                                  | 0.001                                    | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Arsenic, dissolved                                                                                                                                                 | < 0.005                                                  | 0.005                                    |                              | N/A                             | Mar-12-14                                                     |       |
| Barium, dissolved                                                                                                                                                  | < 0.05                                                   |                                          | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Beryllium, dissolved                                                                                                                                               | < 0.001                                                  | 0.001                                    | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Bismuth, dissolved                                                                                                                                                 | < 0.001                                                  | 0.001                                    | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Boron, dissolved                                                                                                                                                   | 0.05                                                     | 0.04                                     | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Cadmium, dissolved                                                                                                                                                 | < 0.0001                                                 | 0.0001                                   | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Calcium, dissolved                                                                                                                                                 | 65.4                                                     | 2.0                                      | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Chromium, dissolved                                                                                                                                                | < 0.005                                                  | 0.005                                    | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Cobalt, dissolved                                                                                                                                                  | < 0.0005                                                 | 0.0005                                   | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Copper, dissolved                                                                                                                                                  | 0.003                                                    | 0.002                                    | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| ron, dissolved                                                                                                                                                     | < 0.10                                                   | 0.10                                     | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| _ead, dissolved                                                                                                                                                    | < 0.001                                                  | 0.001                                    | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| ithium diagolyad                                                                                                                                                   | 0.004                                                    | 0.001                                    | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Littium, dissolved                                                                                                                                                 |                                                          |                                          | /I                           | N/A                             | Mar-12-14                                                     |       |
|                                                                                                                                                                    | 29.4                                                     | 0.1                                      | mg/L                         | 14/73                           |                                                               |       |
| Magnesium, dissolved                                                                                                                                               |                                                          |                                          | mg/L<br>mg/L                 | N/A                             | Mar-12-14                                                     |       |
| Magnesium, dissolved<br>Manganese, dissolved                                                                                                                       | 29.4                                                     |                                          | mg/L                         |                                 |                                                               |       |
| Magnesium, dissolved<br>Manganese, dissolved<br>Mercury, dissolved                                                                                                 | <b>29.4</b> < 0.002                                      | 0.002<br>0.0002                          | mg/L                         | N/A                             | Mar-12-14                                                     |       |
| Magnesium, dissolved<br>Manganese, dissolved<br>Mercury, dissolved<br>Molybdenum, dissolved                                                                        | <b>29.4</b> < 0.002 < 0.0002                             | 0.002<br>0.0002<br>0.001                 | mg/L<br>mg/L                 | N/A<br>N/A                      | Mar-12-14<br>Mar-12-14                                        |       |
| Magnesium, dissolved Manganese, dissolved Mercury, dissolved Molybdenum, dissolved Nickel, dissolved                                                               | 29.4<br>< 0.002<br>< 0.0002<br>0.008                     | 0.002<br>0.0002<br>0.001<br>0.002        | mg/L<br>mg/L<br>mg/L         | N/A<br>N/A<br>N/A               | Mar-12-14<br>Mar-12-14<br>Mar-12-14                           |       |
| Lithium, dissolved Magnesium, dissolved Manganese, dissolved Mercury, dissolved Molybdenum, dissolved Nickel, dissolved Phosphorus, dissolved Potassium, dissolved | 29.4<br>< 0.002<br>< 0.0002<br>0.008<br>< 0.002          | 0.002<br>0.0002<br>0.001<br>0.002<br>0.2 | mg/L<br>mg/L<br>mg/L         | N/A<br>N/A<br>N/A<br>N/A        | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14              |       |
| Magnesium, dissolved Manganese, dissolved Mercury, dissolved Molybdenum, dissolved Nickel, dissolved Phosphorus, dissolved                                         | 29.4<br>< 0.002<br>< 0.0002<br>0.008<br>< 0.002<br>< 0.2 | 0.002<br>0.0002<br>0.001<br>0.002<br>0.2 | mg/L<br>mg/L<br>mg/L<br>mg/L | N/A<br>N/A<br>N/A<br>N/A<br>N/A | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14 |       |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| <b>PROJECT</b> 14-0493      |                                |                    |       | REPO     | Mar-17-14 |       |
|-----------------------------|--------------------------------|--------------------|-------|----------|-----------|-------|
| Analyte                     | Result /<br>Recovery           | MRL /<br>Limit     | Units | Prepared | Analyzed  | Notes |
| Dissolved Metals, Continued |                                |                    |       |          |           |       |
| Sample ID: MW14-2 (4030418  | 3-06) [Water] Sampled: Mar-07- | 14 17:00, Continue | ed    |          |           |       |
| Silver, dissolved           | < 0.0005                       | 0.0005             |       | N/A      | Mar-12-14 |       |
| Sodium, dissolved           | 19.8                           | 0.2                | mg/L  | N/A      | Mar-12-14 |       |
| Strontium, dissolved        | 0.39                           | 0.01               | mg/L  | N/A      | Mar-12-14 |       |
| Sulfur, dissolved           | < 10                           |                    | mg/L  | N/A      | Mar-12-14 |       |
| Tellurium, dissolved        | < 0.002                        | 0.002              | mg/L  | N/A      | Mar-12-14 |       |
| Thallium, dissolved         | < 0.0002                       | 0.0002             | mg/L  | N/A      | Mar-12-14 |       |
| Thorium, dissolved          | < 0.001                        | 0.001              | mg/L  | N/A      | Mar-12-14 |       |
| Tin, dissolved              | < 0.002                        | 0.002              | mg/L  | N/A      | Mar-12-14 |       |
| Titanium, dissolved         | < 0.05                         | 0.05               | mg/L  | N/A      | Mar-12-14 |       |
| Uranium, dissolved          | 0.0034                         | 0.0002             | mg/L  | N/A      | Mar-12-14 |       |
| Vanadium, dissolved         | < 0.01                         | 0.01               | mg/L  | N/A      | Mar-12-14 |       |
| Zinc, dissolved             | < 0.04                         | 0.04               | mg/L  | N/A      | Mar-12-14 |       |
| Zirconium, dissolved        | < 0.001                        | 0.001              | mg/L  | N/A      | Mar-12-14 |       |
| Sample ID: MW14-3 (4030418  | 3-07) [Water] Sampled: Mar-08- | 14 09:00           |       |          |           |       |
| Aluminum, dissolved         | 0.33                           | 0.05               | mg/L  | N/A      | Mar-12-14 |       |
| Antimony, dissolved         | < 0.001                        | 0.001              | mg/L  | N/A      | Mar-12-14 |       |
| Arsenic, dissolved          | < 0.005                        | 0.005              | mg/L  | N/A      | Mar-12-14 |       |
| Barium, dissolved           | 0.05                           | 0.05               | mg/L  | N/A      | Mar-12-14 |       |
| Beryllium, dissolved        | < 0.001                        | 0.001              | mg/L  | N/A      | Mar-12-14 |       |
| Bismuth, dissolved          | < 0.001                        | 0.001              | mg/L  | N/A      | Mar-12-14 |       |
| Boron, dissolved            | < 0.04                         | 0.04               | mg/L  | N/A      | Mar-12-14 |       |
| Cadmium, dissolved          | < 0.0001                       | 0.0001             | mg/L  | N/A      | Mar-12-14 |       |
| Calcium, dissolved          | 61.8                           | 2.0                | mg/L  | N/A      | Mar-12-14 |       |
| Chromium, dissolved         | < 0.005                        | 0.005              | mg/L  | N/A      | Mar-12-14 |       |
| Cobalt, dissolved           | < 0.0005                       | 0.0005             | mg/L  | N/A      | Mar-12-14 |       |
| Copper, dissolved           | 0.015                          | 0.002              | mg/L  | N/A      | Mar-12-14 |       |
| Iron, dissolved             | < 0.10                         |                    | mg/L  | N/A      | Mar-12-14 |       |
| Lead, dissolved             | < 0.001                        | 0.001              |       | N/A      | Mar-12-14 |       |
| Lithium, dissolved          | 0.002                          | 0.001              |       | N/A      | Mar-12-14 |       |
| Magnesium, dissolved        | 20.8                           |                    | mg/L  | N/A      | Mar-12-14 |       |
| Manganese, dissolved        | 0.010                          | 0.002              |       | N/A      | Mar-12-14 |       |
| Mercury, dissolved          | < 0.0002                       | 0.0002             |       | N/A      | Mar-12-14 |       |
| Molybdenum, dissolved       | 0.010                          | 0.001              |       | N/A      | Mar-12-14 |       |
| Nickel, dissolved           | < 0.002                        | 0.002              |       | N/A      | Mar-12-14 |       |
| Phosphorus, dissolved       | < 0.2                          |                    | mg/L  | N/A      | Mar-12-14 |       |
| Potassium, dissolved        | 3.2                            |                    | mg/L  | N/A      | Mar-12-14 |       |
| Selenium, dissolved         | < 0.005                        | 0.005              |       | N/A      | Mar-12-14 |       |
| Silicon, dissolved          | 11                             |                    | mg/L  | N/A      | Mar-12-14 |       |
| Silver, dissolved           | < 0.0005                       | 0.0005             |       | N/A      | Mar-12-14 |       |
| Sodium, dissolved           | 20.2                           |                    | mg/L  | N/A      | Mar-12-14 |       |
| Strontium, dissolved        | 0.28                           |                    | mg/L  | N/A      | Mar-12-14 |       |
| Sulfur, dissolved           | < 10                           |                    | mg/L  | N/A      | Mar-12-14 |       |
| Tellurium, dissolved        | < 0.002                        | 0.002              |       | N/A      | Mar-12-14 |       |
| Thallium, dissolved         | < 0.0002                       | 0.0002             |       | N/A      | Mar-12-14 |       |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER 4030418 REPORTED Mar-17-14

| Result /<br>Recovery           | MRL /<br><i>Limit</i>           | Units | Prepared | Analyzed  | Notes |
|--------------------------------|---------------------------------|-------|----------|-----------|-------|
| 1                              |                                 |       |          |           |       |
| 8_07) [Water] Sampled: Mar_08_ | 14 09:00 Continue               | .d    |          |           |       |
|                                |                                 |       | NI/A     | Mar 12 14 |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
| < 0.001                        | 0.001                           | mg/L  | N/A      | Mar-12-14 |       |
|                                |                                 |       |          |           |       |
| < 0.05                         |                                 |       | N/A      | Mar-12-14 |       |
| < 0.001                        | 0.001                           | mg/L  | N/A      | Mar-12-14 |       |
| < 0.005                        |                                 |       | N/A      | Mar-12-14 |       |
| 0.16                           | 0.05                            | mg/L  | N/A      | Mar-12-14 |       |
| < 0.001                        | 0.001                           | mg/L  | N/A      | Mar-12-14 |       |
| < 0.001                        | 0.001                           | mg/L  | N/A      | Mar-12-14 |       |
| < 0.04                         | 0.04                            | mg/L  | N/A      | Mar-12-14 |       |
| < 0.0001                       | 0.0001                          | mg/L  | N/A      | Mar-12-14 |       |
| 74.1                           | 2.0                             | mg/L  | N/A      | Mar-12-14 |       |
| < 0.005                        | 0.005                           | mg/L  | N/A      | Mar-12-14 |       |
| < 0.0005                       | 0.0005                          | mg/L  | N/A      | Mar-12-14 |       |
| < 0.002                        | 0.002                           | mg/L  | N/A      | Mar-12-14 |       |
| < 0.10                         | 0.10                            | mg/L  | N/A      | Mar-12-14 |       |
| < 0.001                        | 0.001                           | mg/L  | N/A      | Mar-12-14 |       |
| 0.004                          | 0.001                           | mg/L  | N/A      | Mar-12-14 |       |
| 24.7                           |                                 |       | N/A      | Mar-12-14 |       |
| < 0.002                        |                                 |       | N/A      | Mar-12-14 |       |
| < 0.0002                       |                                 |       | N/A      | Mar-12-14 |       |
|                                |                                 |       | N/A      | Mar-12-14 |       |
|                                |                                 |       | N/A      | Mar-12-14 |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       | N/A      | Mar-12-14 |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                |                                 |       |          |           |       |
|                                | 8-07) [Water] Sampled: Mar-08-7 |       |          |           |       |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                     | Result /<br><i>Recovery</i>  | MRL /<br><i>Limit</i> | Units | Prepared   | Analyzed   | Notes |
|-----------------------------|------------------------------|-----------------------|-------|------------|------------|-------|
| Dissolved Metals, Continued |                              |                       |       |            |            |       |
| Sample ID: MW05-12 (4030418 | -08) [Water] Sampled: Mar-07 | -14 12:00 Continu     | ıed   |            |            |       |
| Zirconium, dissolved        | < 0.001                      | 0.001                 |       | N/A        | Mar-12-14  |       |
|                             |                              |                       | mg/L  | 14/74      | WIGH-12-14 |       |
| Sample ID: MW07-28S (403041 | 8-09) [Water] Sampled: Mar-0 | 7-14 12:00            |       |            |            |       |
| Aluminum, dissolved         | < 0.05                       | 0.05                  | mg/L  | N/A        | Mar-12-14  |       |
| Antimony, dissolved         | < 0.001                      | 0.001                 | mg/L  | N/A        | Mar-12-14  |       |
| Arsenic, dissolved          | < 0.005                      | 0.005                 | mg/L  | N/A        | Mar-12-14  |       |
| Barium, dissolved           | 0.22                         | 0.05                  | mg/L  | N/A        | Mar-12-14  |       |
| Beryllium, dissolved        | < 0.001                      | 0.001                 | mg/L  | N/A        | Mar-12-14  |       |
| Bismuth, dissolved          | < 0.001                      | 0.001                 | mg/L  | N/A        | Mar-12-14  |       |
| Boron, dissolved            | < 0.04                       | 0.04                  | mg/L  | N/A        | Mar-12-14  |       |
| Cadmium, dissolved          | < 0.0001                     | 0.0001                |       | N/A        | Mar-12-14  |       |
| Calcium, dissolved          | 156                          |                       | mg/L  | N/A        | Mar-12-14  |       |
| Chromium, dissolved         | < 0.005                      | 0.005                 |       | N/A        | Mar-12-14  |       |
| Cobalt, dissolved           | < 0.0005                     | 0.0005                |       | N/A        | Mar-12-14  |       |
| Copper, dissolved           | < 0.002                      | 0.002                 |       | N/A        | Mar-12-14  |       |
| ron, dissolved              | < 0.10                       |                       | mg/L  | N/A        | Mar-12-14  |       |
| Lead, dissolved             | < 0.001                      | 0.001                 |       | N/A        | Mar-12-14  |       |
| Lithium, dissolved          | 0.004                        | 0.001                 |       | N/A        | Mar-12-14  |       |
| Magnesium, dissolved        | 52.4                         |                       | mg/L  | N/A        | Mar-12-14  |       |
| Manganese, dissolved        | 0.032                        | 0.002                 |       | N/A        | Mar-12-14  |       |
| Mercury, dissolved          | < 0.0002                     | 0.0002                |       | N/A        | Mar-12-14  |       |
| Molybdenum, dissolved       | 0.001                        | 0.0002                |       | N/A        | Mar-12-14  |       |
| Nickel, dissolved           | < 0.002                      | 0.001                 |       | N/A        | Mar-12-14  |       |
| Phosphorus, dissolved       | < 0.2                        |                       | mg/L  | N/A        | Mar-12-14  |       |
|                             |                              |                       |       | N/A        |            |       |
| Potassium, dissolved        | 5.3                          |                       | mg/L  | N/A<br>N/A | Mar-12-14  |       |
| Selenium, dissolved         | < 0.005                      | 0.005                 |       |            | Mar-12-14  |       |
| Silicon, dissolved          | 8                            |                       | mg/L  | N/A        | Mar-12-14  |       |
| Silver, dissolved           | < 0.0005                     | 0.0005                |       | N/A        | Mar-12-14  |       |
| Sodium, dissolved           | 308                          |                       | mg/L  | N/A        | Mar-12-14  |       |
| Strontium, dissolved        | 0.85                         |                       | mg/L  | N/A        | Mar-12-14  |       |
| Sulfur, dissolved           | < 10                         |                       | mg/L  | N/A        | Mar-12-14  |       |
| Tellurium, dissolved        | < 0.002                      | 0.002                 |       | N/A        | Mar-12-14  |       |
| Thallium, dissolved         | < 0.0002                     | 0.0002                |       | N/A        | Mar-12-14  |       |
| Thorium, dissolved          | < 0.001                      | 0.001                 |       | N/A        | Mar-12-14  |       |
| Tin, dissolved              | < 0.002                      | 0.002                 |       | N/A        | Mar-12-14  |       |
| Titanium, dissolved         | < 0.05                       |                       | mg/L  | N/A        | Mar-12-14  |       |
| Uranium, dissolved          | 0.0013                       | 0.0002                |       | N/A        | Mar-12-14  |       |
| Vanadium, dissolved         | < 0.01                       |                       | mg/L  | N/A        | Mar-12-14  |       |
| Zinc, dissolved             | < 0.04                       |                       | mg/L  | N/A        | Mar-12-14  |       |
| Zirconium, dissolved        | < 0.001                      | 0.001                 | mg/L  | N/A        | Mar-12-14  |       |
| Sample ID: MW07-28D (403041 | 8-10) [Water] Sampled: Mar-0 | 7-14 12:00            |       |            |            |       |
| Aluminum, dissolved         | < 0.05                       |                       | mg/L  | N/A        | Mar-12-14  |       |
| Antimony, dissolved         | < 0.001                      | 0.001                 |       | N/A        | Mar-12-14  |       |
| Arsenic, dissolved          | < 0.005                      | 0.005                 |       | N/A        | Mar-12-14  |       |
| Barium, dissolved           | < 0.05                       |                       | mg/L  | N/A        | Mar-12-14  |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-049

WORK ORDER REPORTED

| Analyte                     | Result /<br>Recovery          | MRL /<br><i>Limit</i> | Units | Prepared | Analyzed  | Notes |
|-----------------------------|-------------------------------|-----------------------|-------|----------|-----------|-------|
| Dissolved Metals, Continued |                               |                       |       |          |           |       |
| Sample ID: MW07-28D (40304  | 18-10) [Water] Sampled: Mar-0 | 7-14 12:00, Contir    | nued  |          |           |       |
| Beryllium, dissolved        | < 0.001                       | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Bismuth, dissolved          | < 0.001                       | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Boron, dissolved            | < 0.04                        |                       | mg/L  | N/A      | Mar-12-14 |       |
| Cadmium, dissolved          | < 0.0001                      | 0.0001                |       | N/A      | Mar-12-14 |       |
| Calcium, dissolved          | 50.9                          |                       | mg/L  | N/A      | Mar-12-14 |       |
| Chromium, dissolved         | < 0.005                       | 0.005                 |       | N/A      | Mar-12-14 |       |
| Cobalt, dissolved           | < 0.0005                      | 0.0005                |       | N/A      | Mar-12-14 |       |
| Copper, dissolved           | < 0.002                       | 0.002                 |       | N/A      | Mar-12-14 |       |
| ron, dissolved              | < 0.10                        | 0.10                  | mg/L  | N/A      | Mar-12-14 |       |
| _ead, dissolved             | < 0.001                       | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| _ithium, dissolved          | 0.001                         | 0.001                 |       | N/A      | Mar-12-14 |       |
| Magnesium, dissolved        | 37.5                          |                       | mg/L  | N/A      | Mar-12-14 |       |
| Manganese, dissolved        | 0.042                         | 0.002                 | mg/L  | N/A      | Mar-12-14 |       |
| Mercury, dissolved          | < 0.0002                      | 0.0002                | mg/L  | N/A      | Mar-12-14 |       |
| Molybdenum, dissolved       | 0.004                         | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Nickel, dissolved           | < 0.002                       | 0.002                 | mg/L  | N/A      | Mar-12-14 |       |
| Phosphorus, dissolved       | < 0.2                         | 0.2                   | mg/L  | N/A      | Mar-12-14 |       |
| Potassium, dissolved        | 3.9                           | 0.2                   | mg/L  | N/A      | Mar-12-14 |       |
| Selenium, dissolved         | < 0.005                       | 0.005                 |       | N/A      | Mar-12-14 |       |
| Silicon, dissolved          | 12                            | 5                     | mg/L  | N/A      | Mar-12-14 |       |
| Silver, dissolved           | < 0.0005                      | 0.0005                | mg/L  | N/A      | Mar-12-14 |       |
| Sodium, dissolved           | 19.9                          | 0.2                   | mg/L  | N/A      | Mar-12-14 |       |
| Strontium, dissolved        | 0.40                          | 0.01                  | mg/L  | N/A      | Mar-12-14 |       |
| Sulfur, dissolved           | < 10                          | 10                    | mg/L  | N/A      | Mar-12-14 |       |
| Tellurium, dissolved        | < 0.002                       | 0.002                 | mg/L  | N/A      | Mar-12-14 |       |
| Thallium, dissolved         | < 0.0002                      | 0.0002                | mg/L  | N/A      | Mar-12-14 |       |
| Thorium, dissolved          | < 0.001                       | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Tin, dissolved              | < 0.002                       | 0.002                 | mg/L  | N/A      | Mar-12-14 |       |
| Fitanium, dissolved         | < 0.05                        | 0.05                  | mg/L  | N/A      | Mar-12-14 |       |
| Jranium, dissolved          | 0.0025                        | 0.0002                | mg/L  | N/A      | Mar-12-14 |       |
| Vanadium, dissolved         | < 0.01                        | 0.01                  | mg/L  | N/A      | Mar-12-14 |       |
| Zinc, dissolved             | < 0.04                        | 0.04                  | mg/L  | N/A      | Mar-12-14 |       |
| Zirconium, dissolved        | < 0.001                       | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| ample ID: MW07-29D (40304   | 18-11) [Water] Sampled: Mar-0 | 7-14 12:00            |       |          |           |       |
| Aluminum, dissolved         | < 0.05                        | 0.05                  | mg/L  | N/A      | Mar-12-14 |       |
| Antimony, dissolved         | < 0.001                       | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Arsenic, dissolved          | < 0.005                       | 0.005                 | mg/L  | N/A      | Mar-12-14 |       |
| Barium, dissolved           | < 0.05                        | 0.05                  | mg/L  | N/A      | Mar-12-14 |       |
| Beryllium, dissolved        | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14 |       |
| Bismuth, dissolved          | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14 |       |
| Boron, dissolved            | < 0.04                        |                       | mg/L  | N/A      | Mar-12-14 |       |
| Cadmium, dissolved          | < 0.0001                      | 0.0001                |       | N/A      | Mar-12-14 |       |
| Calcium, dissolved          | 37.1                          |                       | mg/L  | N/A      | Mar-12-14 |       |
| Chromium, dissolved         | < 0.005                       | 0.005                 |       | N/A      | Mar-12-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-049

WORK ORDER REPORTED

| Analyte                                  | Result /<br>Recovery         | MRL /<br><i>Limit</i> | Units        | Prepared   | Analyzed               | Notes |
|------------------------------------------|------------------------------|-----------------------|--------------|------------|------------------------|-------|
| Dissolved Metals, Continued              |                              |                       |              |            |                        |       |
| Sample ID: MW07-29D (403041              | 8-11) [Water] Sampled: Mar-0 | 7-14 12:00, Contir    | nued         |            |                        |       |
| Cobalt, dissolved                        | < 0.0005                     | 0.0005                | mg/L         | N/A        | Mar-12-14              |       |
| Copper, dissolved                        | < 0.002                      | 0.002                 | mg/L         | N/A        | Mar-12-14              |       |
| Iron, dissolved                          | < 0.10                       | 0.10                  | mg/L         | N/A        | Mar-12-14              |       |
| _ead, dissolved                          | < 0.001                      | 0.001                 | mg/L         | N/A        | Mar-12-14              |       |
| _ithium, dissolved                       | 0.001                        | 0.001                 | mg/L         | N/A        | Mar-12-14              |       |
| Magnesium, dissolved                     | 29.7                         | 0.1                   | mg/L         | N/A        | Mar-12-14              |       |
| Manganese, dissolved                     | 0.029                        | 0.002                 | mg/L         | N/A        | Mar-12-14              |       |
| Mercury, dissolved                       | < 0.0002                     | 0.0002                | mg/L         | N/A        | Mar-12-14              |       |
| Molybdenum, dissolved                    | 0.003                        | 0.001                 | mg/L         | N/A        | Mar-12-14              |       |
| Nickel, dissolved                        | < 0.002                      | 0.002                 | mg/L         | N/A        | Mar-12-14              |       |
| Phosphorus, dissolved                    | < 0.2                        |                       | mg/L         | N/A        | Mar-12-14              |       |
| Potassium, dissolved                     | 2.1                          |                       | mg/L         | N/A        | Mar-12-14              |       |
| Selenium, dissolved                      | < 0.005                      | 0.005                 |              | N/A        | Mar-12-14              |       |
| Silicon, dissolved                       | 11                           |                       | mg/L         | N/A        | Mar-12-14              |       |
| Silver, dissolved                        | 0.0009                       | 0.0005                |              | N/A        | Mar-12-14              |       |
| Sodium, dissolved                        | 18.9                         |                       | mg/L         | N/A        | Mar-12-14              |       |
| Strontium, dissolved                     | 0.49                         |                       | mg/L         | N/A        | Mar-12-14              |       |
| Sulfur, dissolved                        | < 10                         |                       | mg/L         | N/A        | Mar-12-14              |       |
| Tellurium, dissolved                     | < 0.002                      | 0.002                 |              | N/A        | Mar-12-14              |       |
| Fhallium, dissolved                      | < 0.0002                     | 0.0002                |              | N/A        | Mar-12-14              |       |
| Thorium, dissolved                       | < 0.001                      | 0.001                 |              | N/A        | Mar-12-14              |       |
| Fin, dissolved                           | < 0.002                      | 0.002                 |              | N/A        | Mar-12-14              |       |
| Fitanium, dissolved                      | < 0.05                       |                       | mg/L         | N/A        | Mar-12-14              |       |
| Jranium, dissolved                       | 0.0009                       | 0.0002                |              | N/A        | Mar-12-14              |       |
| Vanadium, dissolved                      | < 0.01                       |                       | mg/L         | N/A        | Mar-12-14              |       |
| Zinc, dissolved                          | < 0.04                       |                       | mg/L         | N/A        | Mar-12-14              |       |
| Zirconium, dissolved                     | < 0.001                      | 0.001                 |              | N/A        | Mar-12-14              |       |
| ·                                        | I2) [Water] Sampled: Mar-07- |                       | 9/ =         | 147.1      | - Wai 12 11            |       |
| Aluminum, dissolved                      | < 0.05                       |                       | mg/L         | N/A        | Mar-12-14              |       |
| Antimony, dissolved                      | < 0.001                      | 0.001                 |              | N/A        | Mar-12-14              |       |
| Arsenic, dissolved                       | < 0.005                      | 0.005                 |              | N/A        | Mar-12-14              |       |
| Barium, dissolved                        | < 0.05                       |                       | mg/L         | N/A        | Mar-12-14              |       |
| Beryllium, dissolved                     | < 0.001                      | 0.001                 |              | N/A        | Mar-12-14              |       |
| Bismuth, dissolved                       | < 0.001                      | 0.001                 |              | N/A        | Mar-12-14              |       |
| Boron, dissolved                         | < 0.04                       |                       | mg/L         | N/A        | Mar-12-14              |       |
| Cadmium, dissolved                       | < 0.0001                     | 0.0001                |              | N/A        | Mar-12-14              |       |
| Calcium, dissolved                       | 34.9                         |                       | mg/L         | N/A        | Mar-12-14              |       |
| Chromium, dissolved                      | < 0.005                      | 0.005                 |              | N/A        | Mar-12-14              |       |
| Cobalt, dissolved                        | < 0.0005                     | 0.0005                |              | N/A        | Mar-12-14              |       |
| Copper, dissolved                        | < 0.002                      | 0.003                 |              | N/A        | Mar-12-14              |       |
| ron, dissolved                           | < 0.10                       |                       | mg/L         | N/A        | Mar-12-14              |       |
| _ead, dissolved                          | < 0.10                       | 0.001                 |              | N/A<br>N/A |                        |       |
| · · · · · · · · · · · · · · · · · · ·    |                              | 0.001                 |              |            | Mar-12-14              |       |
| Lithium, dissolved  Magnesium, dissolved | 0.001<br>29.5                |                       | mg/L<br>mg/L | N/A<br>N/A | Mar-12-14<br>Mar-12-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| PROJECT 14-0493                       |                               |                       |       | REPO     | DRIED       | Mar-17- |
|---------------------------------------|-------------------------------|-----------------------|-------|----------|-------------|---------|
| Analyte                               | Result /<br>Recovery          | MRL /<br><i>Limit</i> | Units | Prepared | Analyzed    | Notes   |
| Dissolved Metals, Continued           |                               |                       |       |          |             |         |
| Sample ID: MWDUP (4030418-            | 12) [Water] Sampled: Mar-07-  | 14 12:00, Continue    | ed    |          |             |         |
| Manganese, dissolved                  | 0.028                         | 0.002                 | mg/L  | N/A      | Mar-12-14   |         |
| Mercury, dissolved                    | < 0.0002                      | 0.0002                | mg/L  | N/A      | Mar-12-14   |         |
| Molybdenum, dissolved                 | 0.003                         | 0.001                 | mg/L  | N/A      | Mar-12-14   |         |
| Nickel, dissolved                     | < 0.002                       | 0.002                 | mg/L  | N/A      | Mar-12-14   |         |
| Phosphorus, dissolved                 | < 0.2                         | 0.2                   | mg/L  | N/A      | Mar-12-14   |         |
| Potassium, dissolved                  | 2.1                           | 0.2                   | mg/L  | N/A      | Mar-12-14   |         |
| Selenium, dissolved                   | < 0.005                       | 0.005                 | mg/L  | N/A      | Mar-12-14   |         |
| Silicon, dissolved                    | 11                            | 5                     | mg/L  | N/A      | Mar-12-14   |         |
| Silver, dissolved                     | < 0.0005                      | 0.0005                |       | N/A      | Mar-12-14   |         |
| Sodium, dissolved                     | 18.8                          |                       | mg/L  | N/A      | Mar-12-14   |         |
| Strontium, dissolved                  | 0.49                          |                       | mg/L  | N/A      | Mar-12-14   |         |
| Sulfur, dissolved                     | < 10                          |                       | mg/L  | N/A      | Mar-12-14   |         |
| Tellurium, dissolved                  | < 0.002                       | 0.002                 |       | N/A      | Mar-12-14   |         |
| Thallium, dissolved                   | < 0.0002                      | 0.0002                |       | N/A      | Mar-12-14   |         |
| Thorium, dissolved                    | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14   |         |
| Tin, dissolved                        | < 0.002                       | 0.002                 |       | N/A      | Mar-12-14   |         |
| Fitanium, dissolved                   | < 0.05                        |                       | mg/L  | N/A      | Mar-12-14   |         |
| Jranium, dissolved                    | 0.0008                        | 0.0002                |       | N/A      | Mar-12-14   |         |
| Vanadium, dissolved                   | < 0.01                        |                       | mg/L  | N/A      | Mar-12-14   |         |
| Zinc, dissolved                       | < 0.04                        |                       | mg/L  | N/A      | Mar-12-14   |         |
| Ziric, dissolved Zirconium, dissolved | < 0.001                       | 0.04                  |       | N/A      | Mar-12-14   |         |
| ·                                     | [8-13] [Water] Sampled: Mar-0 |                       | 9/2   | 10/1     | - Wai 12 11 |         |
| Aluminum, dissolved                   | < 0.05                        |                       | mg/L  | N/A      | Mar-12-14   |         |
| Antimony, dissolved                   | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14   |         |
| Arsenic, dissolved                    | < 0.005                       | 0.005                 |       | N/A      | Mar-12-14   |         |
| Barium, dissolved                     | 0.09                          |                       | mg/L  | N/A      | Mar-12-14   |         |
| Beryllium, dissolved                  | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14   |         |
| · · · · · · · · · · · · · · · · · · · |                               |                       |       |          |             |         |
| Bismuth, dissolved                    | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14   |         |
| Boron, dissolved                      | < 0.04                        |                       | mg/L  | N/A      | Mar-12-14   |         |
| Cadmium, dissolved                    | < 0.0001                      | 0.0001                |       | N/A      | Mar-12-14   |         |
| Calcium, dissolved                    | 101                           |                       | mg/L  | N/A      | Mar-12-14   |         |
| Chromium, dissolved                   | < 0.005                       | 0.005                 |       | N/A      | Mar-12-14   |         |
| Cobalt, dissolved                     | < 0.0005                      | 0.0005                |       | N/A      | Mar-12-14   |         |
| Copper, dissolved                     | 0.002                         | 0.002                 |       | N/A      | Mar-12-14   |         |
| ron, dissolved                        | < 0.10                        |                       | mg/L  | N/A      | Mar-12-14   |         |
| _ead, dissolved                       | < 0.001                       | 0.001                 |       | N/A      | Mar-12-14   |         |
| ithium, dissolved                     | 0.003                         | 0.001                 |       | N/A      | Mar-12-14   |         |
| Magnesium, dissolved                  | 34.3                          |                       | mg/L  | N/A      | Mar-12-14   |         |
| Manganese, dissolved                  | < 0.002                       | 0.002                 | mg/L  | N/A      | Mar-12-14   |         |
| Mercury, dissolved                    | < 0.0002                      | 0.0002                | mg/L  | N/A      | Mar-12-14   |         |
| Molybdenum, dissolved                 | < 0.001                       | 0.001                 | mg/L  | N/A      | Mar-12-14   |         |
| Nickel, dissolved                     | < 0.002                       | 0.002                 | mg/L  | N/A      | Mar-12-14   |         |
| vickei, dissolved                     |                               |                       |       |          |             |         |
| Phosphorus, dissolved                 | < 0.2                         | 0.2                   | mg/L  | N/A      | Mar-12-14   |         |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-049

WORK ORDER REPORTED

|                                                                                                                                                                                                                                              | 4-0493                                                                   |                                                                                         |                                         | REPORTED                                             |                                                                                                                                |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------|
| Analyte                                                                                                                                                                                                                                      | Result /<br>Recovery                                                     | MRL /<br>Limit                                                                          | Units                                   | Prepared                                             | Analyzed                                                                                                                       | Notes |
| Dissolved Metals, Continued                                                                                                                                                                                                                  |                                                                          |                                                                                         |                                         |                                                      |                                                                                                                                |       |
| Sample ID: MW07-32S (40304                                                                                                                                                                                                                   | 18-13) [Water] Sampled: Mar-0                                            | 7-14 12:00, Contin                                                                      | nued                                    |                                                      |                                                                                                                                |       |
| Selenium, dissolved                                                                                                                                                                                                                          | < 0.005                                                                  | 0.005                                                                                   | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Silicon, dissolved                                                                                                                                                                                                                           | 8                                                                        | 5                                                                                       | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Silver, dissolved                                                                                                                                                                                                                            | < 0.0005                                                                 | 0.0005                                                                                  | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Sodium, dissolved                                                                                                                                                                                                                            | 36.0                                                                     | 0.2                                                                                     | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Strontium, dissolved                                                                                                                                                                                                                         | 0.57                                                                     | 0.01                                                                                    | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Sulfur, dissolved                                                                                                                                                                                                                            | < 10                                                                     |                                                                                         | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Tellurium, dissolved                                                                                                                                                                                                                         | < 0.002                                                                  | 0.002                                                                                   |                                         | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Thallium, dissolved                                                                                                                                                                                                                          | < 0.0002                                                                 | 0.0002                                                                                  |                                         | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Thorium, dissolved                                                                                                                                                                                                                           | < 0.001                                                                  | 0.001                                                                                   |                                         | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Tin, dissolved                                                                                                                                                                                                                               | < 0.002                                                                  | 0.002                                                                                   |                                         | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Titanium, dissolved                                                                                                                                                                                                                          | < 0.05                                                                   |                                                                                         | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Uranium, dissolved                                                                                                                                                                                                                           | 0.0007                                                                   | 0.0002                                                                                  |                                         | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Vanadium, dissolved                                                                                                                                                                                                                          | < 0.01                                                                   |                                                                                         | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Zinc, dissolved                                                                                                                                                                                                                              | < 0.04                                                                   |                                                                                         | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Zirconium, dissolved                                                                                                                                                                                                                         | < 0.001                                                                  | 0.001                                                                                   |                                         | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Aluminum, dissolved                                                                                                                                                                                                                          | 18-14) [Water] Sampled: Mar-0<br>< 0.05                                  | 0.05                                                                                    | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
|                                                                                                                                                                                                                                              |                                                                          |                                                                                         |                                         |                                                      |                                                                                                                                |       |
| Antimony, dissolved                                                                                                                                                                                                                          | < 0.001                                                                  | 0.001                                                                                   |                                         | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Arsenic, dissolved                                                                                                                                                                                                                           | < 0.005                                                                  | 0.005                                                                                   |                                         | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Barium, dissolved                                                                                                                                                                                                                            | 0.09                                                                     |                                                                                         | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Beryllium, dissolved                                                                                                                                                                                                                         | < 0.001                                                                  | 0.001                                                                                   |                                         | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Bismuth, dissolved                                                                                                                                                                                                                           | < 0.001                                                                  | 0.001                                                                                   |                                         | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Boron, dissolved                                                                                                                                                                                                                             | < 0.04                                                                   |                                                                                         | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Cadmium, dissolved                                                                                                                                                                                                                           | < 0.0001                                                                 | 0.0001                                                                                  |                                         | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Calcium, dissolved                                                                                                                                                                                                                           | 95.2                                                                     |                                                                                         | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Chromium, dissolved                                                                                                                                                                                                                          | < 0.005                                                                  | 0.005                                                                                   | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Cobalt, dissolved                                                                                                                                                                                                                            | < 0.0005                                                                 | 0.0005                                                                                  |                                         | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Copper, dissolved                                                                                                                                                                                                                            | < 0.002                                                                  | 0.002                                                                                   | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
| ron, dissolved                                                                                                                                                                                                                               | < 0.10                                                                   | 0.10                                                                                    | mg/L                                    | N/A                                                  | Mar-12-14                                                                                                                      |       |
|                                                                                                                                                                                                                                              |                                                                          |                                                                                         |                                         |                                                      | Mar-12-14                                                                                                                      |       |
| ·                                                                                                                                                                                                                                            | < 0.001                                                                  | 0.001                                                                                   | mg/L                                    | N/A                                                  | IVIAI-12-14                                                                                                                    |       |
| _ead, dissolved                                                                                                                                                                                                                              | < 0.001<br>0.003                                                         | 0.001<br>0.001                                                                          |                                         | N/A<br>N/A                                           | Mar-12-14                                                                                                                      |       |
| Lead, dissolved<br>Lithium, dissolved                                                                                                                                                                                                        |                                                                          | 0.001                                                                                   |                                         |                                                      |                                                                                                                                |       |
| Lead, dissolved<br>Lithium, dissolved<br>Magnesium, dissolved                                                                                                                                                                                | 0.003                                                                    | 0.001                                                                                   | mg/L<br>mg/L                            | N/A                                                  | Mar-12-14                                                                                                                      |       |
| Lead, dissolved Lithium, dissolved Magnesium, dissolved Manganese, dissolved                                                                                                                                                                 | 0.003<br>31.8                                                            | 0.001<br>0.1                                                                            | mg/L<br>mg/L<br>mg/L                    | N/A<br>N/A                                           | Mar-12-14<br>Mar-12-14                                                                                                         |       |
| Lead, dissolved Lithium, dissolved Magnesium, dissolved Manganese, dissolved Mercury, dissolved                                                                                                                                              | 0.003<br>31.8<br>< 0.002                                                 | 0.001<br>0.1<br>0.002                                                                   | mg/L<br>mg/L<br>mg/L                    | N/A<br>N/A<br>N/A                                    | Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                            |       |
| Lead, dissolved Lithium, dissolved Magnesium, dissolved Manganese, dissolved Mercury, dissolved Molybdenum, dissolved                                                                                                                        | 0.003<br>31.8<br>< 0.002<br>< 0.0002                                     | 0.001<br>0.1<br>0.002<br>0.0002                                                         | mg/L<br>mg/L<br>mg/L<br>mg/L            | N/A<br>N/A<br>N/A<br>N/A                             | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                               |       |
| Lead, dissolved Lithium, dissolved Magnesium, dissolved Manganese, dissolved Mercury, dissolved Molybdenum, dissolved Nickel, dissolved                                                                                                      | 0.003<br>31.8<br>< 0.002<br>< 0.0002<br>0.001                            | 0.001<br>0.1<br>0.002<br>0.0002<br>0.001<br>0.002                                       | mg/L mg/L mg/L mg/L mg/L mg/L           | N/A<br>N/A<br>N/A<br>N/A<br>N/A                      | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                               |       |
| Lead, dissolved Lithium, dissolved Magnesium, dissolved Manganese, dissolved Mercury, dissolved Molybdenum, dissolved Nickel, dissolved Phosphorus, dissolved Potassium, dissolved                                                           | 0.003<br>31.8<br>< 0.002<br>< 0.0002<br>0.001<br>< 0.002                 | 0.001<br>0.1<br>0.002<br>0.0002<br>0.001<br>0.002<br>0.2                                | mg/L mg/L mg/L mg/L mg/L mg/L mg/L      | N/A<br>N/A<br>N/A<br>N/A<br>N/A                      | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                     |       |
| Lead, dissolved Lithium, dissolved Magnesium, dissolved Manganese, dissolved Mercury, dissolved Molybdenum, dissolved Nickel, dissolved Phosphorus, dissolved Potassium, dissolved                                                           | 0.003 31.8 < 0.002 < 0.0002  0.001 < 0.002 < 0.2 2.9                     | 0.001<br>0.1<br>0.002<br>0.0002<br>0.001<br>0.002<br>0.2                                | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                        |       |
| Lead, dissolved Lithium, dissolved Magnesium, dissolved Manganese, dissolved Mercury, dissolved Molybdenum, dissolved Nickel, dissolved Phosphorus, dissolved Potassium, dissolved Selenium, dissolved                                       | 0.003 31.8 < 0.002 < 0.0002 0.001 < 0.002 < 0.2 2.9 < 0.005              | 0.001<br>0.1<br>0.002<br>0.0002<br>0.001<br>0.002<br>0.2<br>0.2<br>0.005                | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                           |       |
| Lead, dissolved  Lithium, dissolved  Magnesium, dissolved  Manganese, dissolved  Mercury, dissolved  Molybdenum, dissolved  Nickel, dissolved  Phosphorus, dissolved  Potassium, dissolved  Selenium, dissolved  Silicon, dissolved          | 0.003 31.8 < 0.002 < 0.0002 0.001 < 0.002 < 0.2 2.9 < 0.005              | 0.001<br>0.1<br>0.002<br>0.0002<br>0.001<br>0.002<br>0.2<br>0.2<br>0.005<br>5           | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | N/A              | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14              |       |
| Lead, dissolved Lithium, dissolved Magnesium, dissolved Manganese, dissolved Mercury, dissolved Molybdenum, dissolved Nickel, dissolved Phosphorus, dissolved Potassium, dissolved Selenium, dissolved Silicon, dissolved Siliver, dissolved | 0.003 31.8 < 0.002 < 0.0002  0.001 < 0.002 < 0.02 2.9 < 0.005 7 < 0.0005 | 0.001<br>0.1<br>0.002<br>0.0002<br>0.001<br>0.002<br>0.2<br>0.2<br>0.005<br>5           | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | N/A              | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14 |       |
| Lead, dissolved Lithium, dissolved Magnesium, dissolved Manganese, dissolved Mercury, dissolved Molybdenum, dissolved Nickel, dissolved Phosphorus, dissolved                                                                                | 0.003 31.8 < 0.002 < 0.0002 0.001 < 0.002 < 0.2 2.9 < 0.005              | 0.001<br>0.1<br>0.002<br>0.0002<br>0.001<br>0.002<br>0.2<br>0.2<br>0.005<br>5<br>0.0005 | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | N/A              | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14              |       |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

|                            |                                  | NERV               |       |            | IVIAI-17-14 |       |
|----------------------------|----------------------------------|--------------------|-------|------------|-------------|-------|
| Analyte                    | Result /<br>Recovery             | MRL /<br>Limit     | Units | Prepared   | Analyzed    | Notes |
| Dissolved Metals, Continue | d                                |                    |       |            |             |       |
| Sample ID: MW07-32D (403)  | 0418-14) [Water] Sampled: Mar-0  | 7-14 12:00, Contir | nued  |            |             |       |
| Tellurium, dissolved       | < 0.002                          | 0.002              | mg/L  | N/A        | Mar-12-14   |       |
| Thallium, dissolved        | < 0.0002                         | 0.0002             | mg/L  | N/A        | Mar-12-14   |       |
| Thorium, dissolved         | < 0.001                          | 0.001              | mg/L  | N/A        | Mar-12-14   |       |
| Tin, dissolved             | < 0.002                          | 0.002              |       | N/A        | Mar-12-14   |       |
| Titanium, dissolved        | < 0.05                           | 0.05               | mg/L  | N/A        | Mar-12-14   |       |
| Uranium, dissolved         | 0.0007                           | 0.0002             |       | N/A        | Mar-12-14   |       |
| Vanadium, dissolved        | < 0.01                           |                    | mg/L  | N/A        | Mar-12-14   |       |
| Zinc, dissolved            | < 0.04                           |                    | mg/L  | N/A        | Mar-12-14   |       |
| Zirconium, dissolved       | < 0.001                          | 0.001              |       | N/A        | Mar-12-14   |       |
| ·                          | 118-15) [Water] Sampled: Mar-07- |                    |       |            |             |       |
| Aluminum, dissolved        | < 0.05                           |                    | mg/L  | N/A        | Mar-12-14   |       |
|                            | < 0.001                          | 0.001              |       | N/A<br>N/A | Mar-12-14   |       |
| Antimony, dissolved        |                                  |                    |       |            |             |       |
| Arsenic, dissolved         | < 0.005                          | 0.005              |       | N/A        | Mar-12-14   |       |
| Barium, dissolved          | 0.08                             |                    | mg/L  | N/A        | Mar-12-14   |       |
| Beryllium, dissolved       | < 0.001                          | 0.001              |       | N/A        | Mar-12-14   |       |
| Bismuth, dissolved         | < 0.001                          | 0.001              |       | N/A        | Mar-12-14   |       |
| Boron, dissolved           | < 0.04                           |                    | mg/L  | N/A        | Mar-12-14   |       |
| Cadmium, dissolved         | < 0.0001                         |                    | mg/L  | N/A        | Mar-12-14   |       |
| Calcium, dissolved         | 88.1                             |                    | mg/L  | N/A        | Mar-12-14   |       |
| Chromium, dissolved        | < 0.005                          | 0.005              |       | N/A        | Mar-12-14   |       |
| Cobalt, dissolved          | < 0.0005                         | 0.0005             |       | N/A        | Mar-12-14   |       |
| Copper, dissolved          | < 0.002                          | 0.002              |       | N/A        | Mar-12-14   |       |
| Iron, dissolved            | < 0.10                           |                    | mg/L  | N/A        | Mar-12-14   |       |
| Lead, dissolved            | < 0.001                          | 0.001              |       | N/A        | Mar-12-14   |       |
| Lithium, dissolved         | 0.002                            | 0.001              | mg/L  | N/A        | Mar-12-14   |       |
| Magnesium, dissolved       | 42.5                             |                    | mg/L  | N/A        | Mar-12-14   |       |
| Manganese, dissolved       | < 0.002                          | 0.002              |       | N/A        | Mar-12-14   |       |
| Mercury, dissolved         | < 0.0002                         | 0.0002             | mg/L  | N/A        | Mar-12-14   |       |
| Molybdenum, dissolved      | 0.001                            | 0.001              | mg/L  | N/A        | Mar-12-14   |       |
| Nickel, dissolved          | < 0.002                          | 0.002              | mg/L  | N/A        | Mar-12-14   |       |
| Phosphorus, dissolved      | < 0.2                            | 0.2                | mg/L  | N/A        | Mar-12-14   |       |
| Potassium, dissolved       | 2.0                              | 0.2                | mg/L  | N/A        | Mar-12-14   |       |
| Selenium, dissolved        | < 0.005                          | 0.005              | mg/L  | N/A        | Mar-12-14   |       |
| Silicon, dissolved         | 6                                | 5                  | mg/L  | N/A        | Mar-12-14   |       |
| Silver, dissolved          | < 0.0005                         | 0.0005             | mg/L  | N/A        | Mar-12-14   |       |
| Sodium, dissolved          | 37.6                             | 0.2                | mg/L  | N/A        | Mar-12-14   |       |
| Strontium, dissolved       | 0.69                             |                    | mg/L  | N/A        | Mar-12-14   |       |
| Sulfur, dissolved          | < 10                             |                    | mg/L  | N/A        | Mar-12-14   |       |
| Tellurium, dissolved       | < 0.002                          | 0.002              |       | N/A        | Mar-12-14   |       |
| Thallium, dissolved        | < 0.0002                         | 0.0002             |       | N/A        | Mar-12-14   |       |
| Thorium, dissolved         | < 0.001                          | 0.001              |       | N/A        | Mar-12-14   |       |
| Tin, dissolved             | < 0.002                          | 0.002              |       | N/A        | Mar-12-14   |       |
| Titanium, dissolved        | < 0.05                           |                    | mg/L  | N/A        | Mar-12-14   |       |
| Uranium, dissolved         | 0.0007                           | 0.0002             |       | N/A        | Mar-12-14   |       |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030418 Mar-17-14

| Analyte                     | Result /<br><i>Recovery</i>    | MRL /<br><i>Limit</i> | Units | Prepared | Analyzed  | Notes |
|-----------------------------|--------------------------------|-----------------------|-------|----------|-----------|-------|
| Dissolved Metals, Continued |                                |                       |       |          |           |       |
| Sample ID: MW08-42 (403041  | 8-15) [Water] Sampled: Mar-07- | 14 12:00, Continu     | ıed   |          |           |       |
| Vanadium, dissolved         | < 0.01                         |                       | mg/L  | N/A      | Mar-12-14 |       |
| Zinc, dissolved             | < 0.04                         |                       | mg/L  | N/A      | Mar-12-14 |       |
| Zirconium, dissolved        | < 0.001                        | 0.001                 |       | N/A      | Mar-12-14 |       |
| Sample ID: MW08-43 (403041  | 8-16) [Water] Sampled: Mar-07- | 14 12:00              |       |          |           |       |
| Aluminum, dissolved         | < 0.05                         | 0.05                  | mg/L  | N/A      | Mar-12-14 |       |
| Antimony, dissolved         | 0.001                          | 0.001                 |       | N/A      | Mar-12-14 |       |
| Arsenic, dissolved          | < 0.005                        | 0.005                 |       | N/A      | Mar-12-14 |       |
| Barium, dissolved           | 0.09                           |                       | mg/L  | N/A      | Mar-12-14 |       |
| Beryllium, dissolved        | < 0.001                        | 0.001                 |       | N/A      | Mar-12-14 |       |
| Bismuth, dissolved          | < 0.001                        | 0.001                 |       | N/A      | Mar-12-14 |       |
| Boron, dissolved            | < 0.04                         |                       | mg/L  | N/A      | Mar-12-14 |       |
| Cadmium, dissolved          | < 0.0001                       | 0.0001                |       | N/A      | Mar-12-14 |       |
| Calcium, dissolved          | 113                            | 2.0                   | mg/L  | N/A      | Mar-12-14 |       |
| Chromium, dissolved         | < 0.005                        | 0.005                 |       | N/A      | Mar-12-14 |       |
| Cobalt, dissolved           | < 0.0005                       | 0.0005                | mg/L  | N/A      | Mar-12-14 |       |
| Copper, dissolved           | < 0.002                        | 0.002                 | mg/L  | N/A      | Mar-12-14 |       |
| Iron, dissolved             | < 0.10                         | 0.10                  | mg/L  | N/A      | Mar-12-14 |       |
| Lead, dissolved             | < 0.001                        | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Lithium, dissolved          | 0.004                          | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Magnesium, dissolved        | 37.7                           | 0.1                   | mg/L  | N/A      | Mar-12-14 |       |
| Manganese, dissolved        | < 0.002                        | 0.002                 | mg/L  | N/A      | Mar-12-14 |       |
| Mercury, dissolved          | < 0.0002                       | 0.0002                | mg/L  | N/A      | Mar-12-14 |       |
| Molybdenum, dissolved       | 0.002                          | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Nickel, dissolved           | < 0.002                        | 0.002                 | mg/L  | N/A      | Mar-12-14 |       |
| Phosphorus, dissolved       | < 0.2                          |                       | mg/L  | N/A      | Mar-12-14 |       |
| Potassium, dissolved        | 3.1                            |                       | mg/L  | N/A      | Mar-12-14 |       |
| Selenium, dissolved         | < 0.005                        | 0.005                 |       | N/A      | Mar-12-14 |       |
| Silicon, dissolved          | 8                              |                       | mg/L  | N/A      | Mar-12-14 |       |
| Silver, dissolved           | < 0.0005                       | 0.0005                |       | N/A      | Mar-12-14 |       |
| Sodium, dissolved           | 49.1                           |                       | mg/L  | N/A      | Mar-12-14 |       |
| Strontium, dissolved        | 0.68                           |                       | mg/L  | N/A      | Mar-12-14 |       |
| Sulfur, dissolved           | < 10                           |                       | mg/L  | N/A      | Mar-12-14 |       |
| Tellurium, dissolved        | < 0.002                        | 0.002                 | mg/L  | N/A      | Mar-12-14 |       |
| Thallium, dissolved         | < 0.0002                       | 0.0002                |       | N/A      | Mar-12-14 |       |
| Thorium, dissolved          | < 0.001                        | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |
| Tin, dissolved              | < 0.002                        | 0.002                 |       | N/A      | Mar-12-14 |       |
| Titanium, dissolved         | < 0.05                         | 0.05                  | mg/L  | N/A      | Mar-12-14 |       |
| Uranium, dissolved          | 0.0008                         | 0.0002                |       | N/A      | Mar-12-14 |       |
| Vanadium, dissolved         | < 0.01                         |                       | mg/L  | N/A      | Mar-12-14 |       |
| Zinc, dissolved             | < 0.04                         |                       | mg/L  | N/A      | Mar-12-14 |       |
| Zirconium, dissolved        | < 0.001                        | 0.001                 | mg/L  | N/A      | Mar-12-14 |       |

Total Recoverable Metals



Columbia Environmental Consulting Ltd REPORTED TO

**PROJECT** 

**WORK ORDER** REPORTED

|                             |                                     | REPOR                 |       |           |           | Mar-17-14 |
|-----------------------------|-------------------------------------|-----------------------|-------|-----------|-----------|-----------|
| Analyte                     | Result /<br>Recovery                | MRL /<br><i>Limit</i> | Units | Prepared  | Analyzed  | Notes     |
| Total Recoverable Metals, C | ontinued                            |                       |       |           |           |           |
| Sample ID: SW1 (4030418-0   | 1) [Water] Sampled: Mar-03-14 16:00 | l                     |       |           |           |           |
| Aluminum, total             | 0.08                                | 0.05                  | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Antimony, total             | < 0.001                             | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Arsenic, total              | < 0.005                             | 0.005                 | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Barium, total               | < 0.05                              | 0.05                  | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Beryllium, total            | < 0.001                             | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Bismuth, total              | < 0.001                             | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Boron, total                | < 0.04                              | 0.04                  | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Cadmium, total              | < 0.0001                            | 0.0001                | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Calcium, total              | 46.2                                |                       | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Chromium, total             | < 0.005                             | 0.005                 |       | Mar-11-14 | Mar-13-14 |           |
| Cobalt, total               | < 0.0005                            | 0.0005                |       | Mar-11-14 | Mar-13-14 |           |
| Copper, total               | 0.002                               | 0.002                 |       | Mar-11-14 | Mar-13-14 |           |
| Iron, total                 | 0.27                                |                       | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Lead, total                 | < 0.001                             | 0.001                 |       | Mar-11-14 | Mar-13-14 |           |
| Lithium, total              | 0.002                               |                       |       | Mar-11-14 | Mar-13-14 |           |
| Magnesium, total            | 15.0                                |                       | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Manganese, total            | 0.005                               | 0.002                 |       | Mar-11-14 | Mar-13-14 |           |
| Mercury, total              | < 0.0002                            | 0.0002                |       | Mar-11-14 | Mar-13-14 |           |
| Molybdenum, total           | 0.003                               | 0.0002                |       | Mar-11-14 | Mar-13-14 |           |
| Nickel, total               | < 0.003                             |                       |       | Mar-11-14 | Mar-13-14 |           |
| •                           |                                     | 0.002                 |       |           |           |           |
| Phosphorus, total           | < 0.2                               |                       | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Potassium, total            | 2.6                                 |                       | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Selenium, total             | < 0.005                             | 0.005                 |       | Mar-11-14 | Mar-13-14 |           |
| Silicon, total              | 14                                  |                       | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Silver, total               | < 0.0005                            | 0.0005                |       | Mar-11-14 | Mar-13-14 |           |
| Sodium, total               | 12.5                                |                       | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Strontium, total            | 0.19                                |                       | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Sulfur, total               | < 10                                |                       | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Tellurium, total            | < 0.002                             | 0.002                 |       | Mar-11-14 | Mar-13-14 |           |
| Thallium, total             | < 0.0002                            | 0.0002                |       | Mar-11-14 | Mar-13-14 |           |
| Thorium, total              | < 0.001                             | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Tin, total                  | < 0.002                             | 0.002                 | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Titanium, total             | < 0.05                              | 0.05                  | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Uranium, total              | 0.0010                              | 0.0002                | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Vanadium, total             | < 0.01                              | 0.01                  | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Zinc, total                 | < 0.04                              | 0.04                  | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Zirconium, total            | < 0.001                             | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Sample ID: SW2 (4030418-0   | 2) [Water] Sampled: Mar-03-14 16:00 | ı                     |       |           |           |           |
| Aluminum, total             | 0.09                                |                       | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Antimony, total             | < 0.001                             | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Arsenic, total              | < 0.005                             | 0.005                 | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Barium, total               | < 0.05                              | 0.05                  | mg/L  | Mar-11-14 | Mar-13-14 |           |
| Beryllium, total            | < 0.001                             | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |           |
|                             |                                     |                       |       |           |           |           |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                  | Result /<br>Recovery             | MRL /<br><i>Limit</i> | Units | Prepared  | Analyzed  | Notes |
|--------------------------|----------------------------------|-----------------------|-------|-----------|-----------|-------|
| otal Recoverable Metals. | Continued                        |                       |       |           |           |       |
| ,                        |                                  |                       |       |           |           |       |
| Sample ID: SW2 (4030418- | 02) [Water] Sampled: Mar-03-14 1 | 6:00, Continued       |       |           |           |       |
| Boron, total             | < 0.04                           | 0.04                  | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Cadmium, total           | < 0.0001                         | 0.0001                | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Calcium, total           | 46.8                             | 2.0                   | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Chromium, total          | < 0.005                          | 0.005                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Cobalt, total            | < 0.0005                         | 0.0005                | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Copper, total            | 0.002                            | 0.002                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| ron, total               | 0.29                             | 0.10                  | mg/L  | Mar-11-14 | Mar-13-14 |       |
| ead, total               | < 0.001                          | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| ithium, total            | 0.002                            | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| //agnesium, total        | 16.2                             | 0.1                   | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Manganese, total         | 0.006                            | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| Mercury, total           | < 0.0002                         | 0.0002                |       | Mar-11-14 | Mar-13-14 |       |
| Molybdenum, total        | 0.004                            | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| lickel, total            | < 0.002                          | 0.002                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Phosphorus, total        | < 0.2                            |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Potassium, total         | 2.8                              |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Selenium, total          | < 0.005                          | 0.005                 |       | Mar-11-14 | Mar-13-14 |       |
| Silicon, total           | 15                               |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Silver, total            | < 0.0005                         | 0.0005                |       | Mar-11-14 | Mar-13-14 |       |
| Sodium, total            | 13.2                             |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Strontium, total         | 0.20                             |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Sulfur, total            | < 10                             |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| ellurium, total          | < 0.002                          | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| hallium, total           | < 0.002                          | 0.0002                |       | Mar-11-14 | Mar-13-14 |       |
| horium, total            | < 0.002                          | 0.0002                |       | Mar-11-14 | Mar-13-14 |       |
| in, total                | < 0.001                          | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| <u> </u>                 | < 0.05                           |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| itanium, total           |                                  |                       |       |           | Mar-13-14 |       |
| Jranium, total           | 0.0011                           | 0.0002                |       | Mar-11-14 |           |       |
| /anadium, total          | < 0.01                           |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Zinc, total              | < 0.04                           |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| irconium, total          | < 0.001                          | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| ample ID: SW3 (4030418-  | 03) [Water] Sampled: Mar-03-14 1 |                       |       |           |           |       |
| Numinum, total           | 0.09                             |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Antimony, total          | < 0.001                          | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| Arsenic, total           | < 0.005                          | 0.005                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| arium, total             | < 0.05                           | 0.05                  | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Beryllium, total         | < 0.001                          | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| sismuth, total           | < 0.001                          | 0.001                 | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Boron, total             | < 0.04                           |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| cadmium, total           | < 0.0001                         | 0.0001                |       | Mar-11-14 | Mar-13-14 |       |
| Calcium, total           | 69.1                             |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Chromium, total          | < 0.005                          | 0.005                 |       | Mar-11-14 | Mar-13-14 |       |
| Cobalt, total            | < 0.0005                         | 0.0005                |       | Mar-11-14 | Mar-13-14 |       |
| Copper, total            | 0.003                            | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |



REPORTED TOColumbia Environmental Consulting LtdWORK ORDER4030418PROJECT14-0493REPORTEDMar-17-14

| Analyte                                                            | Result /<br>Recovery                                | MRL /<br><i>Limit</i> | Units | Prepared  | Analyzed  | Notes |
|--------------------------------------------------------------------|-----------------------------------------------------|-----------------------|-------|-----------|-----------|-------|
| otal Recoverable Metals,                                           | Continued                                           |                       |       |           |           |       |
| Sample ID: SW3 (4030418-                                           | 03) [Water] Sampled: Mar-03-14 1                    | 6:00, Continued       |       |           |           |       |
| Iron, total                                                        | < 0.10                                              | 0.10                  | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Lead, total                                                        | < 0.001                                             | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| Lithium, total                                                     | 0.001                                               | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| Magnesium, total                                                   | 18.5                                                |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Manganese, total                                                   | < 0.002                                             | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| Mercury, total                                                     | < 0.0002                                            | 0.0002                |       | Mar-11-14 | Mar-13-14 |       |
| Molybdenum, total                                                  | 0.006                                               | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| Nickel, total                                                      | < 0.002                                             | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| Phosphorus, total                                                  | < 0.2                                               |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Potassium, total                                                   | 2.1                                                 |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Selenium, total                                                    | < 0.005                                             | 0.005                 |       | Mar-11-14 | Mar-13-14 |       |
| Silicon, total                                                     | 10                                                  |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Silver, total                                                      | < 0.0005                                            | 0.0005                |       | Mar-11-14 | Mar-13-14 |       |
| Sodium, total                                                      | 15.3                                                |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Strontium, total                                                   | 0.26                                                |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Sulfur, total                                                      | < 10                                                |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Tellurium, total                                                   | < 0.002                                             | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| Thallium, total                                                    | < 0.0002                                            | 0.0002                |       | Mar-11-14 | Mar-13-14 |       |
| Thorium, total                                                     | < 0.001                                             | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| Tin, total                                                         | < 0.002                                             | 0.002                 |       | Mar-11-14 | Mar-13-14 |       |
| Titanium, total                                                    | < 0.05                                              |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Uranium, total                                                     | 0.0010                                              | 0.0002                |       | Mar-11-14 | Mar-13-14 |       |
| Vanadium, total                                                    | < 0.01                                              |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Zinc, total                                                        | < 0.04                                              |                       | mg/L  | Mar-11-14 | Mar-13-14 |       |
| Zirconium, total                                                   | < 0.001                                             | 0.001                 |       | Mar-11-14 | Mar-13-14 |       |
| Aggregate Organic Paramo<br>Sample ID: SW1 (4030418-<br>VHw (6-10) | eters<br>-01) [Water] Sampled: Mar-03-14 1<br>< 100 |                       | ug/L  | N/A       | Mar-13-14 |       |
| Sample ID: SW2 (4030418.                                           | .02) [Water] Sampled: Mar-03-14 1                   | 6.00                  |       |           |           |       |
| VHw (6-10)                                                         | < 100                                               |                       | ug/L  | N/A       | Mar-13-14 |       |
| ,                                                                  | -03) [Water] Sampled: Mar-03-14 1                   |                       | ug/L  | IN/A      | Wai-13-14 |       |
| VHw (6-10)                                                         | < 100                                               |                       | ug/L  | N/A       | Mar-13-14 |       |
|                                                                    |                                                     |                       | ~g·=  |           | 10 17     |       |
| •                                                                  | 118-04) [Water] Sampled: Mar-07-1                   |                       |       |           |           |       |
| VHw (6-10)                                                         | < 100                                               | 100                   | ug/L  | N/A       | Mar-14-14 |       |
| Sample ID: MWDUP2 (403)                                            | 0418-05) [Water] Sampled: Mar-07                    | -14 17:00             |       |           |           |       |
| VHw (6-10)                                                         | < 100                                               | 100                   | ug/L  | N/A       | Mar-14-14 |       |
|                                                                    |                                                     |                       |       |           |           |       |
| Sample ID: MW14-2 (40304                                           | 118-06)                                             | 4 17:00               |       |           |           |       |
| Sample ID: MW14-2 (40304<br>VHw (6-10)                             | 118-06) [Water] Sampled: Mar-07-1<br>< 100          |                       | ug/L  | N/A       | Mar-14-14 |       |



REPORTED TO<br/>PROJECTColumbia Environmental Consulting LtdWORK ORDER<br/>40304184030418REPORTEDMar-17-14

| Analyte                               | Result /<br>Recovery                     | MRL /<br>Limit | Units | Prepared  | Analyzed  | Notes |
|---------------------------------------|------------------------------------------|----------------|-------|-----------|-----------|-------|
| Aggregate Organic Paramete            | rs, Continued                            |                |       |           |           |       |
| Sample ID: MW14-3 (4030418            | -07) [Water] Sampled: Mar-08-14          | 1 09:00        |       |           |           |       |
| VHw (6-10)                            | < 100                                    | 100            | ug/L  | N/A       | Mar-14-14 |       |
|                                       |                                          |                |       |           |           |       |
| CCME CWS Petroleum Hydro              | carbons                                  |                |       |           |           |       |
| Sample ID: SW1 (4030418-01)           | ) [Water] Sampled: Mar-03-14 16          | :00            |       |           |           |       |
| CCME PHC F1 (C6-C10)                  | < 100                                    | 100            | ug/L  | N/A       | Mar-13-14 |       |
| CCME PHC F2 (C10-C16)                 | < 100                                    | 100            | ug/L  | Mar-11-14 | Mar-14-14 |       |
| Sample ID: SW2 (4030418-02)           | ) [Water] Sampled: Mar-03-14 16          | :00            |       |           |           |       |
| CCME PHC F1 (C6-C10)                  | < 100                                    |                | ug/L  | N/A       | Mar-13-14 |       |
| CCME PHC F2 (C10-C16)                 | < 100                                    | 100            | ug/L  | Mar-11-14 | Mar-14-14 |       |
| Sample ID: SW3 (4030418-03)           | ) [Water] Sampled: Mar-03-14 16          | :00            |       |           |           |       |
| CCME PHC F1 (C6-C10)                  | < 100                                    |                | ug/L  | N/A       | Mar-13-14 |       |
| CCME PHC F2 (C10-C16)                 | < 100                                    | 100            | ug/L  | Mar-11-14 | Mar-14-14 |       |
| Sample ID: MW14-1 (4030418            | -04) [Water] Sampled: Mar-07-14          | 1 17:00        |       |           |           |       |
| CCME PHC F1 (C6-C10)                  | < 100                                    | 100            | ug/L  | N/A       | Mar-14-14 |       |
| CCME PHC F2 (C10-C16)                 | < 100                                    | 100            | ug/L  | Mar-11-14 | Mar-14-14 |       |
| Sample ID: MWDUP2 (403041             | 8-05) [Water] Sampled: Mar-07-           | 14 17:00       |       |           |           |       |
| CCME PHC F1 (C6-C10)                  | < 100                                    | 100            | ug/L  | N/A       | Mar-14-14 |       |
| CCME PHC F2 (C10-C16)                 | < 100                                    | 100            | ug/L  | Mar-11-14 | Mar-14-14 |       |
| Sample ID: MW14-2 (4030418            | -06) [Water] Sampled: Mar-07-14          | 1 17:00        |       |           |           |       |
| CCME PHC F1 (C6-C10)                  | < 100                                    | 100            | ug/L  | N/A       | Mar-14-14 |       |
| CCME PHC F2 (C10-C16)                 | < 100                                    | 100            | ug/L  | Mar-11-14 | Mar-14-14 |       |
| 001112 (010 010)                      |                                          |                |       |           |           |       |
| · · · · · · · · · · · · · · · · · · · | -07) [Water] Sampled: Mar-08-14          | <b>4 09:00</b> |       |           |           |       |
| · · · · · · · · · · · · · · · · · · · | -07) [Water] Sampled: Mar-08-14<br>< 100 |                | ug/L  | N/A       | Mar-14-14 |       |

| Acenaphthene            | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
|-------------------------|--------|-----------|-----------|-----------|
| Acenaphthylene          | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Acridine                | < 0.05 | 0.05 ug/L | Mar-11-14 | Mar-13-14 |
| Anthracene              | < 0.01 | 0.01 ug/L | Mar-11-14 | Mar-13-14 |
| Benzo (a) anthracene    | < 0.01 | 0.01 ug/L | Mar-11-14 | Mar-13-14 |
| Benzo (a) pyrene        | < 0.01 | 0.01 ug/L | Mar-11-14 | Mar-13-14 |
| Benzo (b) fluoranthene  | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Benzo (g,h,i) perylene  | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Benzo (k) fluoranthene  | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Chrysene                | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Dibenz (a,h) anthracene | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Fluoranthene            | < 0.02 | 0.02 ug/L | Mar-11-14 | Mar-13-14 |

Page 20 of 36



REPORTED TO Columbia Environmental Consulting Ltd WORK ORDER
PROJECT 14-0493 REPORTED

Mar-17-14 Result / MRL/ Units **Analyte Prepared Analyzed Notes** Recovery Limit Polycyclic Aromatic Hydrocarbons (PAH), Continued Sample ID: SW1 (4030418-01) [Water] Sampled: Mar-03-14 16:00, Continued Fluorene < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 Indeno (1,2,3-cd) pyrene < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 < 0.05 Naphthalene 0.05 ug/L Mar-11-14 Mar-13-14 Phenanthrene < 0.05 0.05 ug/L Mar-11-14 Mar-13-14 Pyrene < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 < 0.05 Quinoline 0.05 ug/L Mar-11-14 Mar-13-14 Surrogate: Naphthalene-d8 55 % 40-96 Mar-11-14 Mar-13-14 Mar-11-14 Surrogate: Acenaphthene-d10 58 % 45-92 Mar-13-14 Surrogate: Phenanthrene-d10 65 % 48-90 Mar-11-14 Mar-13-14 Surrogate: Chrysene-d12 73 % 41-96 Mar-11-14 Mar-13-14 Surrogate: Perylene-d12 69 % 47-104 Mar-11-14 Mar-13-14 Sample ID: SW2 (4030418-02) [Water] Sampled: Mar-03-14 16:00 < 0.02 Mar-11-14 Mar-13-14 Acenaphthene 0.02 ug/L Acenaphthylene < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 Acridine < 0.05 0.05 ug/L Mar-11-14 Mar-13-14 < 0.01 Mar-11-14 Anthracene 0.01 ug/L Mar-13-14 Benzo (a) anthracene < 0.01 ug/L Mar-11-14 Mar-13-14 0.01 Benzo (a) pyrene < 0.01 0.01 ug/L Mar-11-14 Mar-13-14 < 0.02 Benzo (b) fluoranthene 0.02 ug/L Mar-11-14 Mar-13-14 < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 Benzo (g,h,i) perylene Benzo (k) fluoranthene < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 < 0.02 0.02 ug/L Mar-11-14 Chrysene Mar-13-14 Dibenz (a,h) anthracene < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 Fluoranthene < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 Fluorene < 0.02 0.02 Mar-11-14 Mar-13-14 ug/L < 0.02 0.02 ug/L Mar-11-14 Indeno (1,2,3-cd) pyrene Mar-13-14 Naphthalene < 0.05 0.05 ug/L Mar-11-14 Mar-13-14 Phenanthrene < 0.05 0.05 ug/L Mar-11-14 Mar-13-14 Pyrene < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 Quinoline < 0.05 0.05 ug/L Mar-11-14 Mar-13-14 Surrogate: Naphthalene-d8 61 % 40-96 Mar-11-14 Mar-13-14 Surrogate: Acenaphthene-d10 62 % 45-92 Mar-11-14 Mar-13-14 Surrogate: Phenanthrene-d10 67 % 48-90 Mar-11-14 Mar-13-14 Surrogate: Chrysene-d12 72 % Mar-11-14 41-96 Mar-13-14 Surrogate: Perylene-d12 68 % 47-104 Mar-11-14 Mar-13-14 Sample ID: SW3 (4030418-03) [Water] Sampled: Mar-03-14 16:00 Acenaphthene < 0.02 0.02 ug/L Mar-11-14 Mar-13-14 Acenaphthylene < 0.02 Mar-11-14 0.02 ug/L Mar-13-14 Acridine < 0.05 0.05 ug/L Mar-11-14 Mar-13-14

0.01 ug/L

0.01 ug/L

0.01 ug/L

0.02 ug/L

Mar-11-14

Mar-11-14

Mar-11-14

Mar-11-14

Mar-13-14

Mar-13-14

Mar-13-14

Mar-13-14

< 0.01

< 0.01

< 0.01

< 0.02

Benzo (a) anthracene

Benzo (b) fluoranthene

Benzo (a) pyrene

4030418

Anthracene



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| FROJECT 14 0400                       |                             |                 |       | KLFOKILD  |           | IVIAI-11-14 |
|---------------------------------------|-----------------------------|-----------------|-------|-----------|-----------|-------------|
| Analyte                               | Result /<br>Recovery        | MRL /<br>Limit  | Units | Prepared  | Analyzed  | Notes       |
| Polycyclic Aromatic Hydrocarbo        | ns (PAH), Continued         |                 |       |           |           |             |
| Sample ID: SW3 (4030418-03) [V        | Vater] Sampled: Mar-03-14 1 | 6:00, Continued |       |           |           |             |
| Benzo (g,h,i) perylene                | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Benzo (k) fluoranthene                | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Chrysene                              | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Dibenz (a,h) anthracene               | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Fluoranthene                          | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Fluorene                              | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Indeno (1,2,3-cd) pyrene              | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Naphthalene                           | < 0.05                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Phenanthrene                          | < 0.05                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Pyrene                                | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Quinoline                             | < 0.05                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Surrogate: Naphthalene-d8             | 62 %                        | 40-96           | -3    | Mar-11-14 | Mar-13-14 |             |
| Surrogate: Acenaphthene-d10           | 64 %                        | 45-92           |       | Mar-11-14 | Mar-13-14 |             |
| Surrogate: Phenanthrene-d10           | 70 %                        | 48-90           |       | Mar-11-14 | Mar-13-14 |             |
| Surrogate: Chrysene-d12               | 74 %                        | 41-96           |       | Mar-11-14 | Mar-13-14 |             |
| · · · · · · · · · · · · · · · · · · · |                             |                 |       |           |           |             |
| Surrogate: Perylene-d12               | 70 %                        | 47-104          |       | Mar-11-14 | Mar-13-14 |             |
| Sample ID: MW14-1 (4030418-04)        | [Water] Sampled: Mar-07-1   | 4 17:00         |       |           |           |             |
| Acenaphthene                          | < 0.02                      | 0.02            | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Acenaphthylene                        | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Acridine                              | < 0.05                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Anthracene                            | < 0.01                      |                 |       | Mar-11-14 | Mar-13-14 |             |
| Benzo (a) anthracene                  | < 0.01                      | 0.01            | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Benzo (a) pyrene                      | < 0.01                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Benzo (b) fluoranthene                | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Benzo (g,h,i) perylene                | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Benzo (k) fluoranthene                | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Chrysene                              | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Dibenz (a,h) anthracene               | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Fluoranthene                          | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Fluorene                              | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Indeno (1,2,3-cd) pyrene              | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Naphthalene                           | 0.19                        |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Phenanthrene                          | < 0.05                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Pyrene                                | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Quinoline                             | < 0.05                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Surrogate: Naphthalene-d8             | 61 %                        | 40-96           | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Surrogate: Acenaphthene-d10           | 62 %                        | 45-92           |       |           | Mar-13-14 |             |
| Surrogate: Acertaphthene-d10          |                             |                 |       | Mar-11-14 |           |             |
|                                       | 68 %                        | 48-90           |       | Mar-11-14 | Mar-13-14 |             |
| Surrogate: Chrysene-d12               | 72 %                        | 41-96           |       | Mar-11-14 | Mar-13-14 |             |
| Surrogate: Perylene-d12               | 73 %                        | 47-104          |       | Mar-11-14 | Mar-13-14 |             |
| Sample ID: MWDUP2 (4030418-0          | 5) [Water] Sampled: Mar-07  | -14 17:00       |       |           |           |             |
| Acenaphthene                          | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |
| Acenaphthylene                        | < 0.02                      |                 | ug/L  | Mar-11-14 | Mar-13-14 |             |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                        | Result /<br>Recovery        | MRL /<br>Limit    | Units | Prepared    | Analyzed  | Notes |
|--------------------------------|-----------------------------|-------------------|-------|-------------|-----------|-------|
| Polycyclic Aromatic Hydrocarbo | ns (PAH), Continued         |                   |       |             |           |       |
| Sample ID: MWDUP2 (4030418-0   | 5) [Water] Sampled: Mar-07- | 14 17:00. Continu | ıed   |             |           |       |
| Acridine                       | < 0.05                      | <u> </u>          | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Anthracene                     | < 0.01                      | 0.01              |       | Mar-11-14   | Mar-13-14 |       |
| Benzo (a) anthracene           | < 0.01                      |                   | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Benzo (a) pyrene               | < 0.01                      |                   | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Benzo (b) fluoranthene         | < 0.02                      |                   | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Benzo (g,h,i) perylene         | < 0.02                      | 0.02              |       | Mar-11-14   | Mar-13-14 |       |
| Benzo (k) fluoranthene         | < 0.02                      | 0.02              |       | Mar-11-14   | Mar-13-14 |       |
| Chrysene                       | < 0.02                      | 0.02              |       | Mar-11-14   | Mar-13-14 |       |
| Dibenz (a,h) anthracene        | < 0.02                      | 0.02              |       | Mar-11-14   | Mar-13-14 |       |
| Fluoranthene                   | < 0.02                      | 0.02              |       | Mar-11-14   | Mar-13-14 |       |
| Fluorene                       | < 0.02                      | 0.02              |       | Mar-11-14   | Mar-13-14 |       |
| Indeno (1,2,3-cd) pyrene       | < 0.02                      | 0.02              |       | Mar-11-14   | Mar-13-14 |       |
| Naphthalene                    | 0.24                        | 0.05              |       | Mar-11-14   | Mar-13-14 |       |
| Phenanthrene                   | < 0.05                      | 0.05              |       | Mar-11-14   | Mar-13-14 |       |
| Pyrene                         | < 0.02                      | 0.02              |       | Mar-11-14   | Mar-13-14 |       |
| Quinoline                      | < 0.05                      | 0.05              |       | Mar-11-14   | Mar-13-14 |       |
| Surrogate: Naphthalene-d8      | 78 %                        | 40-96             | 3     | Mar-11-14   | Mar-13-14 |       |
| Surrogate: Acenaphthene-d10    | 77 %                        | 45-92             |       | Mar-11-14   | Mar-13-14 |       |
| Surrogate: Phenanthrene-d10    | 81 %                        | 48-90             |       | Mar-11-14   | Mar-13-14 |       |
| Surrogate: Chrysene-d12        | 84 %                        | 41-96             |       | Mar-11-14   | Mar-13-14 |       |
| Surrogate: Perylene-d12        | 81 %                        | 47-104            |       | Mar-11-14   | Mar-13-14 |       |
| Surrogate. Perylene-u12        | 01 76                       | 47-104            |       | IVIAI-11-14 | Wai-13-14 |       |
| Sample ID: MW14-2 (4030418-06) | [Water] Sampled: Mar-07-14  | 4 17:00           |       |             |           |       |
| Acenaphthene                   | < 0.02                      |                   | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Acenaphthylene                 | < 0.02                      |                   | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Acridine                       | < 0.05                      | 0.05              | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Anthracene                     | < 0.01                      | 0.01              | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Benzo (a) anthracene           | < 0.01                      | 0.01              | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Benzo (a) pyrene               | < 0.01                      | 0.01              | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Benzo (b) fluoranthene         | < 0.02                      | 0.02              | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Benzo (g,h,i) perylene         | < 0.02                      | 0.02              | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Benzo (k) fluoranthene         | < 0.02                      |                   | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Chrysene                       | < 0.02                      |                   | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Dibenz (a,h) anthracene        | < 0.02                      | 0.02              | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Fluoranthene                   | < 0.02                      |                   | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Fluorene                       | < 0.02                      | 0.02              | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Indeno (1,2,3-cd) pyrene       | < 0.02                      | 0.02              | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Naphthalene                    | < 0.05                      | 0.05              | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Phenanthrene                   | < 0.05                      | 0.05              | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Pyrene                         | < 0.02                      | 0.02              | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Quinoline                      | < 0.05                      |                   | ug/L  | Mar-11-14   | Mar-13-14 |       |
| Surrogate: Naphthalene-d8      | 67 %                        | 40-96             |       | Mar-11-14   | Mar-13-14 |       |
| Surrogate: Acenaphthene-d10    | 68 %                        | 45-92             |       | Mar-11-14   | Mar-13-14 |       |
| Surrogate: Phenanthrene-d10    | 72 %                        | 48-90             |       | Mar-11-14   | Mar-13-14 |       |
| Surrogate: Chrysene-d12        | 77 %                        | 41-96             |       | Mar-11-14   | Mar-13-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030418 Mar-17-14

| Amelysta | Result / | MRL/        | Dramarad | Analymad | Notes |
|----------|----------|-------------|----------|----------|-------|
| Analyte  | Recovery | Limit Units | Prepared | Analyzed | Notes |

### Polycyclic Aromatic Hydrocarbons (PAH), Continued

### Sample ID: MW14-2 (4030418-06) [Water] Sampled: Mar-07-14 17:00, Continued

| Surrogate: Perylene-d12          | 76 %                     | 47-104    | Mar-11-14 | Mar-13-14 |
|----------------------------------|--------------------------|-----------|-----------|-----------|
| Sample ID: MW14-3 (4030418-07) [ | Water] Sampled: Mar-08-1 | 14 09:00  |           |           |
| Acenaphthene                     | < 0.02                   | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Acenaphthylene                   | < 0.02                   | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Acridine                         | < 0.05                   | 0.05 ug/L | Mar-11-14 | Mar-13-14 |
| Anthracene                       | < 0.01                   | 0.01 ug/L | Mar-11-14 | Mar-13-14 |
| Benzo (a) anthracene             | < 0.01                   | 0.01 ug/L | Mar-11-14 | Mar-13-14 |
| Benzo (a) pyrene                 | < 0.01                   | 0.01 ug/L | Mar-11-14 | Mar-13-14 |
| Benzo (b) fluoranthene           | < 0.02                   | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Benzo (g,h,i) perylene           | < 0.02                   | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Benzo (k) fluoranthene           | < 0.02                   | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Chrysene                         | < 0.02                   | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Dibenz (a,h) anthracene          | < 0.02                   | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Fluoranthene                     | < 0.02                   | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Fluorene                         | < 0.02                   | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Indeno (1,2,3-cd) pyrene         | < 0.02                   | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Naphthalene                      | 0.26                     | 0.05 ug/L | Mar-11-14 | Mar-13-14 |
| Phenanthrene                     | < 0.05                   | 0.05 ug/L | Mar-11-14 | Mar-13-14 |
| Pyrene                           | < 0.02                   | 0.02 ug/L | Mar-11-14 | Mar-13-14 |
| Quinoline                        | < 0.05                   | 0.05 ug/L | Mar-11-14 | Mar-13-14 |
| Surrogate: Naphthalene-d8        | 69 %                     | 40-96     | Mar-11-14 | Mar-13-14 |
| Surrogate: Acenaphthene-d10      | 72 %                     | 45-92     | Mar-11-14 | Mar-13-14 |
| Surrogate: Phenanthrene-d10      | 76 %                     | 48-90     | Mar-11-14 | Mar-13-14 |
| Surrogate: Chrysene-d12          | 80 %                     | 41-96     | Mar-11-14 | Mar-13-14 |
| Surrogate: Perylene-d12          | 77 %                     | 47-104    | Mar-11-14 | Mar-13-14 |
|                                  |                          |           |           |           |

### Volatile Organic Compounds (VOC)

### Sample ID: SW1 (4030418-01) [Water] Sampled: Mar-03-14 16:00

| Benzene                         | < 0.5 | 0.5 ug/L | N/A | Mar-13-14 |  |
|---------------------------------|-------|----------|-----|-----------|--|
| Ethylbenzene                    | < 1.0 | 1.0 ug/L | N/A | Mar-13-14 |  |
| Toluene                         | < 1.0 | 1.0 ug/L | N/A | Mar-13-14 |  |
| Xylenes (total)                 | < 2.0 | 2.0 ug/L | N/A | Mar-13-14 |  |
| Surrogate: Toluene-d8           | 89 %  | 70-130   | N/A | Mar-13-14 |  |
| Surrogate: 4-Bromofluorobenzene | 87 %  | 70-130   | N/A | Mar-13-14 |  |

#### Sample ID: SW2 (4030418-02) [Water] Sampled: Mar-03-14 16:00

| Benzene                         | < 0.5 | 0.5 ug/L | N/A | Mar-13-14 |
|---------------------------------|-------|----------|-----|-----------|
| Ethylbenzene                    | < 1.0 | 1.0 ug/L | N/A | Mar-13-14 |
| Toluene                         | < 1.0 | 1.0 ug/L | N/A | Mar-13-14 |
| Xylenes (total)                 | < 2.0 | 2.0 ug/L | N/A | Mar-13-14 |
| Surrogate: Toluene-d8           | 93 %  | 70-130   | N/A | Mar-13-14 |
| Surrogate: 4-Bromofluorobenzene | 92 %  | 70-130   | N/A | Mar-13-14 |



REPORTED TO Columbia Environmental Consulting Ltd PROJECT 14-0493

WORK ORDER REPORTED 4030418 Mar-17-14

| Analyte                                                                       | Result /<br>Recovery        | MRL /<br>Limit | Units        | Prepared   | Analyzed               | Notes |
|-------------------------------------------------------------------------------|-----------------------------|----------------|--------------|------------|------------------------|-------|
| Volatile Organic Compounds (VOC)                                              | , Continued                 |                |              |            |                        |       |
| Sample ID: SW3 (4030418-03) [Wat                                              | er] Sampled: Mar-03-14 16:  | 00             |              |            |                        |       |
| Benzene                                                                       | < 0.5                       | 0.5            | ug/L         | N/A        | Mar-13-14              |       |
| Ethylbenzene                                                                  | < 1.0                       |                | ug/L         | N/A        | Mar-13-14              |       |
| Toluene                                                                       | < 1.0                       |                | ug/L         | N/A        | Mar-13-14              |       |
| Xylenes (total)                                                               | < 2.0                       |                | ug/L         | N/A        | Mar-13-14              |       |
| Surrogate: Toluene-d8                                                         | 94 %                        | 70-130         |              | N/A        | Mar-13-14              |       |
| Surrogate: 4-Bromofluorobenzene                                               | 94 %                        | 70-130         |              | N/A        | Mar-13-14              |       |
| Sample ID: MW14-1 (4030418-04) [                                              | Water] Sampled: Mar-07-14   | 17:00          |              |            |                        |       |
| Benzene                                                                       | < 0.5                       | 0.5            | ug/L         | N/A        | Mar-14-14              |       |
| Ethylbenzene                                                                  | < 1.0                       |                | ug/L         | N/A        | Mar-14-14              |       |
| Toluene                                                                       | 4.0                         |                | ug/L         | N/A        | Mar-14-14              |       |
| Xylenes (total)                                                               | 3.1                         | 2.0            | ug/L         | N/A        | Mar-14-14              |       |
| Surrogate: Toluene-d8                                                         | 96 %                        | 70-130         |              | N/A        | Mar-14-14              |       |
| Surrogate: 4-Bromofluorobenzene                                               | 99 %                        | 70-130         |              | N/A        | Mar-14-14              |       |
| Sample ID: MWDUP2 (4030418-05)                                                | [Water] Sampled: Mar-07-1   | 4 17:00        |              |            |                        |       |
| Benzene                                                                       | < 0.5                       | 0.5            | ug/L         | N/A        | Mar-14-14              |       |
| Ethylbenzene                                                                  | < 1.0                       | 1.0            | ug/L         | N/A        | Mar-14-14              |       |
| Toluene                                                                       | 3.6                         | 1.0            | ug/L         | N/A        | Mar-14-14              |       |
| Xylenes (total)                                                               | 2.7                         | 2.0            | ug/L         | N/A        | Mar-14-14              |       |
| Surrogate: Toluene-d8                                                         | 89 %                        | 70-130         |              | N/A        | Mar-14-14              |       |
| Surrogate: 4-Bromofluorobenzene                                               | 91 %                        | 70-130         |              | N/A        | Mar-14-14              |       |
| Sample ID: MW14-2 (4030418-06) [                                              | Water] Sampled: Mar-07-14   | 17:00          |              |            |                        |       |
| Benzene                                                                       | < 0.5                       | 0.5            | ug/L         | N/A        | Mar-14-14              |       |
| Ethylbenzene                                                                  | < 1.0                       |                | ug/L         | N/A        | Mar-14-14              |       |
| Toluene                                                                       | < 1.0                       |                | ug/L         | N/A        | Mar-14-14              |       |
| Xylenes (total)                                                               | < 2.0                       |                | ug/L         | N/A        | Mar-14-14              |       |
| Surrogate: Toluene-d8                                                         | 94 %                        | 70-130         | <del>-</del> | N/A        | Mar-14-14              |       |
| Surrogate: 4-Bromofluorobenzene                                               | 92 %                        | 70-130         |              | N/A        | Mar-14-14              |       |
|                                                                               | Waterl Sampled: Mar-08-14   | 09:00          |              |            |                        |       |
| Sample ID: MW14-3(4030418-07)[ˈ                                               | riatori campicar mar co i i |                |              | N1/A       |                        |       |
| <b>Sample ID: MW14-3 (4030418-07) [</b><br>Benzene                            | < 0.5                       | 0.5            | ug/L         | N/A        | Mar-14-14              |       |
| Benzene                                                                       |                             |                | ug/L<br>ug/L | N/A<br>N/A | Mar-14-14<br>Mar-14-14 |       |
| Benzene<br>Ethylbenzene                                                       | < 0.5                       | 1.0            |              |            |                        |       |
| Sample ID: MW14-3 (4030418-07) [ Benzene Ethylbenzene Toluene Xylenes (total) | < 0.5<br>< 1.0              | 1.0<br>1.0     | ug/L         | N/A        | Mar-14-14              |       |
| Benzene<br>Ethylbenzene<br>Toluene                                            | < 0.5<br>< 1.0<br>1.5       | 1.0<br>1.0     | ug/L<br>ug/L | N/A<br>N/A | Mar-14-14<br>Mar-14-14 |       |

### Sample / Analysis Qualifiers:

HT The sample was prepared / analyzed past the recommended holding time.



REPORTED TO PROJECT

Columbia Environmental Consulting Ltd

14-0493

WORK ORDER
REPORTED

4030418 Mar-17-14

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment
- **Duplicate (Dup)**: Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.
- Blank Spike (BS): A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).
- Standard Reference Material (SRM): A material of similar matrix to the samples, externally certified for the parameter(s) listed.
   Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

| Analyte                                    | Result    | MRL Units       | Spike<br>Level | Source<br>Result | % REC        | REC<br>Limit | RPD  | RPD<br>Limit | Notes |
|--------------------------------------------|-----------|-----------------|----------------|------------------|--------------|--------------|------|--------------|-------|
| Aggregate Organic Parameters, Batc         | h B4C0511 |                 |                |                  |              |              |      |              |       |
| Blank (B4C0511-BLK1)                       |           |                 | Prepared       | d: Mar-13-       | 14, Analyze  | ed: Mar-13   | 3-14 |              |       |
| VHw (6-10)                                 | < 100     | 100 ug/L        |                |                  |              |              |      |              |       |
| LCS (B4C0511-BS2)                          |           |                 | Prepared       | d: Mar-13-       | 14, Analyze  | ed: Mar-13   | 3-14 |              |       |
| VHw (6-10)                                 | 2340      | 100 ug/L        | 2930           |                  | 80           | 57-107       |      |              |       |
| Duplicate (B4C0511-DUP1)                   | Sour      | rce: 4030418-03 | Prepared       | d: Mar-13-       | 14, Analyze  | ed: Mar-13   | 3-14 |              |       |
| VHw (6-10)                                 | < 100     | 100 ug/L        |                | < 100            |              |              |      | 27           |       |
| Anions, Batch B4C0397 Blank (B4C0397-BLK1) |           |                 | Prenared       | ŀ Mar₋11₋ኅ       | I4, Analyze  | ed: Mar-11   | -14  |              |       |
| Chloride                                   | < 0.10    | 0.10 mg/L       | Перагес        | i. IVICII-TT-    | i+, Allaly20 | Ja. Mai-11   | -1-  |              |       |
| Fluoride                                   | < 0.10    | 0.10 mg/L       |                |                  |              |              |      |              |       |
| Nitrogen, Nitrate as N                     | < 0.010   | 0.010 mg/L      |                |                  |              |              |      |              |       |
| Nitrogen, Nitrite as N                     | < 0.010   | 0.010 mg/L      |                |                  |              |              |      |              |       |
| Phosphate, Ortho as P                      | < 0.01    | 0.01 mg/L       |                |                  |              |              |      |              |       |
| Sulfate                                    | < 1.0     | 1.0 mg/L        |                |                  |              |              |      |              |       |
| Blank (B4C0397-BLK2)                       |           | -               | Prepared       | d: Mar-11-1      | I4, Analyze  | ed: Mar-11   | -14  |              |       |
| Chloride                                   | < 0.10    | 0.10 mg/L       | •              |                  |              |              |      |              |       |
| Fluoride                                   | < 0.10    | 0.10 mg/L       |                |                  |              |              |      |              |       |
| Nitrogen, Nitrate as N                     | < 0.010   | 0.010 mg/L      |                |                  |              |              |      |              |       |
| Nitrogen, Nitrite as N                     | < 0.010   | 0.010 mg/L      |                |                  |              |              |      |              |       |
| Phosphate, Ortho as P                      | < 0.01    | 0.01 mg/L       |                |                  |              |              |      |              |       |
| Sulfate                                    | < 1.0     | 1.0 mg/L        |                |                  |              |              |      |              |       |
| Blank (B4C0397-BLK3)                       |           |                 | Prepared       | d: Mar-12-       | 14, Analyze  | ed: Mar-12   | 2-14 |              |       |
| Chloride                                   | < 0.10    | 0.10 mg/L       |                |                  |              |              |      |              |       |
| Fluoride                                   | < 0.10    | 0.10 mg/L       |                |                  |              |              |      |              |       |
| Nitrogen, Nitrate as N                     | < 0.010   | 0.010 mg/L      |                |                  |              |              |      |              |       |
| Nitrogen, Nitrite as N                     | < 0.010   | 0.010 mg/L      |                |                  |              |              |      |              |       |
| Phosphate, Ortho as P                      | < 0.01    | 0.01 mg/L       |                |                  |              |              |      |              |       |
| Sulfate                                    | < 1.0     | 1.0 mg/L        |                |                  |              |              |      |              |       |



| Analyte                                                                                                                                                                                                                                                                                                                               | Result                                                 | MRL Units                                               | Spike<br>Level                  | Source<br>Result                                         | % REC                                          | REC<br>Limit                                                            | RPD               | RPD<br>Limit | Notes |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------|----------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|-------------------|--------------|-------|
| nions, Batch B4C0397, Continued                                                                                                                                                                                                                                                                                                       | d                                                      |                                                         |                                 |                                                          |                                                |                                                                         |                   |              |       |
| LCS (B4C0397-BS1)                                                                                                                                                                                                                                                                                                                     |                                                        |                                                         | Prepared                        | l: Mar-11-1                                              | 4, Analyze                                     | ed: Mar-11                                                              | -14               |              |       |
| Chloride                                                                                                                                                                                                                                                                                                                              | 15.8                                                   | 0.10 mg/L                                               | 16.0                            |                                                          | 99                                             | 85-115                                                                  |                   |              |       |
| Fluoride                                                                                                                                                                                                                                                                                                                              | 3.97                                                   | 0.10 mg/L                                               | 4.00                            |                                                          | 99                                             | 85-115                                                                  |                   |              |       |
| Nitrogen, Nitrate as N                                                                                                                                                                                                                                                                                                                | 4.09                                                   | 0.010 mg/L                                              | 4.00                            |                                                          | 102                                            | 85-115                                                                  |                   |              |       |
| Nitrogen, Nitrite as N                                                                                                                                                                                                                                                                                                                | 1.94                                                   | 0.010 mg/L                                              | 2.00                            |                                                          | 97                                             | 85-115                                                                  |                   |              |       |
| Phosphate, Ortho as P                                                                                                                                                                                                                                                                                                                 | 1.98                                                   | 0.01 mg/L                                               | 2.00                            |                                                          | 99                                             | 85-115                                                                  |                   |              |       |
| Sulfate                                                                                                                                                                                                                                                                                                                               | 15.6                                                   | 1.0 mg/L                                                | 16.0                            |                                                          | 98                                             | 85-115                                                                  |                   |              |       |
| _CS (B4C0397-BS2)                                                                                                                                                                                                                                                                                                                     |                                                        |                                                         | Prepared                        | l: Mar-11-1                                              | 4, Analyze                                     | ed: Mar-11                                                              | -14               |              |       |
| Chloride                                                                                                                                                                                                                                                                                                                              | 15.7                                                   | 0.10 mg/L                                               | 16.0                            |                                                          | 98                                             | 85-115                                                                  |                   |              |       |
| Fluoride                                                                                                                                                                                                                                                                                                                              | 3.85                                                   | 0.10 mg/L                                               | 4.00                            |                                                          | 96                                             | 85-115                                                                  |                   |              |       |
| Nitrogen, Nitrate as N                                                                                                                                                                                                                                                                                                                | 4.09                                                   | 0.010 mg/L                                              | 4.00                            |                                                          | 102                                            | 85-115                                                                  |                   |              |       |
| Nitrogen, Nitrite as N                                                                                                                                                                                                                                                                                                                | 1.91                                                   | 0.010 mg/L                                              | 2.00                            |                                                          | 95                                             | 85-115                                                                  |                   |              |       |
| Phosphate, Ortho as P                                                                                                                                                                                                                                                                                                                 | 1.89                                                   | 0.01 mg/L                                               | 2.00                            |                                                          | 94                                             | 85-115                                                                  |                   |              |       |
| Sulfate                                                                                                                                                                                                                                                                                                                               | 15.5                                                   | 1.0 mg/L                                                | 16.0                            |                                                          | 97                                             | 85-115                                                                  |                   |              |       |
| -CS (B4C0397-BS3)                                                                                                                                                                                                                                                                                                                     |                                                        |                                                         | Prenareo                        | l: Mar-12-1                                              | 4 Analyze                                      | d· Mar-12                                                               | _14               |              |       |
| Chloride                                                                                                                                                                                                                                                                                                                              | 15.9                                                   | 0.10 mg/L                                               | 16.0                            | 1. IVIGIT-12-1                                           | 99                                             | 85-115                                                                  | - 1-7             |              |       |
| Unioride<br>Fluoride                                                                                                                                                                                                                                                                                                                  | 3.95                                                   | 0.10 mg/L<br>0.10 mg/L                                  | 4.00                            |                                                          | 99                                             | 85-115                                                                  |                   |              |       |
| Nitrogen, Nitrate as N                                                                                                                                                                                                                                                                                                                | 4.10                                                   | 0.10 Hg/L<br>0.010 mg/L                                 | 4.00                            |                                                          | 103                                            | 85-115                                                                  |                   |              |       |
| Nitrogen, Nitrite as N                                                                                                                                                                                                                                                                                                                | 1.92                                                   |                                                         | 2.00                            |                                                          | 96                                             | 85-115                                                                  |                   |              |       |
| <u> </u>                                                                                                                                                                                                                                                                                                                              | 1.85                                                   | 0.010 mg/L                                              | 2.00                            |                                                          |                                                | 85-115                                                                  |                   |              |       |
| Phosphate, Ortho as P Sulfate                                                                                                                                                                                                                                                                                                         | 15.6                                                   | 0.01 mg/L<br>1.0 mg/L                                   | 16.0                            |                                                          | 93<br>97                                       | 85-115                                                                  |                   |              |       |
|                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                         |                                 |                                                          |                                                |                                                                         |                   |              |       |
| Duplicate (B4C0397-DUP2)                                                                                                                                                                                                                                                                                                              |                                                        | rce: 4030418-14                                         | Prepared                        | l: Mar-11-1                                              | 4, Analyze                                     | d: Mar-11                                                               |                   |              |       |
| Chloride                                                                                                                                                                                                                                                                                                                              | 120                                                    | 0.10 mg/L                                               |                                 | 119                                                      |                                                |                                                                         | < 1               | 10           |       |
| Fluoride                                                                                                                                                                                                                                                                                                                              | 0.11                                                   | 0.10 mg/L                                               |                                 | 0.11                                                     |                                                |                                                                         |                   | 10           |       |
| Nitrogen, Nitrate as N                                                                                                                                                                                                                                                                                                                | 0.382                                                  | 0.010 mg/L                                              |                                 | 0.370                                                    |                                                |                                                                         | 3                 | 10           |       |
| Nitrogen, Nitrite as N                                                                                                                                                                                                                                                                                                                | < 0.010                                                | 0.010 mg/L                                              |                                 | < 0.010                                                  |                                                |                                                                         |                   | 10           |       |
| Phosphate, Ortho as P<br>Sulfate                                                                                                                                                                                                                                                                                                      | < 0.01<br>29.2                                         | 0.01 mg/L<br>1.0 mg/L                                   |                                 | < 0.01<br>28.4                                           |                                                |                                                                         | 3                 | 20<br>10     |       |
|                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                         |                                 |                                                          |                                                |                                                                         |                   |              |       |
| Blank (B4C0359-BLK1)                                                                                                                                                                                                                                                                                                                  |                                                        |                                                         | Prepared                        | l: Mar-11-1                                              | 4, Analyze                                     | ed: Mar-14                                                              | -14               |              |       |
| Blank (B4C0359-BLK1)                                                                                                                                                                                                                                                                                                                  | ns, Batch B4C0359 < 100                                | 100 ug/L                                                | Prepared                        | l: Mar-11-1                                              | 4, Analyze                                     | ed: Mar-14                                                              | -14               |              |       |
| Blank (B4C0359-BLK1)  CCME PHC F2 (C10-C16)                                                                                                                                                                                                                                                                                           |                                                        | 100 ug/L                                                | · ·                             | l: Mar-11-1<br>l: Mar-11-1                               | •                                              |                                                                         |                   |              |       |
| Blank (B4C0359-BLK1)  CCME PHC F2 (C10-C16)  LCS (B4C0359-BS2)                                                                                                                                                                                                                                                                        |                                                        | 100 ug/L<br>100 ug/L                                    | · ·                             |                                                          | •                                              |                                                                         |                   |              |       |
| Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16) LCS (B4C0359-BS2) CCME PHC F2 (C10-C16) CCME CWS Petroleum Hydrocarbo Blank (B4C0511-BLK1)                                                                                                                                                                                                 | < 100<br>1090<br>ns, Batch B4C0511                     | 100 ug/L                                                | Prepared<br>2050                |                                                          | 4, Analyze                                     | ed: Mar-14<br>41-112                                                    | -14               |              |       |
| Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16) LCS (B4C0359-BS2) CCME PHC F2 (C10-C16) CCME CWS Petroleum Hydrocarbo Blank (B4C0511-BLK1) CCME PHC F1 (C6-C10)                                                                                                                                                                            | < 100<br>1090                                          | J                                                       | Prepared 2050                   | l: Mar-11-1<br>l: Mar-13-1                               | 4, Analyze<br>53<br>4, Analyze                 | ed: Mar-14<br>41-112<br>ed: Mar-13                                      | -14               |              |       |
| Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16) LCS (B4C0359-BS2) CCME PHC F2 (C10-C16)  CCME CWS Petroleum Hydrocarbo Blank (B4C0511-BLK1) CCME PHC F1 (C6-C10) LCS (B4C0511-BS2)                                                                                                                                                         | < 100<br>1090<br>ns, Batch B4C0511<br>< 100            | 100 ug/L                                                | Prepared Prepared Prepared      | l: Mar-11-1                                              | 4, Analyze 53 4, Analyze 4, Analyze            | ed: Mar-14<br>41-112<br>ed: Mar-13<br>ed: Mar-13                        | -14               |              |       |
| Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16)  LCS (B4C0359-BS2) CCME PHC F2 (C10-C16)  CME CWS Petroleum Hydrocarbo Blank (B4C0511-BLK1) CCME PHC F1 (C6-C10)  LCS (B4C0511-BS2)                                                                                                                                                        | < 100<br>1090<br>ns, Batch B4C0511                     | 100 ug/L                                                | Prepared 2050                   | l: Mar-11-1<br>l: Mar-13-1                               | 4, Analyze<br>53<br>4, Analyze                 | ed: Mar-14<br>41-112<br>ed: Mar-13                                      | -14               |              |       |
| Blank (B4C0359-BLK1)  CCME PHC F2 (C10-C16)  CCME PHC F2 (C10-C16)  CCME PHC F2 (C10-C16)  CME CWS Petroleum Hydrocarbo  Blank (B4C0511-BLK1)  CCME PHC F1 (C6-C10)  CCS (B4C0511-BS2)  CCME PHC F1 (C6-C10)  Duplicate (B4C0511-DUP1)                                                                                                | < 100  1090  ns, Batch B4C0511  < 100  2370  Sou       | 100 ug/L  100 ug/L  100 ug/L  rce: 4030418-03           | Prepared Prepared 2930          | i: Mar-11-1<br>i: Mar-13-1<br>i: Mar-13-1<br>i: Mar-13-1 | 4, Analyze 4, Analyze 4, Analyze 81            | ed: Mar-14<br>41-112<br>ed: Mar-13<br>ed: Mar-13<br>60-99               | -14<br>-14<br>-14 |              |       |
| Blank (B4C0359-BLK1)  CCME PHC F2 (C10-C16)  LCS (B4C0359-BS2)  CCME PHC F2 (C10-C16)  CME CWS Petroleum Hydrocarbo  Blank (B4C0511-BLK1)  CCME PHC F1 (C6-C10)  LCS (B4C0511-BS2)  CCME PHC F1 (C6-C10)  Duplicate (B4C0511-DUP1)  CCME PHC F1 (C6-C10)                                                                              | < 100  1090  ns, Batch B4C0511  < 100  2370            | 100 ug/L 100 ug/L                                       | Prepared Prepared 2930          | i: Mar-11-1<br>i: Mar-13-1<br>i: Mar-13-1                | 4, Analyze 4, Analyze 4, Analyze 81            | ed: Mar-14<br>41-112<br>ed: Mar-13<br>ed: Mar-13<br>60-99               | -14<br>-14<br>-14 | 20           |       |
| Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16)  LCS (B4C0359-BS2) CCME PHC F2 (C10-C16)  CME CWS Petroleum Hydrocarbo Blank (B4C0511-BLK1) CCME PHC F1 (C6-C10)  LCS (B4C0511-BS2) CCME PHC F1 (C6-C10)  Duplicate (B4C0511-DUP1) CCME PHC F1 (C6-C10)  issolved Metals, Batch B4C0352                                                    | < 100  1090  ns, Batch B4C0511  < 100  2370  Sou       | 100 ug/L  100 ug/L  100 ug/L  rce: 4030418-03           | Prepared Prepared 2930 Prepared | i: Mar-11-1<br>i: Mar-13-1<br>i: Mar-13-1<br>i: Mar-13-1 | 4, Analyze 4, Analyze 4, Analyze 81 4, Analyze | ed: Mar-14<br>41-112<br>ed: Mar-13<br>ed: Mar-13<br>60-99<br>ed: Mar-13 | -14<br>-14<br>-14 | 20           |       |
| Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16)  LCS (B4C0359-BS2) CCME PHC F2 (C10-C16)  CME CWS Petroleum Hydrocarbo Blank (B4C0511-BLK1) CCME PHC F1 (C6-C10)  LCS (B4C0511-BS2) CCME PHC F1 (C6-C10)  Duplicate (B4C0511-DUP1) CCME PHC F1 (C6-C10)  issolved Metals, Batch B4C0352  Blank (B4C0352-BLK1)                              | < 100  1090  ns, Batch B4C0511  < 100  2370  Sou       | 100 ug/L  100 ug/L  100 ug/L  rce: 4030418-03           | Prepared Prepared 2930 Prepared | i: Mar-11-1<br>i: Mar-13-1<br>i: Mar-13-1<br>i: Mar-13-1 | 4, Analyze 4, Analyze 4, Analyze 81 4, Analyze | ed: Mar-14<br>41-112<br>ed: Mar-13<br>ed: Mar-13<br>60-99<br>ed: Mar-13 | -14<br>-14<br>-14 | 20           |       |
| Blank (B4C0359-BLK1) CCME PHC F2 (C10-C16) LCS (B4C0359-BS2) CCME PHC F2 (C10-C16) CCME CWS Petroleum Hydrocarbo                                                                                                                                                                                                                      | < 100  1090  ns, Batch B4C0511  < 100  2370  Sou < 100 | 100 ug/L  100 ug/L  100 ug/L  rce: 4030418-03  100 ug/L | Prepared Prepared 2930 Prepared | i: Mar-11-1<br>i: Mar-13-1<br>i: Mar-13-1<br>i: Mar-13-1 | 4, Analyze 4, Analyze 4, Analyze 81 4, Analyze | ed: Mar-14<br>41-112<br>ed: Mar-13<br>ed: Mar-13<br>60-99<br>ed: Mar-13 | -14<br>-14<br>-14 | 20           |       |
| Blank (B4C0359-BLK1)  CCME PHC F2 (C10-C16)  LCS (B4C0359-BS2)  CCME PHC F2 (C10-C16)  CCME CWS Petroleum Hydrocarbo  Blank (B4C0511-BLK1)  CCME PHC F1 (C6-C10)  LCS (B4C0511-BS2)  CCME PHC F1 (C6-C10)  Duplicate (B4C0511-DUP1)  CCME PHC F1 (C6-C10)  Dissolved Metals, Batch B4C0352  Blank (B4C0352-BLK1)  Aluminum, dissolved | < 100  1090  ns, Batch B4C0511  < 100  2370  Sou < 100 | 100 ug/L  100 ug/L  100 ug/L  rce: 4030418-03  100 ug/L | Prepared Prepared 2930 Prepared | i: Mar-11-1<br>i: Mar-13-1<br>i: Mar-13-1<br>i: Mar-13-1 | 4, Analyze 4, Analyze 4, Analyze 81 4, Analyze | ed: Mar-14<br>41-112<br>ed: Mar-13<br>ed: Mar-13<br>60-99<br>ed: Mar-13 | -14<br>-14<br>-14 | 20           |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030418 Mar-17-14

| Analyte                               | Result   | MRL U     | nits | Spike<br>Level | Source<br>Result | % REC      | REC<br>Limit | RPD  | RPD<br>Limit | Notes |
|---------------------------------------|----------|-----------|------|----------------|------------------|------------|--------------|------|--------------|-------|
| Dissolved Metals, Batch B4C0352, Cont | inued    |           |      |                |                  |            |              |      |              |       |
| Blank (B4C0352-BLK1), Continued       |          |           |      | Prepared       | I: Mar-12-1      | 4, Analyze | ed: Mar-12   | !-14 |              |       |
| Beryllium, dissolved                  | < 0.001  | 0.001 mg  | g/L  |                |                  | · ·        |              |      |              |       |
| Bismuth, dissolved                    | < 0.001  | 0.001 m   |      |                |                  |            |              |      |              |       |
| Boron, dissolved                      | < 0.04   | 0.04 mg   |      |                |                  |            |              |      |              |       |
| Cadmium, dissolved                    | < 0.0001 | 0.0001 m  |      |                |                  |            |              |      |              |       |
| Calcium, dissolved                    | < 2.0    | 2.0 m     | g/L  |                |                  |            |              |      |              |       |
| Chromium, dissolved                   | < 0.005  | 0.005 m   |      |                |                  |            |              |      |              |       |
| Cobalt, dissolved                     | < 0.0005 | 0.0005 mg | g/L  |                |                  |            |              |      |              |       |
| Copper, dissolved                     | < 0.002  | 0.002 m   |      |                |                  |            |              |      |              |       |
| Iron, dissolved                       | < 0.10   | 0.10 mg   | g/L  |                |                  |            |              |      |              |       |
| Lead, dissolved                       | < 0.001  | 0.001 m   | g/L  |                |                  |            |              |      |              |       |
| Lithium, dissolved                    | < 0.001  | 0.001 m   |      |                |                  |            |              |      |              |       |
| Magnesium, dissolved                  | < 0.1    | 0.1 m     | g/L  |                |                  |            |              |      |              |       |
| Manganese, dissolved                  | < 0.002  | 0.002 m   | g/L  |                |                  |            |              |      |              |       |
| Mercury, dissolved                    | < 0.0002 | 0.0002 m  | g/L  |                |                  |            |              |      |              |       |
| Molybdenum, dissolved                 | < 0.001  | 0.001 mg  | g/L  |                |                  |            |              |      |              |       |
| Nickel, dissolved                     | < 0.002  | 0.002 mg  | g/L  |                |                  |            |              |      |              |       |
| Phosphorus, dissolved                 | < 0.2    | 0.2 mg    | g/L  |                |                  |            |              |      |              |       |
| Potassium, dissolved                  | < 0.2    | 0.2 mg    | g/L  |                |                  |            |              |      |              |       |
| Selenium, dissolved                   | < 0.005  | 0.005 mg  |      |                |                  |            |              |      |              |       |
| Silicon, dissolved                    | < 5      | 5 m       | g/L  |                |                  |            |              |      |              |       |
| Silver, dissolved                     | < 0.0005 | 0.0005 mg | g/L  |                |                  |            |              |      |              |       |
| Sodium, dissolved                     | < 0.2    | 0.2 m     | g/L  |                |                  |            |              |      |              |       |
| Strontium, dissolved                  | < 0.01   | 0.01 m    | g/L  |                |                  |            |              |      |              |       |
| Sulfur, dissolved                     | < 10     | 10 m      | g/L  |                |                  |            |              |      |              |       |
| Tellurium, dissolved                  | < 0.002  | 0.002 m   | g/L  |                |                  |            |              |      |              |       |
| Thallium, dissolved                   | < 0.0002 | 0.0002 mg | g/L  |                |                  |            |              |      |              |       |
| Thorium, dissolved                    | < 0.001  | 0.001 mg  |      |                |                  |            |              |      |              |       |
| Tin, dissolved                        | < 0.002  | 0.002 m   |      |                |                  |            |              |      |              |       |
| Titanium, dissolved                   | < 0.05   | 0.05 mg   | g/L  |                |                  |            |              |      |              |       |
| Uranium, dissolved                    | < 0.0002 | 0.0002 mg |      |                |                  |            |              |      |              |       |
| Vanadium, dissolved                   | < 0.01   | 0.01 m    | g/L  |                |                  |            |              |      |              |       |
| Zinc, dissolved                       | < 0.04   | 0.04 m    |      |                |                  |            |              |      |              |       |
| Zirconium, dissolved                  | < 0.001  | 0.001 m   | g/L  |                |                  |            |              |      |              |       |
| Blank (B4C0352-BLK2)                  |          |           |      | Prepared       | l: Mar-12-1      | 4, Analyze | ed: Mar-12   | -14  |              |       |
| Aluminum, dissolved                   | < 0.05   | 0.05 mg   | a/L  |                |                  | .,,        |              |      |              |       |
| Antimony, dissolved                   | < 0.001  | 0.001 mg  |      |                |                  |            |              |      |              |       |
| Arsenic, dissolved                    | < 0.005  | 0.005 mg  |      |                |                  |            |              |      |              |       |
| Barium, dissolved                     | < 0.05   | 0.05 mg   | _    |                |                  |            |              |      |              |       |
| Beryllium, dissolved                  | < 0.001  | 0.001 mg  |      |                |                  |            |              |      |              |       |
| Bismuth, dissolved                    | < 0.001  | 0.001 mg  |      |                |                  |            |              |      |              |       |
| Boron, dissolved                      | < 0.04   | 0.04 mg   |      |                |                  |            |              |      |              |       |
| Cadmium, dissolved                    | < 0.0001 | 0.0001 mg |      |                |                  |            |              |      |              |       |
| Calcium, dissolved                    | < 2.0    | 2.0 m     |      |                |                  |            |              |      |              |       |
| Chromium, dissolved                   | < 0.005  | 0.005 m   |      |                |                  |            |              |      |              |       |
| Cobalt, dissolved                     | < 0.0005 | 0.0005 m  |      |                |                  |            |              |      |              |       |
| Copper, dissolved                     | < 0.002  | 0.002 m   |      |                |                  |            |              |      |              |       |
| Iron, dissolved                       | < 0.10   | 0.10 m    |      |                |                  |            |              |      |              |       |
| Lead, dissolved                       | < 0.001  | 0.001 m   |      |                |                  |            |              |      |              |       |
| Lithium, dissolved                    | < 0.001  | 0.001 m   |      |                |                  |            |              |      |              |       |
| Magnesium, dissolved                  | < 0.1    | 0.1 m     |      |                |                  |            |              |      |              |       |
| Manganese, dissolved                  | < 0.002  | 0.002 m   |      |                |                  |            |              |      |              |       |
| Mercury, dissolved                    | < 0.0002 | 0.0002 m  |      |                |                  |            |              |      |              |       |
| Molybdenum, dissolved                 | < 0.001  | 0.001 mg  | _    |                |                  |            |              |      |              |       |
| Nickel, dissolved                     | < 0.002  | 0.002 m   |      |                |                  |            |              |      |              |       |
| Phosphorus, dissolved                 | < 0.2    | 0.2 m     |      |                |                  |            |              |      |              |       |
| Potassium, dissolved                  | < 0.2    | 0.2 m     |      |                |                  |            |              |      |              |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030418 Mar-17-14

| Analyte   | Result  | MRL Units | Spike | Source | % REC   | REC   | RPD | RPD   | Notes |
|-----------|---------|-----------|-------|--------|---------|-------|-----|-------|-------|
| - many to | 1100011 |           | Level | Result | 70 1120 | Limit |     | Limit |       |

| Dissolved Metals, | Dalcii D4CU352, | Continuea |
|-------------------|-----------------|-----------|
|                   |                 |           |

| Blank (B4C0352-BLK2), Continued |          |             | Prepared: Mar-12-14, Analyzed: Mar-12-14 |
|---------------------------------|----------|-------------|------------------------------------------|
| Selenium, dissolved             | < 0.005  | 0.005 mg/L  |                                          |
| Silicon, dissolved              | < 5      | 5 mg/L      |                                          |
| Silver, dissolved               | < 0.0005 | 0.0005 mg/L |                                          |
| Sodium, dissolved               | < 0.2    | 0.2 mg/L    |                                          |
| Strontium, dissolved            | < 0.01   | 0.01 mg/L   |                                          |
| Sulfur, dissolved               | < 10     | 10 mg/L     |                                          |
| Tellurium, dissolved            | < 0.002  | 0.002 mg/L  |                                          |
| Thallium, dissolved             | < 0.0002 | 0.0002 mg/L |                                          |
| Thorium, dissolved              | < 0.001  | 0.001 mg/L  |                                          |
| Tin, dissolved                  | < 0.002  | 0.002 mg/L  |                                          |
| Titanium, dissolved             | < 0.05   | 0.05 mg/L   |                                          |
| Uranium, dissolved              | < 0.0002 | 0.0002 mg/L |                                          |
| Vanadium, dissolved             | < 0.01   | 0.01 mg/L   |                                          |
| Zinc, dissolved                 | < 0.04   | 0.04 mg/L   |                                          |
| Zirconium, dissolved            | < 0.001  | 0.001 mg/L  |                                          |

| Zinc, dissolved          | < 0.04   | 0.04 mg/L        |                              |               |    |  |
|--------------------------|----------|------------------|------------------------------|---------------|----|--|
| Zirconium, dissolved     | < 0.001  | 0.001 mg/L       |                              |               |    |  |
| Duplicate (B4C0352-DUP1) | Sou      | ırce: 4030418-05 | Prepared: Mar-12-14, Analyzo | ed: Mar-12-14 |    |  |
| Aluminum, dissolved      | < 0.05   | 0.05 mg/L        | < 0.05                       |               | 16 |  |
| Antimony, dissolved      | < 0.001  | 0.001 mg/L       | 0.001                        |               | 21 |  |
| Arsenic, dissolved       | < 0.005  | 0.005 mg/L       | < 0.005                      |               | 10 |  |
| Barium, dissolved        | < 0.05   | 0.05 mg/L        | < 0.05                       |               | 6  |  |
| Beryllium, dissolved     | < 0.001  | 0.001 mg/L       | < 0.001                      |               | 20 |  |
| Bismuth, dissolved       | < 0.001  | 0.001 mg/L       | < 0.001                      |               | 20 |  |
| Boron, dissolved         | 0.06     | 0.04 mg/L        | 0.04                         |               | 13 |  |
| Cadmium, dissolved       | < 0.0001 | 0.0001 mg/L      | < 0.0001                     |               | 24 |  |
| Calcium, dissolved       | 61.1     | 2.0 mg/L         | 59.9                         | 2             | 10 |  |
| Chromium, dissolved      | < 0.005  | 0.005 mg/L       | < 0.005                      |               | 7  |  |
| Cobalt, dissolved        | < 0.0005 | 0.0005 mg/L      | < 0.0005                     |               | 12 |  |
| Copper, dissolved        | 0.002    | 0.002 mg/L       | 0.002                        |               | 20 |  |
| ron, dissolved           | < 0.10   | 0.10 mg/L        | < 0.10                       |               | 10 |  |
| _ead, dissolved          | < 0.001  | 0.001 mg/L       | < 0.001                      |               | 14 |  |
| _ithium, dissolved       | 0.004    | 0.001 mg/L       | 0.004                        |               | 15 |  |
| Magnesium, dissolved     | 24.1     | 0.1 mg/L         | 24.0                         | < 1           | 9  |  |
| Manganese, dissolved     | 0.012    | 0.002 mg/L       | 0.012                        | < 1           | 10 |  |
| Mercury, dissolved       | 0.0003   | 0.0002 mg/L      | < 0.0002                     |               | 20 |  |
| Molybdenum, dissolved    | 0.008    | 0.001 mg/L       | 0.008                        | 4             | 16 |  |
| Nickel, dissolved        | < 0.002  | 0.002 mg/L       | < 0.002                      |               | 14 |  |
| Phosphorus, dissolved    | < 0.2    | 0.2 mg/L         | < 0.2                        |               | 23 |  |
| Potassium, dissolved     | 2.9      | 0.2 mg/L         | 2.9                          | 2             | 17 |  |
| Selenium, dissolved      | < 0.005  | 0.005 mg/L       | < 0.005                      |               | 23 |  |
| Silicon, dissolved       | 10       | 5 mg/L           | 10                           |               | 10 |  |
| Silver, dissolved        | 0.0006   | 0.0005 mg/L      | 0.0011                       |               | 20 |  |
| Sodium, dissolved        | 17.0     | 0.2 mg/L         | 16.9                         | < 1           | 9  |  |
| Strontium, dissolved     | 0.32     | 0.01 mg/L        | 0.32                         | < 1           | 9  |  |
| Sulfur, dissolved        | < 10     | 10 mg/L          | < 10                         |               | 27 |  |
| Tellurium, dissolved     | < 0.002  | 0.002 mg/L       | < 0.002                      |               | 20 |  |
| Thallium, dissolved      | < 0.0002 | 0.0002 mg/L      | < 0.0002                     |               | 12 |  |
| Thorium, dissolved       | < 0.001  | 0.001 mg/L       | < 0.001                      |               | 20 |  |
| Fin, dissolved           | < 0.002  | 0.002 mg/L       | < 0.002                      |               | 20 |  |
| Titanium, dissolved      | < 0.05   | 0.05 mg/L        | < 0.05                       |               | 20 |  |
| Jranium, dissolved       | 0.0028   | 0.0002 mg/L      | 0.0026                       | 5             | 11 |  |
| Vanadium, dissolved      | < 0.01   | 0.01 mg/L        | < 0.01                       |               | 14 |  |
| Zinc, dissolved          | < 0.04   | 0.04 mg/L        | < 0.04                       |               | 11 |  |
| Zirconium, dissolved     | < 0.001  | 0.001 mg/L       | < 0.001                      |               | 20 |  |
| Duplicate (B4C0352-DUP2) | Soi      | urce: 4030418-15 | Prepared: Mar-12-14, Analyzo | ed: Mar-12-14 |    |  |

0.05 mg/L

< 0.05

< 0.05

Aluminum, dissolved

16



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030418 Mar-17-14

| 7ROJEC1 14-0493                         |          |                          |                |                  | KLF        | OKIED            | 10   | viar-17-1    |       |
|-----------------------------------------|----------|--------------------------|----------------|------------------|------------|------------------|------|--------------|-------|
| Analyte                                 | Result   | MRL Units                | Spike<br>Level | Source<br>Result | % REC      | REC<br>Limit     | RPD  | RPD<br>Limit | Notes |
| Dissolved Metals, Batch B4C0352, Contin | ued      |                          |                |                  |            |                  |      |              |       |
| Duplicate (B4C0352-DUP2), Continued     | Sou      | ırce: 4030418-15         | Prepared       | d: Mar-12-1      | 4, Analyze | ed: Mar-12       | -14  |              |       |
| Antimony, dissolved                     | < 0.001  | 0.001 mg/L               |                | < 0.001          |            |                  |      | 21           |       |
| Arsenic, dissolved                      | < 0.005  | 0.005 mg/L               |                | < 0.005          |            |                  |      | 10           |       |
| Barium, dissolved                       | 0.08     | 0.05 mg/L                |                | 0.08             |            |                  |      | 6            |       |
| Beryllium, dissolved                    | < 0.001  | 0.001 mg/L               |                | < 0.001          |            |                  |      | 20           |       |
| Bismuth, dissolved                      | < 0.001  | 0.001 mg/L               |                | < 0.001          |            |                  |      | 20           |       |
| Boron, dissolved                        | < 0.04   | 0.04 mg/L                |                | < 0.04           |            |                  |      | 13           |       |
| Cadmium, dissolved                      | < 0.0001 | 0.0001 mg/L              |                | < 0.0001         |            |                  |      | 24           |       |
| Calcium, dissolved                      | 91.7     | 2.0 mg/L                 |                | 88.1             |            |                  | 4    | 10           |       |
| Chromium, dissolved                     | < 0.005  | 0.005 mg/L               |                | < 0.005          |            |                  |      | 7            |       |
| Cobalt, dissolved                       | < 0.0005 | 0.0005 mg/L              |                | < 0.0005         |            |                  |      | 12           |       |
| Copper, dissolved                       | 0.002    | 0.002 mg/L               |                | 0.002            |            |                  |      | 20           |       |
| Iron, dissolved                         | < 0.10   | 0.10 mg/L                |                | < 0.10           |            |                  |      | 10           |       |
| Lead, dissolved                         | < 0.001  | 0.001 mg/L               |                | < 0.001          |            |                  |      | 14           |       |
| Lithium, dissolved                      | 0.002    | 0.001 mg/L               |                | 0.002            |            |                  |      | 15           |       |
| Magnesium, dissolved                    | 44.7     | 0.1 mg/L                 |                | 42.5             |            |                  | 5    | 9            |       |
| Manganese, dissolved                    | < 0.002  | 0.002 mg/L               |                | < 0.002          |            |                  |      | 10           |       |
| Mercury, dissolved                      | < 0.0002 | 0.0002 mg/L              |                | < 0.0002         |            |                  |      | 20           |       |
| Molybdenum, dissolved                   | 0.002    | 0.001 mg/L               |                | 0.001            |            |                  |      | 16           |       |
| Nickel, dissolved                       | < 0.002  | 0.002 mg/L               |                | < 0.002          |            |                  |      | 14           |       |
| Phosphorus, dissolved                   | < 0.2    | 0.2 mg/L                 |                | < 0.2            |            |                  |      | 23           |       |
| Potassium, dissolved                    | 2.1      | 0.2 mg/L                 |                | 2.0              |            |                  | 4    | 17           |       |
| Selenium, dissolved                     | < 0.005  | 0.005 mg/L               |                | < 0.005          |            |                  |      | 23           |       |
| Silicon, dissolved                      | 7        | 5 mg/L                   |                | 6                |            |                  |      | 10           |       |
| Silver, dissolved                       | < 0.0005 | 0.0005 mg/L              |                | < 0.0005         |            |                  |      | 20           |       |
| Sodium, dissolved                       | 39.0     | 0.2 mg/L                 |                | 37.6             |            |                  | 4    | 9            |       |
| Strontium, dissolved                    | 0.72     | 0.01 mg/L                |                | 0.69             |            |                  | 4    | 9            |       |
| Sulfur, dissolved                       | < 10     | 10 mg/L                  |                | < 10             |            |                  |      | 27           |       |
| Tellurium, dissolved                    | < 0.002  | 0.002 mg/L               |                | < 0.002          |            |                  |      | 20           |       |
| Thallium, dissolved                     | < 0.0002 | 0.0002 mg/L              |                | < 0.0002         |            |                  |      | 12           |       |
| Thorium, dissolved                      | < 0.001  | 0.001 mg/L               |                | < 0.001          |            |                  |      | 20           |       |
| Tin, dissolved                          | < 0.002  | 0.002 mg/L               |                | < 0.002          |            |                  |      | 20           |       |
| Titanium, dissolved                     | < 0.05   | 0.05 mg/L                |                | < 0.05           |            |                  |      | 20           |       |
| Uranium, dissolved                      | 0.0007   | 0.0002 mg/L              |                | 0.0007           |            |                  |      | 11           |       |
| Vanadium, dissolved                     | < 0.01   | 0.01 mg/L                |                | < 0.01           |            |                  |      | 14           |       |
| Zinc, dissolved                         | < 0.04   | 0.04 mg/L                |                | < 0.04           |            |                  |      | 11           |       |
| Zirconium, dissolved                    | < 0.001  | 0.001 mg/L               |                | < 0.001          |            |                  |      | 20           |       |
| Matrix Spike (B4C0352-MS1)              | Soi      | urce: 4030418-06         | Prepared       | d: Mar-12-1      | 4, Analyze | ed: Mar-12       | !-14 |              |       |
| Antimony, dissolved                     | 0.378    | 0.001 mg/L               |                | < 0.001          |            | 71-112           |      |              |       |
| Arsenic, dissolved                      | 0.187    | 0.005 mg/L               | 0.200          | < 0.005          | 93         | 82-112           |      |              |       |
| Barium, dissolved                       | 0.95     | 0.05 mg/L                | 1.00           | < 0.05           | 93         | 80-109           |      |              |       |
| Beryllium, dissolved                    | 0.094    | 0.001 mg/L               | 0.100          | < 0.001          | 94         | 75-111           |      |              |       |
| Cadmium, dissolved                      | 0.0927   | 0.0001 mg/L              | 0.100          | < 0.0001         | 93         | 84-109           |      |              |       |
| Chromium, dissolved                     | 0.386    | 0.005 mg/L               | 0.400          | < 0.005          | 96         | 87-115           |      |              |       |
| Cobalt, dissolved                       | 0.385    | 0.0005 mg/L              | 0.400          | < 0.0005         | 96         | 85-118           |      |              |       |
| Copper, dissolved                       | 0.388    | 0.000 mg/L               | 0.400          | 0.003            | 96         | 84-121           |      |              |       |
| Iron, dissolved                         | 1.90     | 0.10 mg/L                | 2.00           | < 0.10           | 95         | 71-129           |      |              |       |
| Lead, dissolved                         | 0.182    | 0.001 mg/L               | 0.200          | < 0.001          | 91         | 81-111           |      |              |       |
| Manganese, dissolved                    | 0.383    | 0.001 mg/L<br>0.002 mg/L | 0.400          | 0.002            | 95         | 66-125           |      |              |       |
| Nickel, dissolved                       | 0.374    | 0.002 mg/L               | 0.400          | < 0.002          | 94         | 85-115           |      |              |       |
| Selenium, dissolved                     | 0.087    | 0.002 mg/L               | 0.400          | < 0.002          | 87         | 77-113           |      |              |       |
| Silver, dissolved                       | 0.0868   | 0.0005 mg/L              | 0.100          | < 0.0005         | 87         | 52-131           |      |              |       |
| olivoi, alaaoiveu                       |          |                          |                | < 0.0003         | 92         |                  |      |              |       |
| Thallium dissolved                      | () (1923 | () ()()()2 ma/i          |                |                  |            |                  |      |              |       |
| Thallium, dissolved Vanadium, dissolved | 0.0923   | 0.0002 mg/L<br>0.01 mg/L | 0.100          | < 0.0002         | 95         | 82-111<br>85-111 |      |              |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030418 Mar-17-14

| Analyte                             | Result   | MRL Units        | Spike<br>Level | Source<br>Result | % REC       | REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-------------------------------------|----------|------------------|----------------|------------------|-------------|--------------|-----|--------------|-------|
| Dissolved Metals, Batch B4C0352, Co | ontinued |                  |                |                  |             |              |     |              |       |
| Matrix Spike (B4C0352-MS2)          | Sou      | ırce: 4030418-16 | Prepared       | d: Mar-12-1      | 14, Analyze | ed: Mar-12   | -14 |              |       |
| Antimony, dissolved                 | 0.369    | 0.001 mg/L       | 0.400          | 0.001            | 92          | 71-112       |     |              |       |
| Arsenic, dissolved                  | 0.182    | 0.005 mg/L       | 0.200          | < 0.005          | 91          | 82-112       |     |              |       |
| Barium, dissolved                   | 1.00     | 0.05 mg/L        | 1.00           | 0.09             | 91          | 80-109       |     |              |       |
| Beryllium, dissolved                | 0.090    | 0.001 mg/L       | 0.100          | < 0.001          | 90          | 75-111       |     |              |       |
| Cadmium, dissolved                  | 0.0913   | 0.0001 mg/L      | 0.100          | < 0.0001         | 91          | 84-109       |     |              |       |
| Chromium, dissolved                 | 0.375    | 0.005 mg/L       | 0.400          | < 0.005          | 93          | 87-115       |     |              |       |
| Cobalt, dissolved                   | 0.376    | 0.0005 mg/L      | 0.400          | < 0.0005         | 94          | 85-118       |     |              |       |
| Copper, dissolved                   | 0.379    | 0.002 mg/L       | 0.400          | < 0.002          | 94          | 84-121       |     |              |       |
| Iron, dissolved                     | 1.86     | 0.10 mg/L        | 2.00           | < 0.10           | 93          | 71-129       |     |              |       |
| Lead, dissolved                     | 0.176    | 0.001 mg/L       | 0.200          | < 0.001          | 88          | 81-111       |     |              |       |
| Manganese, dissolved                | 0.360    | 0.002 mg/L       | 0.400          | < 0.002          | 90          | 66-125       |     |              |       |
| Nickel, dissolved                   | 0.366    | 0.002 mg/L       | 0.400          | < 0.002          | 91          | 85-115       |     |              |       |
| Selenium, dissolved                 | 0.087    | 0.005 mg/L       | 0.100          | < 0.005          | 87          | 77-113       |     |              |       |
| Silver, dissolved                   | 0.0846   | 0.0005 mg/L      | 0.100          | < 0.0005         | 84          | 52-131       |     |              |       |
| Thallium, dissolved                 | 0.0880   | 0.0002 mg/L      | 0.100          | < 0.0002         | 88          | 82-111       |     |              |       |
| Vanadium, dissolved                 | 0.38     | 0.01 mg/L        | 0.400          | < 0.01           | 94          | 85-111       |     |              |       |
| Zinc, dissolved                     | 0.93     | 0.04 mg/L        | 1.00           | < 0.04           | 93          | 85-115       |     |              |       |
| Reference (B4C0352-SRM1)            |          |                  | Prepared       | d: Mar-12-1      | 14, Analyze | ed: Mar-12   | -14 |              |       |
| Aluminum, dissolved                 | 0.24     | 0.05 mg/L        | 0.233          |                  | 105         | 58-142       |     |              |       |
| Antimony, dissolved                 | 0.050    | 0.001 mg/L       | 0.0430         |                  | 116         | 75-125       |     |              |       |
| Arsenic, dissolved                  | 0.413    | 0.005 mg/L       | 0.438          |                  | 94          | 81-119       |     |              |       |
| Barium, dissolved                   | 3.18     | 0.05 mg/L        | 3.35           |                  | 95          | 83-117       |     |              |       |
| Beryllium, dissolved                | 0.200    | 0.001 mg/L       | 0.213          |                  | 94          | 80-120       |     |              |       |
| Boron, dissolved                    | 1.81     | 0.04 mg/L        | 1.74           |                  | 104         | 74-117       |     |              |       |
| Cadmium, dissolved                  | 0.210    | 0.0001 mg/L      | 0.224          |                  | 94          | 83-117       |     |              |       |
| Calcium, dissolved                  | 7.1      | 2.0 mg/L         | 7.69           |                  | 93          | 76-124       |     |              |       |
| Chromium, dissolved                 | 0.421    | 0.005 mg/L       | 0.437          |                  | 96          | 81-119       |     |              |       |
| Cobalt, dissolved                   | 0.126    | 0.0005 mg/L      | 0.128          |                  | 98          | 76-124       |     |              |       |
| Copper, dissolved                   | 0.841    | 0.002 mg/L       | 0.844          |                  | 100         | 84-116       |     |              |       |
| Iron, dissolved                     | 1.18     | 0.10 mg/L        | 1.29           |                  | 91          | 74-126       |     |              |       |
| Lead, dissolved                     | 0.102    | 0.001 mg/L       | 0.112          |                  | 91          | 72-128       |     |              |       |
| Lithium, dissolved                  | 0.103    | 0.001 mg/L       | 0.104          |                  | 99          | 60-140       |     |              |       |
| Magnesium, dissolved                | 6.8      | 0.1 mg/L         | 6.92           |                  | 98          | 81-119       |     |              |       |
| Manganese, dissolved                | 0.321    | 0.002 mg/L       | 0.345          |                  | 93          | 84-116       |     |              |       |
| Molybdenum, dissolved               | 0.403    | 0.001 mg/L       | 0.426          |                  | 95          | 83-117       |     |              |       |
| Nickel, dissolved                   | 0.808    | 0.002 mg/L       | 0.840          |                  | 96          | 74-126       |     |              |       |
| Phosphorus, dissolved               | 0.6      | 0.2 mg/L         | 0.495          |                  | 120         | 68-132       |     |              |       |
| Potassium, dissolved                | 2.8      | 0.2 mg/L         | 3.19           |                  | 87          | 74-126       |     |              |       |
| Selenium, dissolved                 | 0.027    | 0.005 mg/L       | 0.0331         |                  | 82          | 70-130       |     |              |       |
| Sodium, dissolved                   | 19.0     | 0.2 mg/L         | 19.1           |                  | 99          | 72-128       |     |              |       |
| Strontium, dissolved                | 0.87     | 0.01 mg/L        | 0.916          |                  | 95          | 84-113       |     |              |       |
| Thallium, dissolved                 | 0.0354   | 0.0002 mg/L      | 0.0393         |                  | 90          | 57-143       |     |              |       |
| Uranium, dissolved                  | 0.236    | 0.0002 mg/L      | 0.266          |                  | 89          | 85-115       |     |              |       |
| Vanadium, dissolved                 | 0.82     | 0.01 mg/L        | 0.869          |                  | 95          | 87-113       |     |              |       |
| Zinc, dissolved                     | 0.83     | 0.04 mg/L        | 0.881          |                  | 94          | 72-128       |     |              |       |
| Reference (B4C0352-SRM2)            |          |                  | Prepared       | d: Mar-12-1      | 14, Analyze | ed: Mar-12   | -14 |              |       |
| Aluminum, dissolved                 | 0.24     | 0.05 mg/L        | 0.233          |                  | 101         | 58-142       |     |              |       |
| Antimony, dissolved                 | 0.049    | 0.001 mg/L       | 0.0430         |                  | 114         | 75-125       |     |              |       |
| Arsenic, dissolved                  | 0.411    | 0.005 mg/L       | 0.438          |                  | 94          | 81-119       |     |              |       |
| Barium, dissolved                   | 3.15     | 0.05 mg/L        | 3.35           |                  | 94          | 83-117       |     |              |       |
| Beryllium, dissolved                | 0.205    | 0.001 mg/L       | 0.213          |                  | 96          | 80-120       |     |              |       |
| Boron, dissolved                    | 1.86     | 0.04 mg/L        | 1.74           |                  | 107         | 74-117       |     |              |       |
| Cadmium, dissolved                  | 0.207    | 0.0001 mg/L      | 0.224          |                  | 92          | 83-117       |     |              |       |
| Calcium, dissolved                  | 7.3      | 2.0 mg/L         | 7.69           |                  | 94          | 76-124       |     |              |       |
| Chromium, dissolved                 | 0.419    | 0.005 mg/L       | 0.437          |                  | 96          | 81-119       |     |              |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

Potassium, dissolved

Selenium, dissolved

Sodium, dissolved

Strontium, dissolved

Thallium, dissolved

Uranium, dissolved

Zinc, dissolved

Vanadium, dissolved

WORK ORDER 4
REPORTED 1

74-126

70-130

72-128

84-113

57-143

85-115

87-113

72-128

89

89

99

93

91

89

94

94

4030418 Mar-17-14

| Analyte                                   | Result | MRL Units   | Spike<br>Level | Source<br>Result | % REC       | REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-------------------------------------------|--------|-------------|----------------|------------------|-------------|--------------|-----|--------------|-------|
| Dissolved Metals, Batch B4C0352, Continue | ed     |             |                |                  |             |              |     |              |       |
| Reference (B4C0352-SRM2), Continued       |        |             | Prepared       | d: Mar-12-1      | 14, Analyze | ed: Mar-12   | -14 |              |       |
| Cobalt, dissolved                         | 0.126  | 0.0005 mg/L | 0.128          |                  | 98          | 76-124       |     |              |       |
| Copper, dissolved                         | 0.839  | 0.002 mg/L  | 0.844          |                  | 99          | 84-116       |     |              |       |
| Iron, dissolved                           | 1.18   | 0.10 mg/L   | 1.29           |                  | 92          | 74-126       |     |              |       |
| Lead, dissolved                           | 0.103  | 0.001 mg/L  | 0.112          |                  | 92          | 72-128       |     |              |       |
| Lithium, dissolved                        | 0.105  | 0.001 mg/L  | 0.104          |                  | 101         | 60-140       |     |              |       |
| Magnesium, dissolved                      | 6.7    | 0.1 mg/L    | 6.92           |                  | 97          | 81-119       |     |              |       |
| Manganese, dissolved                      | 0.322  | 0.002 mg/L  | 0.345          |                  | 93          | 84-116       |     |              |       |
| Molybdenum, dissolved                     | 0.400  | 0.001 mg/L  | 0.426          |                  | 94          | 83-117       |     |              |       |
| Nickel, dissolved                         | 0.800  | 0.002 mg/L  | 0.840          |                  | 95          | 74-126       |     |              |       |
| Phosphorus, dissolved                     | 0.6    | 0.2 mg/L    | 0.495          |                  | 124         | 68-132       |     |              |       |

3.19

0.0331

19.1

0.916

0.0393

0.266

0.869

0.881

0.2 mg/L

0.2 mg/L

0.01 mg/L

0.01 mg/L

0.04 mg/L

0.0002 mg/L

0.0002 mg/L

0.005 mg/L

2.8

0.030

18.9

0.85

0.0356

0.236

0.82

0.83

0.76

0.02 ug/L

1.00

76

49-105

#### Polycyclic Aromatic Hydrocarbons (PAH), Batch B4C0359

| Blank (B4C0359-BLK1)        |        |           | Prepared: Mar- | -11-14, Analyz | ed: Mar-13-14 |   |
|-----------------------------|--------|-----------|----------------|----------------|---------------|---|
| Acenaphthene                | < 0.02 | 0.02 ug/L |                |                |               |   |
| Acenaphthylene              | < 0.02 | 0.02 ug/L |                |                |               |   |
| Acridine                    | < 0.05 | 0.05 ug/L |                |                |               |   |
| Anthracene                  | < 0.01 | 0.01 ug/L |                |                |               |   |
| Benzo (a) anthracene        | < 0.01 | 0.01 ug/L |                |                |               |   |
| Benzo (a) pyrene            | < 0.01 | 0.01 ug/L |                |                |               |   |
| Benzo (b) fluoranthene      | < 0.02 | 0.02 ug/L |                |                |               |   |
| Benzo (g,h,i) perylene      | < 0.02 | 0.02 ug/L |                |                |               |   |
| Benzo (k) fluoranthene      | < 0.02 | 0.02 ug/L |                |                |               |   |
| Chrysene                    | < 0.02 | 0.02 ug/L |                |                |               |   |
| Dibenz (a,h) anthracene     | < 0.02 | 0.02 ug/L |                |                |               |   |
| Fluoranthene                | < 0.02 | 0.02 ug/L |                |                |               |   |
| Fluorene                    | < 0.02 | 0.02 ug/L |                |                |               |   |
| Indeno (1,2,3-cd) pyrene    | < 0.02 | 0.02 ug/L |                |                |               |   |
| Naphthalene                 | < 0.05 | 0.05 ug/L |                |                |               |   |
| Phenanthrene                | < 0.05 | 0.05 ug/L |                |                |               |   |
| Pyrene                      | < 0.02 | 0.02 ug/L |                |                |               |   |
| Quinoline                   | < 0.05 | 0.05 ug/L |                |                |               |   |
| Surrogate: Naphthalene-d8   | 0.722  | ug/L      | 1.02           | 71             | 40-96         |   |
| Surrogate: Acenaphthene-d10 | 0.726  | ug/L      | 0.995          | 73             | 45-92         |   |
| Surrogate: Phenanthrene-d10 | 0.734  | ug/L      | 0.970          | 76             | 48-90         |   |
| Surrogate: Chrysene-d12     | 0.839  | ug/L      | 0.950          | 88             | 41-96         |   |
| Surrogate: Perylene-d12     | 0.858  | ug/L      | 0.990          | 87             | 47-104        |   |
| LCS (B4C0359-BS1)           |        |           | Prepared: Mar- | -11-14, Analyz | ed: Mar-13-14 |   |
| Acenaphthene                | 0.68   | 0.02 ug/L | 1.00           | 68             | 54-92         | - |
| Acenaphthylene              | 0.75   | 0.02 ug/L | 1.00           | 75             | 54-95         |   |
| Acridine                    | 0.61   | 0.05 ug/L | 1.00           | 61             | 49-87         |   |
| Anthracene                  | 0.71   | 0.01 ug/L | 1.00           | 71             | 53-94         |   |
| Benzo (a) anthracene        | 0.74   | 0.01 ug/L | 1.00           | 74             | 52-95         |   |
| Benzo (a) pyrene            | 0.75   | 0.01 ug/L | 1.00           | 75             | 52-103        |   |
| Benzo (b) fluoranthene      | 0.72   | 0.02 ug/L | 1.00           | 72             | 49-94         |   |
| Benzo (g,h,i) perylene      | 0.73   | 0.02 ug/L | 1.00           | 73             | 51-98         |   |

Benzo (k) fluoranthene



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030418 Mar-17-14

20

| Analyte | Result | MRL Units | Spike | Source | % REC | REC   | RPD | RPD   | Notes |
|---------|--------|-----------|-------|--------|-------|-------|-----|-------|-------|
| 72.9.0  |        |           | Level | Result | ,,,,, | Limit |     | Limit |       |

#### Polycyclic Aromatic Hydrocarbons (PAH), Batch B4C0359, Continued

| LCS (B4C0359-BS1), Continued |      |           | Prepared: Ma | r-11-14, Analyzed: Mar-13-14 |
|------------------------------|------|-----------|--------------|------------------------------|
| Chrysene                     | 0.80 | 0.02 ug/L | 1.00         | 80 50-104                    |
| Dibana (a.b.) anthropona     | 0.70 | 0.00//    | 1.00         | 70 40.06                     |

| Chrysene                    | 0.60  | 0.02 ug/L | 1.00  | 00 | 50-104 |  |
|-----------------------------|-------|-----------|-------|----|--------|--|
| Dibenz (a,h) anthracene     | 0.72  | 0.02 ug/L | 1.00  | 72 | 49-96  |  |
| Fluoranthene                | 0.75  | 0.02 ug/L | 1.00  | 75 | 53-102 |  |
| Fluorene                    | 0.71  | 0.02 ug/L | 1.00  | 71 | 54-91  |  |
| Indeno (1,2,3-cd) pyrene    | 0.72  | 0.02 ug/L | 1.00  | 72 | 51-99  |  |
| Naphthalene                 | 0.68  | 0.05 ug/L | 1.00  | 68 | 51-91  |  |
| Phenanthrene                | 0.70  | 0.05 ug/L | 1.00  | 70 | 56-96  |  |
| Pyrene                      | 0.72  | 0.02 ug/L | 1.00  | 72 | 51-105 |  |
| Quinoline                   | 0.62  | 0.05 ug/L | 1.00  | 62 | 48-126 |  |
| Surrogate: Naphthalene-d8   | 0.742 | ug/L      | 1.02  | 73 | 40-96  |  |
| Surrogate: Acenaphthene-d10 | 0.713 | ug/L      | 0.995 | 72 | 45-92  |  |
| Surrogate: Phenanthrene-d10 | 0.753 | ug/L      | 0.970 | 78 | 48-90  |  |
| Surrogate: Chrysene-d12     | 0.832 | ug/L      | 0.950 | 88 | 41-96  |  |
| Surrogate: Perylene-d12     | 0.771 | ug/L      | 0.990 | 78 | 47-104 |  |
|                             |       |           |       |    |        |  |

| LCS Dup (B4C0359-BSD1) |      |           | Prepared: Ma | ar-11-14, Analyze | ed: Mar-13- | -14 |
|------------------------|------|-----------|--------------|-------------------|-------------|-----|
| Acenaphthene           | 0.58 | 0.02 ug/L | 1.00         | 58                | 54-92       | 16  |

| Acchaphalene                | 0.00  | 0.02 ug/L | 1.00  | 00 | 0+ 0 <b>2</b> | 10 | 20 |  |
|-----------------------------|-------|-----------|-------|----|---------------|----|----|--|
| Acenaphthylene              | 0.64  | 0.02 ug/L | 1.00  | 64 | 54-95         | 17 | 20 |  |
| Acridine                    | 0.54  | 0.05 ug/L | 1.00  | 54 | 49-87         | 13 | 20 |  |
| Anthracene                  | 0.59  | 0.01 ug/L | 1.00  | 59 | 53-94         | 18 | 20 |  |
| Benzo (a) anthracene        | 0.64  | 0.01 ug/L | 1.00  | 64 | 52-95         | 14 | 20 |  |
| Benzo (a) pyrene            | 0.65  | 0.01 ug/L | 1.00  | 65 | 52-103        | 13 | 20 |  |
| Benzo (b) fluoranthene      | 0.61  | 0.02 ug/L | 1.00  | 61 | 49-94         | 17 | 20 |  |
| Benzo (g,h,i) perylene      | 0.62  | 0.02 ug/L | 1.00  | 62 | 51-98         | 16 | 20 |  |
| Benzo (k) fluoranthene      | 0.66  | 0.02 ug/L | 1.00  | 66 | 49-105        | 13 | 20 |  |
| Chrysene                    | 0.70  | 0.02 ug/L | 1.00  | 70 | 50-104        | 13 | 20 |  |
| Dibenz (a,h) anthracene     | 0.62  | 0.02 ug/L | 1.00  | 62 | 49-96         | 14 | 20 |  |
| Fluoranthene                | 0.62  | 0.02 ug/L | 1.00  | 62 | 53-102        | 18 | 20 |  |
| Fluorene                    | 0.60  | 0.02 ug/L | 1.00  | 60 | 54-91         | 16 | 20 |  |
| Indeno (1,2,3-cd) pyrene    | 0.66  | 0.02 ug/L | 1.00  | 66 | 51-99         | 9  | 20 |  |
| Naphthalene                 | 0.58  | 0.05 ug/L | 1.00  | 58 | 51-91         | 16 | 20 |  |
| Phenanthrene                | 0.58  | 0.05 ug/L | 1.00  | 58 | 56-96         | 18 | 20 |  |
| Pyrene                      | 0.60  | 0.02 ug/L | 1.00  | 60 | 51-105        | 18 | 20 |  |
| Quinoline                   | 0.55  | 0.05 ug/L | 1.00  | 55 | 48-126        | 11 | 20 |  |
| Surrogate: Naphthalene-d8   | 0.603 | ug/L      | 1.02  | 59 | 40-96         |    |    |  |
| Surrogate: Acenaphthene-d10 | 0.584 | ug/L      | 0.995 | 59 | 45-92         |    |    |  |
| Surrogate: Phenanthrene-d10 | 0.609 | ug/L      | 0.970 | 63 | 48-90         |    |    |  |
| Surrogate: Chrysene-d12     | 0.712 | ug/L      | 0.950 | 75 | 41-96         |    |    |  |
| Surrogate: Perylene-d12     | 0.672 | ug/L      | 0.990 | 68 | 47-104        |    |    |  |
| ·                           |       |           |       |    |               |    |    |  |

#### Total Recoverable Metals, Batch B4C0354

| Blank (B4C0354-BLK1) | Prepared: Mar-11-14, Analyzed: Mar-12-14 |
|----------------------|------------------------------------------|
| Blank (B4CU354-BLK1) | Prepared: Mar-11-14, Analyzed: Mar-12-14 |

| Aluminum, total  | < 0.05   | 0.05 mg/L   |  |
|------------------|----------|-------------|--|
| Antimony, total  | < 0.001  | 0.001 mg/L  |  |
| Arsenic, total   | < 0.005  | 0.005 mg/L  |  |
| Barium, total    | < 0.05   | 0.05 mg/L   |  |
| Beryllium, total | < 0.001  | 0.001 mg/L  |  |
| Bismuth, total   | < 0.001  | 0.001 mg/L  |  |
| Boron, total     | < 0.04   | 0.04 mg/L   |  |
| Cadmium, total   | < 0.0001 | 0.0001 mg/L |  |
| Calcium, total   | < 2.0    | 2.0 mg/L    |  |
| Chromium, total  | < 0.005  | 0.005 mg/L  |  |
| Cobalt, total    | < 0.0005 | 0.0005 mg/L |  |
| Copper, total    | < 0.002  | 0.002 mg/L  |  |
| Iron, total      | < 0.10   | 0.10 mg/L   |  |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER 4030418 REPORTED Mar-17-14

| Analyte                              | Result         | MRL Un       | its Spike<br>Level                    | Source<br>Result | % REC      | REC<br>Limit | RPD | RPD<br>Limit | Notes |
|--------------------------------------|----------------|--------------|---------------------------------------|------------------|------------|--------------|-----|--------------|-------|
| otal Recoverable Metals, Batch B4C03 | 354, Continued |              |                                       |                  |            |              |     |              |       |
| Blank (B4C0354-BLK1), Continued      |                |              | Prepared                              | l: Mar-11-1      | 4, Analyze | d: Mar-12    | -14 |              |       |
| Lead, total                          | < 0.001        | 0.001 mg     | · · · · · · · · · · · · · · · · · · · |                  | · ·        |              |     |              |       |
| Lithium, total                       | < 0.001        | 0.001 mg     |                                       |                  |            |              |     |              |       |
| Magnesium, total                     | < 0.1          | 0.1 mg       |                                       |                  |            |              |     |              |       |
| Manganese, total                     | < 0.002        | 0.002 mg     |                                       |                  |            |              |     |              |       |
| Mercury, total                       | < 0.0002       | 0.0002 mg    | /L                                    |                  |            |              |     |              |       |
| Molybdenum, total                    | < 0.001        | 0.001 mg     |                                       |                  |            |              |     |              |       |
| lickel, total                        | < 0.002        | 0.002 mg     | /L                                    |                  |            |              |     |              |       |
| Phosphorus, total                    | < 0.2          | 0.2 mg       | /L                                    |                  |            |              |     |              |       |
| Potassium, total                     | < 0.2          | 0.2 mg       | /L                                    |                  |            |              |     |              |       |
| Selenium, total                      | < 0.005        | 0.005 mg     | /L                                    |                  |            |              |     |              |       |
| Silicon, total                       | < 5            | 5 mg         | /L                                    |                  |            |              |     |              |       |
| Silver, total                        | < 0.0005       | 0.0005 mg    | /L                                    |                  |            |              |     |              |       |
| Sodium, total                        | < 0.2          | 0.2 mg       |                                       |                  |            |              |     |              |       |
| Strontium, total                     | < 0.01         | 0.01 mg      |                                       |                  |            |              |     |              |       |
| Sulfur, total                        | < 10           | 10 mg        |                                       |                  |            |              |     |              |       |
| Fellurium, total                     | < 0.002        | 0.002 mg     | /L                                    |                  |            |              |     |              |       |
| Γhallium, total                      | < 0.0002       | 0.0002 mg    |                                       |                  |            |              |     |              |       |
| horium, total                        | < 0.001        | 0.001 mg     | /L                                    |                  |            |              |     |              |       |
| Γin, total                           | < 0.002        | 0.002 mg     |                                       |                  |            |              |     |              |       |
| Fitanium, total                      | < 0.05         | 0.05 mg      | /L                                    |                  |            |              |     |              |       |
| Jranium, total                       | < 0.0002       | 0.0002 mg    | /L                                    |                  |            |              |     |              |       |
| /anadium, total                      | < 0.01         | 0.01 mg      | /L                                    |                  |            |              |     |              |       |
| Zinc, total                          | < 0.04         | 0.04 mg      | /L                                    |                  |            |              |     |              |       |
| Zirconium, total                     | < 0.001        | 0.001 mg     | /L                                    |                  |            |              |     |              |       |
| Ouplicate (B4C0354-DUP1)             | Sou            | rce: 4030418 | -01 Prepared                          | l: Mar-11-1      | 4, Analyze | d: Mar-13    | -14 |              |       |
| Aluminum, total                      | 0.07           | 0.05 mg      | /L                                    | 0.08             |            |              |     | 27           |       |
| Antimony, total                      | < 0.001        | 0.001 mg     | /L                                    | < 0.001          |            |              |     | 24           |       |
| Arsenic, total                       | < 0.005        | 0.005 mg     | /L                                    | < 0.005          |            |              |     | 14           |       |
| Barium, total                        | < 0.05         | 0.05 mg      | /L                                    | < 0.05           |            |              |     | 16           |       |
| Beryllium, total                     | < 0.001        | 0.001 mg     | /L                                    | < 0.001          |            |              |     | 20           |       |
| Bismuth, total                       | < 0.001        | 0.001 mg     | /L                                    | < 0.001          |            |              |     | 20           |       |
| Boron, total                         | < 0.04         | 0.04 mg      | /L                                    | < 0.04           |            |              |     | 15           |       |
| Cadmium, total                       | < 0.0001       | 0.0001 mg    | /L                                    | < 0.0001         |            |              |     | 40           |       |
| Calcium, total                       | 43.8           | 2.0 mg       | /L                                    | 46.2             |            |              | 5   | 14           |       |
| Chromium, total                      | < 0.005        | 0.005 mg     | /L                                    | < 0.005          |            |              |     | 17           |       |
| Cobalt, total                        | < 0.0005       | 0.0005 mg    | /L                                    | < 0.0005         |            |              |     | 17           |       |
| Copper, total                        | 0.002          | 0.002 mg     | /L                                    | 0.002            |            |              |     | 30           |       |
| ron, total                           | 0.25           | 0.10 mg      |                                       | 0.27             |            |              |     | 28           |       |
| ead, total                           | < 0.001        | 0.001 mg     | /L                                    | < 0.001          |            |              |     | 19           |       |
| ithium, total                        | 0.002          | 0.001 mg     |                                       | 0.002            |            |              |     | 18           |       |
| /lagnesium, total                    | 15.4           | 0.1 mg       |                                       | 15.0             |            |              | 2   | 13           |       |
| /langanese, total                    | 0.004          | 0.002 mg     |                                       | 0.005            |            |              |     | 19           |       |
| Mercury, total                       | < 0.0002       | 0.0002 mg    |                                       | < 0.0002         |            |              |     | 40           |       |
| Nolybdenum, total                    | 0.003          | 0.001 mg     |                                       | 0.003            |            |              |     | 24           |       |
| lickel, total                        | < 0.002        | 0.002 mg     |                                       | < 0.002          |            |              |     | 33           |       |
| Phosphorus, total                    | < 0.2          | 0.2 mg       |                                       | < 0.2            |            |              |     | 24           |       |
| Potassium, total                     | 2.8            | 0.2 mg       |                                       | 2.6              |            |              | 5   | 22           |       |
| Selenium, total                      | < 0.005        | 0.005 mg     |                                       | < 0.005          |            |              |     | 21           |       |
| Silicon, total                       | 14             | 5 mg         |                                       | 14               |            |              |     | 25           |       |
| Silver, total                        | < 0.0005       | 0.0005 mg    |                                       | < 0.0005         |            |              |     | 23           |       |
| Sodium, total                        | 12.8           | 0.2 mg       | /L                                    | 12.5             |            |              | 3   | 17           |       |
| Strontium, total                     | 0.20           | 0.01 mg      | /L                                    | 0.19             |            |              | 2   | 11           |       |
| Sulfur, total                        | < 10           | 10 mg        | /L                                    | < 10             |            |              |     | 41           |       |
| Fellurium, total                     | < 0.002        | 0.002 mg     | /L                                    | < 0.002          |            |              |     | 31           |       |
| Fhallium, total                      | < 0.0002       | 0.0002 mg    | /L                                    | < 0.0002         |            |              |     | 21           |       |
| Thorium, total                       | < 0.001        | 0.001 mg     |                                       | < 0.001          |            |              |     | 46           |       |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

4030418 Mar-17-14

| Analyte                                 | Result      | MRL Units                  | Spike<br>Level                        | Source<br>Result | % REC      | REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------------|-------------|----------------------------|---------------------------------------|------------------|------------|--------------|-----|--------------|-------|
| Total Recoverable Metals, Batch B4C0354 | , Continued |                            |                                       |                  |            |              |     |              |       |
| Duplicate (B4C0354-DUP1), Continued     | Sou         | rce: 4030418-01            | Prepared                              | I: Mar-11-1      | 4, Analyze | d: Mar-13    | -14 |              |       |
| Tin, total                              | < 0.002     | 0.002 mg/L                 | -                                     | < 0.002          | -          |              |     | 30           |       |
| Titanium, total                         | < 0.05      | 0.05 mg/L                  |                                       | < 0.05           |            |              |     | 60           |       |
| Uranium, total                          | 0.0010      | 0.0002 mg/L                |                                       | 0.0010           |            |              | < 1 | 17           |       |
| Vanadium, total                         | < 0.01      | 0.01 mg/L                  |                                       | < 0.01           |            |              |     | 27           |       |
| Zinc, total                             | < 0.04      | 0.04 mg/L                  |                                       | < 0.04           |            |              |     | 26           |       |
| Zirconium, total                        | < 0.001     | 0.001 mg/L                 |                                       | < 0.001          |            |              |     | 60           |       |
| Matrix Spike (B4C0354-MS1)              | Sou         | Prepared                   | I: Mar-11-1                           | 4 Analyze        | d: Mar-13  | -14          |     |              |       |
| Antimony, total                         | 0.383       | 0.001 mg/L                 | 0.400                                 | < 0.001          | 96         | 81-122       | • • |              |       |
| Arsenic, total                          | 0.177       | 0.001 mg/L                 | 0.200                                 | < 0.005          | 88         | 81-119       |     |              |       |
| Barium, total                           | 0.95        | 0.05 mg/L                  | 1.00                                  | < 0.005          | 91         | 84-113       |     |              |       |
| Beryllium, total                        | 0.091       | 0.001 mg/L                 | 0.100                                 | < 0.001          | 91         | 77-117       |     |              |       |
| Cadmium, total                          | 0.0906      | 0.0001 mg/L                | 0.100                                 | < 0.001          | 91         | 87-112       |     |              |       |
| Chromium, total                         | 0.374       | 0.0001 mg/L                | 0.400                                 | < 0.005          | 94         | 88-119       |     |              |       |
| Cobalt, total                           | 0.377       | 0.005 mg/L                 | 0.400                                 | < 0.005          | 94         | 88-118       |     |              |       |
| Copper, total                           | 0.381       | 0.0003 mg/L                | 0.400                                 | 0.0003           | 95         | 86-126       |     |              |       |
| Iron, total                             | 2.17        | 0.10 mg/L                  | 2.00                                  | 0.002            | 94         | 70-138       |     |              |       |
| Lead, total                             | 0.192       | 0.10 mg/L                  | 0.200                                 | < 0.001          | 96         | 82-119       |     |              |       |
| Manganese, total                        | 0.192       | 0.001 mg/L                 | 0.400                                 | 0.006            | 102        | 81-125       |     |              |       |
| Nickel, total                           | 0.414       | 0.002 mg/L                 | 0.400                                 | < 0.002          | 91         | 85-121       |     |              |       |
| Selenium, total                         | 0.089       | 0.002 mg/L                 | 0.400                                 | < 0.002          | 89         | 73-121       |     |              |       |
| Silver, total                           | 0.0856      | 0.005 mg/L                 | 0.100                                 | < 0.005          | 86         | 83-118       |     |              |       |
| Thallium, total                         | 0.0000      | 0.0005 mg/L<br>0.0002 mg/L | 0.100                                 | < 0.0005         | 97         | 85-115       |     |              |       |
| •                                       | 0.0966      |                            | 0.100                                 | < 0.0002         | 97         | 86-116       |     |              |       |
| Vanadium, total Zinc, total             | 0.37        | 0.01 mg/L<br>0.04 mg/L     | 1.00                                  | < 0.01           | 92         | 83-123       |     |              |       |
| •                                       | 0.83        | 0.04 IIIg/L                |                                       |                  |            |              | 4.4 |              |       |
| Reference (B4C0354-SRM1)                |             |                            | · · · · · · · · · · · · · · · · · · · | I: Mar-11-1      |            |              | -14 |              |       |
| Aluminum, total                         | 0.31        | 0.05 mg/L                  | 0.296                                 |                  | 106        | 81-129       |     |              |       |
| Antimony, total                         | 0.050       | 0.001 mg/L                 | 0.0505                                |                  | 99         | 88-114       |     |              |       |
| Arsenic, total                          | 0.121       | 0.005 mg/L                 | 0.122                                 |                  | 99         | 88-114       |     |              |       |
| Barium, total                           | 0.74        | 0.05 mg/L                  | 0.777                                 |                  | 96         | 72-104       |     |              |       |
| Beryllium, total                        | 0.044       | 0.001 mg/L                 | 0.0488                                |                  | 90         | 76-131       |     |              |       |
| Boron, total                            | 3.33        | 0.04 mg/L                  | 3.40                                  |                  | 98         | 75-121       |     |              |       |
| Cadmium, total                          | 0.0471      | 0.0001 mg/L                | 0.0490                                |                  | 96         | 89-111       |     |              |       |
| Calcium, total                          | 9.6         | 2.0 mg/L                   | 10.2                                  |                  | 95         | 86-121       |     |              |       |
| Chromium, total                         | 0.244       | 0.005 mg/L                 | 0.242                                 |                  | 101        | 89-114       |     |              |       |
| Cobalt, total                           | 0.0381      | 0.0005 mg/L                | 0.0366                                |                  | 104        | 91-113       |     |              |       |
| Copper, total                           | 0.504       | 0.002 mg/L                 | 0.487                                 |                  | 104        | 91-115       |     |              |       |
| Iron, total                             | 0.43        | 0.10 mg/L                  | 0.469                                 |                  | 92         | 77-124       |     |              |       |
| Lead, total                             | 0.187       | 0.001 mg/L                 | 0.193                                 |                  | 97         | 92-113       |     |              |       |
| Lithium, total                          | 0.364       | 0.001 mg/L                 | 0.390                                 |                  | 93         | 85-115       |     |              |       |
| Magnesium, total                        | 3.5         | 0.1 mg/L                   | 3.31                                  |                  | 105        | 78-120       |     |              |       |
| Manganese, total                        | 0.107       | 0.002 mg/L                 | 0.109                                 |                  | 98         | 90-114       |     |              |       |
| Mercury, total                          | 0.0042      | 0.0002 mg/L                | 0.00456                               |                  | 92         | 50-150       |     |              |       |
| Molybdenum, total                       | 0.194       | 0.001 mg/L                 | 0.197                                 |                  | 99         | 90-111       |     |              |       |
| Nickel, total                           | 0.238       | 0.002 mg/L                 | 0.242                                 |                  | 98         | 90-111       |     |              |       |
| Phosphorus, total                       | 0.2         | 0.2 mg/L                   | 0.233                                 |                  | 85         | 85-115       |     |              |       |
| Potassium, total                        | 6.3         | 0.2 mg/L                   | 5.93                                  |                  | 106        | 84-113       |     |              |       |
| Selenium, total                         | 0.107       | 0.005 mg/L                 | 0.115                                 |                  | 93         | 85-115       |     |              |       |
| Sodium, total                           | 8.1         | 0.2 mg/L                   | 7.64                                  |                  | 106        | 82-123       |     |              |       |
| Strontium, total                        | 0.37        | 0.01 mg/L                  | 0.363                                 |                  | 102        | 88-112       |     |              |       |
| Thallium, total                         | 0.0760      | 0.0002 mg/L                | 0.0794                                |                  | 96         | 91-114       |     |              |       |
| Uranium, total                          | 0.0163      | 0.0002 mg/L                | 0.0192                                |                  | 85         | 85-120       |     |              |       |
| Vanadium, total                         | 0.37        | 0.01 mg/L                  | 0.376                                 |                  | 99         | 86-111       |     |              |       |
| Zinc, total                             | 2.39        | 0.04 mg/L                  | 2.42                                  |                  | 99         | 85-111       |     |              |       |



REPORTED TO Columbia Environmental Consulting Ltd PROJECT 14-0493

WORK ORDER REPORTED

70-130

4030418 Mar-17-14

| Analyte                             | Result        | MRL Units | Spike<br>Level | Source<br>Result | % REC      | REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-------------------------------------|---------------|-----------|----------------|------------------|------------|--------------|-----|--------------|-------|
| Volatile Organic Compounds (VOC), E | Batch B4C0511 |           |                |                  |            |              |     |              |       |
| Blank (B4C0511-BLK1)                |               |           | Prepared       | l: Mar-13-1      | 4, Analyze | ed: Mar-13   | -14 |              |       |

| Blank (B4C0511-BLK1)            |                                          |                | Prepared: Mar- | -13-14, Analyz | zed: Mar-13-14 |    |
|---------------------------------|------------------------------------------|----------------|----------------|----------------|----------------|----|
| Benzene                         | < 0.5                                    | 0.5 ug/L       |                |                |                |    |
| Ethylbenzene                    | < 1.0                                    | 1.0 ug/L       |                |                |                |    |
| Toluene                         | < 1.0                                    | 1.0 ug/L       |                |                |                |    |
| Xylenes (total)                 | < 2.0                                    | 2.0 ug/L       |                |                |                |    |
| Surrogate: Toluene-d8           | 22.1                                     | ug/L           | 25.0           | 88             | 70-130         |    |
| Surrogate: 4-Bromofluorobenzene | 21.7                                     | ug/L           | 25.0           | 87             | 70-130         |    |
| LCS (B4C0511-BS1)               | Prepared: Mar-13-14, Analyzed: Mar-13-14 |                |                |                |                |    |
| Benzene                         | 17.2                                     | 0.5 ug/L       | 20.0           | 86             | 70-130         |    |
| Ethylbenzene                    | 16.3                                     | 1.0 ug/L       | 20.0           | 82             | 70-130         |    |
| Toluene                         | 17.0                                     | 1.0 ug/L       | 20.0           | 85             | 70-130         |    |
| Xylenes (total)                 | 52.2                                     | 2.0 ug/L       | 60.0           | 87             | 70-130         |    |
| Surrogate: Toluene-d8           | 27.7                                     | ug/L           | 25.0           | 111            | 70-130         |    |
| Surrogate: 4-Bromofluorobenzene | 28.3                                     | ug/L           | 25.0           | 113            | 70-130         |    |
| Duplicate (B4C0511-DUP1)        | Sour                                     | ce: 4030418-03 | Prepared: Mar- | -13-14, Analyz | zed: Mar-13-14 |    |
| Benzene                         | < 0.5                                    | 0.5 ug/L       | < 0            | ).5            |                | 20 |
| Ethylbenzene                    | < 1.0                                    | 1.0 ug/L       | < 1            | .0             |                | 20 |
| Toluene                         | < 1.0                                    | 1.0 ug/L       | < 1            | .0             |                | 20 |
| Xylenes (total)                 | < 2.0                                    | 2.0 ug/L       | < 2            | 2.0            |                | 20 |
| Surrogate: Toluene-d8           | 23.4                                     | ug/L           | 25.0           | 94             | 70-130         |    |
|                                 |                                          |                |                |                |                |    |

ug/L

23.0

Surrogate: 4-Bromofluorobenzene



### **CERTIFICATE OF ANALYSIS**

REPORTED TO Columbia Environmental Consulting Ltd

RR #2, Site 55, Compartment 10 **TEL** (778) 476-5656 Penticton, BC V2A 6J7 **FAX** (778) 476-5655

ATTENTION Summer Zawacky WORK ORDER 4030403

PO NUMBER RECEIVED / TEMP Mar-10-14 08:34 / 17°C

PROJECT 14-0493 REPORTED Mar-19-14

PROJECT INFO LNIB PII ESA COC NUMBER B08810, B08811, B08812, B08813

#### **General Comments:**

CARO Analytical Services employs methods which are conducted according to procedures accepted by appropriate regulatory agencies, and/or are conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts, except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the Chain of Custody or Sample Requisition document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Issued By:

Jennifer Shanko, AScT For Brent Coates, BSc

Shanlio

Business Manager, Richmond

Please contact CARO if more information is needed or to provide feedback on our services.

Locations:

#110 4011 Viking Way #102 3677 Highway 97N 17225 109 Avenue
Richmond, BC V6V 2K9 Kelowna, BC V1X 5C3 Edmonton, AB T5S 1H7

Tel: 604-279-1499 Fax: 604-279-1599 Tel: 250-765-9646 Fax: 250-765-3893 Tel: 780-489-9100 Fax: 780-489-9700

www.caro.ca



#### **ANALYSIS INFORMATION**

REPORTED TO Columbia Environmental Consulting Ltd WORK ORDER 4030403
PROJECT 14-0493 REPORTED Mar-19-14

| Analysis Description             | Method Reference (* = Preparation | Method Reference (* = modified from) Preparation Analysis |          |  |  |  |
|----------------------------------|-----------------------------------|-----------------------------------------------------------|----------|--|--|--|
| BTEX in Soil                     | EPA 5035                          | EPA 8260B (1996)                                          | Richmond |  |  |  |
| BTEX/VH/VPH in Soil Pkg          | N/A                               | BCMOE                                                     | Richmond |  |  |  |
| CCME PHC F1 in Soil              | EPA 5035                          | CCME CWS PHC (2001)                                       | Richmond |  |  |  |
| CCME PHC F2-F4 in Soil           | EPA 3570 *                        | CCME CWS PHC (2001)                                       | Richmond |  |  |  |
| Moisture                         | N/A                               | ASTM D2216 (2010)                                         | Richmond |  |  |  |
| PAH in Soil (Low level)          | EPA 3570 *                        | EPA 8270D (2007)                                          | Richmond |  |  |  |
| PAH in SPLP Extract              | EPA 3510C                         | EPA 8270D (2007)                                          | Richmond |  |  |  |
| pH in Soil (1:2 Soil/Water)      | Carter 16.2                       | APHA 4500-H+ B                                            | Richmond |  |  |  |
| Sample Dry (60C) and Sieve (2mm) | Carter                            | N/A                                                       | Richmond |  |  |  |
| SPLP Extraction (Non-Volatiles)  | EPA 1312                          | N/A                                                       | Richmond |  |  |  |
| Strong Acid Leachable Metals     | BCMOE SALM V.2                    | EPA 6020A (2007)                                          | Richmond |  |  |  |
| VH in Soil                       | EPA 5035                          | BCMOE                                                     | Richmond |  |  |  |
| VOC in Soil                      | EPA 5035                          | EPA 8260B (1996)                                          | Richmond |  |  |  |
| VOC/VH/VPH in Soil Pkg           | N/A                               | BCMOE                                                     | Richmond |  |  |  |

Note: The numbers in brackets represent the year that the method was published/approved

#### **Method Reference Descriptions:**

ASTM International Test Methods

BCMOE British Columbia Environmental Laboratory Manual, 2009, British Columbia Ministry of

Environment

CCME Canadian Council of Ministers of the Environment, Canada-wide Standard Reference Methods

Carter Soil Sampling and Methods of Analysis, Carter/Gregorich
EPA United States Environmental Protection Agency Test Methods

APHA Standard Methods for the Examination of Water and Wastewater, American Public Health

Association

Carter Soil Sampling and Methods of Analysis, Carter/Gregorich
EPA United States Environmental Protection Agency Test Methods

BCMOE British Columbia Environmental Laboratory Manual, 2009, British Columbia Ministry of

Environment

#### **Glossary of Terms:**

MRL Method Reporting Limit

Less than the Reported Detection Limit (RDL) - the RDL may be higher than the MRL due to

various factors such as dilutions, limited sample volume, high moisture, or interferences

% wet Percent, reported on an as-received basis

mg/kg dry Milligrams per kilogram (ppm), reported on a dry weight basis

mg/L Milligrams per litre

pH units pH < 7 = acidic, ph > 7 = basic

ug/kg dry No Description



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                       | Result /<br>Recovery            | MRL/<br><i>Limit</i> | Units    | Prepared  | Analyzed  | Notes |
|-------------------------------|---------------------------------|----------------------|----------|-----------|-----------|-------|
| General Parameters            |                                 |                      |          |           |           |       |
| Sample ID: TP1-1 (4030403-01) | [Soil] Sampled: Mar-03-14 14:00 |                      |          |           |           |       |
| Moisture                      | 13.1                            | 0.1                  | % wet    | N/A       | Mar-12-14 |       |
| рН                            | 8.3                             | 0.1                  | pH units | Mar-12-14 | Mar-12-14 |       |
| Sample ID: TP2-1 (4030403-03) | [Soil] Sampled: Mar-03-14 14:00 |                      |          |           |           |       |
| Moisture                      | 4.9                             | 0.1                  | % wet    | N/A       | Mar-12-14 |       |
| рН                            | 8.4                             | 0.1                  | pH units | Mar-12-14 | Mar-12-14 |       |
| Sample ID: TP3-1 (4030403-04) | [Soil] Sampled: Mar-03-14 14:00 |                      |          |           |           |       |
| Moisture                      | 5.2                             | 0.1                  | % wet    | N/A       | Mar-12-14 |       |
| рН                            | 8.6                             | 0.1                  | pH units | Mar-12-14 | Mar-12-14 |       |
| Sample ID: TP4-1 (4030403-05) | [Soil] Sampled: Mar-03-14 14:00 |                      |          |           |           |       |
| Moisture                      | 5.2                             | 0.1                  | % wet    | N/A       | Mar-12-14 |       |
| рН                            | 8.2                             | 0.1                  | pH units | Mar-12-14 | Mar-12-14 |       |
| Sample ID: TP5-1 (4030403-06) | [Soil] Sampled: Mar-03-14 14:00 |                      |          |           |           |       |
| рН                            | 7.6                             | 0.1                  | pH units | Mar-12-14 | Mar-12-14 |       |
| Sample ID: TP7-1 (4030403-08) | [Soil] Sampled: Mar-03-14 14:00 |                      |          |           |           |       |
| Moisture                      | 3.4                             | 0.1                  | % wet    | N/A       | Mar-12-14 |       |
| рН                            | 8.1                             | 0.1                  | pH units | Mar-12-14 | Mar-12-14 |       |
| Sample ID: TP8-1 (4030403-09) | [Soil] Sampled: Mar-03-14 14:00 |                      |          |           |           |       |
| Moisture                      | 9.4                             | 0.1                  | % wet    | N/A       | Mar-12-14 |       |
| рН                            | 9.1                             | 0.1                  | pH units | Mar-12-14 | Mar-12-14 |       |
| Sample ID: BH1-1 (4030403-10) | [Soil] Sampled: Mar-04-14 09:00 |                      |          |           |           |       |
| Moisture                      | 4.3                             | 0.1                  | % wet    | N/A       | Mar-12-14 |       |
| рН                            | 9.3                             | 0.1                  | pH units | Mar-12-14 | Mar-12-14 |       |
| Sample ID: BH7-1 (4030403-18) | [Soil] Sampled: Mar-04-14 13:00 |                      |          |           |           |       |
| Moisture                      | 4.7                             | 0.1                  | % wet    | N/A       | Mar-12-14 |       |
| рН                            | 9.2                             | 0.1                  | pH units | Mar-12-14 | Mar-12-14 |       |
| Sample ID: BH8-1 (4030403-19) | [Soil] Sampled: Mar-04-14 13:00 |                      |          |           |           |       |
| Moisture                      | 14.3                            |                      | % wet    | N/A       | Mar-12-14 |       |
| рН                            | 8.0                             | 0.1                  | pH units | Mar-12-14 | Mar-12-14 |       |
| Sample ID: BH4-1 (4030403-20) | [Soil] Sampled: Mar-04-14 13:00 |                      |          |           |           |       |
| Moisture                      | 5.1                             | 0.1                  | % wet    | N/A       | Mar-12-14 |       |
| рН                            | 9.0                             | 0.1                  | pH units | Mar-12-14 | Mar-12-14 |       |
| Sample ID: BH5-1 (4030403-21) | [Soil] Sampled: Mar-04-14 13:00 |                      |          |           |           |       |
| Moisture                      | 4.6                             | 0.1                  | % wet    | N/A       | Mar-12-14 |       |
| pH                            | 9.1                             | 0.1                  | pH units | Mar-12-14 | Mar-12-14 |       |
| Sample ID: BH6-1 (4030403-22) | [Soil] Sampled: Mar-04-14 13:00 |                      |          |           |           |       |
| Moisture                      | 3.6                             | 0.1                  | % wet    | N/A       | Mar-12-14 |       |
| рН                            | 9.3                             | 0.1                  | pH units | Mar-12-14 | Mar-12-14 |       |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                                                                                                                                                                                                                                                                                                      | Result / Recovery                                                                                                                               | MRL /<br><i>Limit</i>      | Units                                             | Prepared        | Analyzed            | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------|-----------------|---------------------|-------|
| General Parameters, Cont                                                                                                                                                                                                                                                                                     | tinued                                                                                                                                          |                            |                                                   |                 |                     |       |
| Sample ID: BH2-1 (403040                                                                                                                                                                                                                                                                                     | 03-23) [Soil] Sampled: Mar-05-14 09:00                                                                                                          |                            |                                                   |                 |                     |       |
| Moisture                                                                                                                                                                                                                                                                                                     | 18.1                                                                                                                                            | 0.1                        | % wet                                             | N/A             | Mar-12-14           |       |
| рН                                                                                                                                                                                                                                                                                                           | 8.7                                                                                                                                             | 0.1                        | pH units                                          | Mar-12-14       | Mar-12-14           |       |
| Sample ID: BHDUP3 (403)                                                                                                                                                                                                                                                                                      | 0403-24) [Soil] Sampled: Mar-05-14 09:00                                                                                                        |                            |                                                   |                 |                     |       |
| Moisture                                                                                                                                                                                                                                                                                                     | 18.8                                                                                                                                            | 0.1                        | % wet                                             | N/A             | Mar-12-14           |       |
| рН                                                                                                                                                                                                                                                                                                           | 8.7                                                                                                                                             | 0.1                        | pH units                                          | Mar-12-14       | Mar-12-14           |       |
| Sample ID: BH3-3 (403040                                                                                                                                                                                                                                                                                     | 03-35) [Soil] Sampled: Mar-06-14 09:00                                                                                                          |                            |                                                   |                 |                     |       |
| Moisture                                                                                                                                                                                                                                                                                                     | 3.6                                                                                                                                             | 0.1                        | % wet                                             | N/A             | Mar-12-14           |       |
| рН                                                                                                                                                                                                                                                                                                           | 8.9                                                                                                                                             | 0.1                        | pH units                                          | Mar-12-14       | Mar-12-14           |       |
| Sample ID: BH9-1 (403040                                                                                                                                                                                                                                                                                     | 03-40) [Soil] Sampled: Mar-07-14 09:00                                                                                                          |                            |                                                   |                 |                     |       |
| Moisture                                                                                                                                                                                                                                                                                                     | 16.7                                                                                                                                            | 0.1                        | % wet                                             | N/A             | Mar-12-14           |       |
| рН                                                                                                                                                                                                                                                                                                           | 8.5                                                                                                                                             | 0.1                        | pH units                                          | Mar-12-14       | Mar-12-14           |       |
| Sample ID: BHDUP4 (403)                                                                                                                                                                                                                                                                                      | 0403-42) [Soil] Sampled: Mar-07-14 09:00                                                                                                        |                            |                                                   |                 |                     |       |
| Moisture                                                                                                                                                                                                                                                                                                     | 6.2                                                                                                                                             | 0.1                        | % wet                                             | N/A             | Mar-12-14           |       |
| рН                                                                                                                                                                                                                                                                                                           | 8.6                                                                                                                                             | 0.1                        | pH units                                          | Mar-12-14       | Mar-12-14           |       |
| Calculated Parameters Sample ID: TP1-1 (403040                                                                                                                                                                                                                                                               | 3-01) [Soil] Sampled: Mar-03-14 14:00                                                                                                           |                            |                                                   |                 |                     |       |
| Calculated Parameters                                                                                                                                                                                                                                                                                        |                                                                                                                                                 | 20                         | mg/kg dry                                         | N/A             | N/A                 |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs                                                                                                                                                                                                                                                          | 3-01) [Soil] Sampled: Mar-03-14 14:00                                                                                                           | 20                         | mg/kg dry                                         | N/A             | N/A                 |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs                                                                                                                                                                                                                                                          | 93-01) [Soil] Sampled: Mar-03-14 14:00 < 20                                                                                                     |                            | mg/kg dry                                         | N/A<br>N/A      | N/A<br>N/A          |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs Sample ID: TP2-1 (403040 VPHs                                                                                                                                                                                                                            | 93-01) [Soil] Sampled: Mar-03-14 14:00<br>< 20<br>93-03) [Soil] Sampled: Mar-03-14 14:00                                                        |                            |                                                   |                 |                     |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs Sample ID: TP2-1 (403040 VPHs                                                                                                                                                                                                                            | 3-01) [Soil] Sampled: Mar-03-14 14:00<br>  < 20<br>  3-03) [Soil] Sampled: Mar-03-14 14:00<br>  < 20                                            | 20                         |                                                   |                 |                     |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs Sample ID: TP2-1 (403040 VPHs Sample ID: TP4-1 (403040 VPHs                                                                                                                                                                                              | 3-01) [Soil] Sampled: Mar-03-14 14:00   < 20                                                                                                    | 20                         | mg/kg dry                                         | N/A             | N/A                 |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs Sample ID: TP2-1 (403040 VPHs Sample ID: TP4-1 (403040 VPHs                                                                                                                                                                                              | 3-01) [Soil] Sampled: Mar-03-14 14:00<br>  < 20<br>  3-03) [Soil] Sampled: Mar-03-14 14:00<br>  < 20<br>  3-05) [Soil] Sampled: Mar-03-14 14:00 | 20                         | mg/kg dry                                         | N/A             | N/A                 |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs Sample ID: TP2-1 (403040 VPHs Sample ID: TP4-1 (403040 VPHs Sample ID: TP7-1 (403040 VPHs                                                                                                                                                                | 3-01) [Soil] Sampled: Mar-03-14 14:00   < 20                                                                                                    | 20                         | mg/kg dry                                         | N/A<br>N/A      | N/A<br>N/A          |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs Sample ID: TP2-1 (403040 VPHs Sample ID: TP4-1 (403040 VPHs Sample ID: TP7-1 (403040 VPHs                                                                                                                                                                | 3-01   [Soil] Sampled: Mar-03-14 14:00                                                                                                          | 20 20                      | mg/kg dry                                         | N/A<br>N/A      | N/A<br>N/A          |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs Sample ID: TP2-1 (403040 VPHs Sample ID: TP4-1 (403040 VPHs Sample ID: TP7-1 (403040 VPHs Sample ID: TP8-1 (403040 VPHs                                                                                                                                  | 3-01   [Soil]   Sampled: Mar-03-14 14:00                                                                                                        | 20 20                      | mg/kg dry mg/kg dry mg/kg dry                     | N/A<br>N/A      | N/A<br>N/A<br>N/A   |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs Sample ID: TP2-1 (403040 VPHs Sample ID: TP4-1 (403040 VPHs Sample ID: TP7-1 (403040 VPHs Sample ID: TP8-1 (403040 VPHs Sample ID: TP8-1 (403040 VPHs Sample ID: BH1-1 (403040                                                                           | 3-01   [Soil] Sampled: Mar-03-14 14:00                                                                                                          | 20 20 20                   | mg/kg dry mg/kg dry mg/kg dry mg/kg dry           | N/A N/A N/A     | N/A N/A N/A         |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs Sample ID: TP2-1 (403040 VPHs Sample ID: TP4-1 (403040 VPHs Sample ID: TP7-1 (403040 VPHs Sample ID: TP8-1 (403040 VPHs Sample ID: BH1-1 (403040 VPHs                                                                                                    | 33-01   [Soil]   Sampled: Mar-03-14 14:00                                                                                                       | 20 20 20                   | mg/kg dry mg/kg dry mg/kg dry                     | N/A<br>N/A      | N/A<br>N/A<br>N/A   |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs Sample ID: TP2-1 (403040 VPHs Sample ID: TP4-1 (403040 VPHs Sample ID: TP7-1 (403040 VPHs Sample ID: TP8-1 (403040 VPHs Sample ID: BH1-1 (403040 VPHs Sample ID: BH1-1 (403040 VPHs                                                                      | 33-01   [Soil] Sampled: Mar-03-14 14:00                                                                                                         | 20<br>20<br>20<br>20<br>20 | mg/kg dry mg/kg dry mg/kg dry mg/kg dry           | N/A N/A N/A N/A | N/A N/A N/A N/A     |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs Sample ID: TP2-1 (403040 VPHs Sample ID: TP4-1 (403040 VPHs Sample ID: TP7-1 (403040 VPHs Sample ID: TP8-1 (403040 VPHs Sample ID: BH1-1 (403040 VPHs Sample ID: BH1-1 (403040 VPHs Sample ID: BH7-1 (403040 VPHs                                        | 33-01   [Soil]   Sampled: Mar-03-14 14:00                                                                                                       | 20<br>20<br>20<br>20<br>20 | mg/kg dry mg/kg dry mg/kg dry mg/kg dry           | N/A N/A N/A     | N/A N/A N/A         |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs Sample ID: TP2-1 (403040 VPHs Sample ID: TP4-1 (403040 VPHs Sample ID: TP7-1 (403040 VPHs Sample ID: TP8-1 (403040 VPHs Sample ID: BH1-1 (403040 VPHs Sample ID: BH1-1 (403040 VPHs Sample ID: BH7-1 (403040 VPHs Sample ID: BH7-1 (403040 VPHs          | 33-01   [Soil] Sampled: Mar-03-14 14:00                                                                                                         | 20<br>20<br>20<br>20<br>20 | mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry | N/A N/A N/A N/A | N/A N/A N/A N/A N/A |       |
| Calculated Parameters Sample ID: TP1-1 (403040 VPHs Sample ID: TP2-1 (403040 VPHs Sample ID: TP4-1 (403040 VPHs Sample ID: TP7-1 (403040 VPHs Sample ID: TP8-1 (403040 VPHs Sample ID: BH1-1 (403040 VPHs Sample ID: BH1-1 (403040 VPHs Sample ID: BH7-1 (403040 VPHs Sample ID: BH7-1 (403040 VPHs          | 33-01   [Soil]   Sampled: Mar-03-14 14:00                                                                                                       | 20<br>20<br>20<br>20<br>20 | mg/kg dry mg/kg dry mg/kg dry mg/kg dry           | N/A N/A N/A N/A | N/A N/A N/A N/A     |       |
| Calculated Parameters  Sample ID: TP1-1 (403040 VPHs  Sample ID: TP2-1 (403040 VPHs  Sample ID: TP4-1 (403040 VPHs  Sample ID: TP7-1 (403040 VPHs  Sample ID: TP8-1 (403040 VPHs  Sample ID: BH1-1 (403040 VPHs  Sample ID: BH7-1 (403040 VPHs  Sample ID: BH7-1 (403040 VPHs  Sample ID: BH8-1 (403040 VPHs | 33-01   [Soil] Sampled: Mar-03-14 14:00                                                                                                         | 20<br>20<br>20<br>20<br>20 | mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry | N/A N/A N/A N/A | N/A N/A N/A N/A N/A |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030403 Mar-19-14

| Analyte                  | Result /<br>Recovery                     | MRL /<br>Limit | Units     | Prepared | Analyzed | Notes |
|--------------------------|------------------------------------------|----------------|-----------|----------|----------|-------|
| Calculated Parameters, C | ontinued                                 |                |           |          |          |       |
| Sample ID: BH6-1 (40304) | 03-22) [Soil] Sampled: Mar-04-14 13:00   |                |           |          |          |       |
| VPHs                     | < 20                                     | 20             | mg/kg dry | N/A      | N/A      |       |
| Sample ID: BH2-1 (40304) | 03-23) [Soil] Sampled: Mar-05-14 09:00   |                |           |          |          |       |
| VPHs                     | < 20                                     | 20             | mg/kg dry | N/A      | N/A      |       |
| Sample ID: BHDUP3 (403   | 0403-24) [Soil] Sampled: Mar-05-14 09:00 |                |           |          |          |       |
| VPHs                     | < 20                                     | 20             | mg/kg dry | N/A      | N/A      |       |
| Sample ID: BH3-3 (40304) | 03-35) [Soil] Sampled: Mar-06-14 09:00   |                |           |          |          |       |
| VPHs                     | < 20                                     | 20             | mg/kg dry | N/A      | N/A      |       |
| Sample ID: BH9-1 (40304) | 03-40) [Soil] Sampled: Mar-07-14 09:00   |                |           |          |          |       |
| VPHs                     | < 20                                     | 20             | mg/kg dry | N/A      | N/A      |       |
| Sample ID: BHDUP4 (403   | 0403-42) [Soil] Sampled: Mar-07-14 09:00 |                |           |          |          |       |
| VPHs                     | < 20                                     | 20             | mg/kg dry | N/A      | N/A      |       |

### Strong Acid Leachable Metals

### Sample ID: TP1-1 (4030403-01) [Soil] Sampled: Mar-03-14 14:00

| Aluminum   | 13000  | 20   | mg/kg dry | Mar-12-14 | Mar-13-14 |
|------------|--------|------|-----------|-----------|-----------|
| Antimony   | 0.3    | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Arsenic    | 3.1    | 0.4  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Barium     | 93     | 1    | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Beryllium  | 0.4    | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Bismuth    | < 0.1  | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Boron      | 6      | 2    | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Cadmium    | 0.13   | 0.04 | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Calcium    | 10400  | 100  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Chromium   | 24.3   | 1.0  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Cobalt     | 11.9   | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Copper     | 59.8   | 0.2  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Iron       | 31200  | 20   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Lead       | 4.7    | 0.2  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Lithium    | 7.9    | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Magnesium  | 8270   | 10   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Manganese  | 477    | 0.4  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Mercury    | < 0.05 | 0.05 | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Molybdenum | 0.6    | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Nickel     | 24.7   | 0.4  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Phosphorus | 827    | 10   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Potassium  | 758    | 10   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Selenium   | < 0.5  | 0.5  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Silicon    | < 3000 | 3000 | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Silver     | < 0.2  | 0.2  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Sodium     | 268    | 40   | mg/kg dry | Mar-12-14 | Mar-13-14 |



| Analyte                 | Result /<br>Recovery                         | MRL /<br><i>Limit</i> | Units     | Prepared     | Analyzed  | Notes |
|-------------------------|----------------------------------------------|-----------------------|-----------|--------------|-----------|-------|
| Strong Acid Leachable M | letals, Continued                            |                       |           |              |           |       |
| Sample ID: TP1-1 (40304 | 03-01) [Soil] Sampled: Mar-03-14 14          | :00, Continued        |           |              |           |       |
| Strontium               | 50.0                                         |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Sulfur                  | < 1000                                       |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Tellurium               | < 0.1                                        |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Thallium                | < 0.1                                        |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Thorium                 | 1.7                                          |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| <br>Tin                 | 0.4                                          |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Titanium                | 957                                          |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Uranium                 | 0.5                                          |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Vanadium                | 84.7                                         |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Zinc                    | 55                                           |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Zirconium               | 6                                            |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
|                         | -                                            |                       | 3 3 7     | <del>-</del> |           |       |
| Aluminum                | 03-03) [Soil] Sampled: Mar-03-14 14<br>15400 |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
|                         | 0.4                                          |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Antimony<br>Arsenic     |                                              |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Barium                  | 3.5                                          | 0.4                   |           | Mar-12-14    | Mar-13-14 |       |
|                         | 110                                          |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Beryllium<br>Biomuth    | 0.5                                          |                       |           | Mar-12-14    |           |       |
| Bismuth                 | < 0.1                                        |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Boron                   | 3                                            |                       | mg/kg dry |              | Mar-13-14 |       |
| Cadmium                 | 0.14                                         |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Calcium                 | 8500                                         |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Chromium                | 33.8                                         |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Cobalt                  | 13.3                                         |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Copper                  | 60.7                                         |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| ron                     | 37400                                        |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Lead                    | 3.7                                          |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Lithium                 | 9.4                                          |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Magnesium               | 8220                                         |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Manganese               | 539                                          |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Mercury                 | < 0.05                                       |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Molybdenum              | 0.8                                          |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Nickel                  | 28.1                                         |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Phosphorus              | 781                                          |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Potassium               | 883                                          |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Selenium                | < 0.5                                        |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Silicon                 | < 3000                                       |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Silver                  | < 0.2                                        |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Sodium                  | 394                                          |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Strontium               | 43.7                                         |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Sulfur                  | < 1000                                       |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Tellurium               | < 0.1                                        |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Thallium                | < 0.1                                        |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Thorium                 | 2.0                                          |                       | mg/kg dry | Mar-12-14    | Mar-13-14 |       |
| Tin                     | 0.5                                          | 0.2                   | mg/kg dry | Mar-12-14    | Mar-13-14 |       |



Columbia Environmental Consulting Ltd REPORTED TO

**WORK ORDER** 4030403 **PROJECT** REPORTED Mar-19-14

| Analyte                  | Result /<br>Recovery               | MRL /<br><i>Limit</i> | Units     | Prepared  | Analyzed  | Notes |
|--------------------------|------------------------------------|-----------------------|-----------|-----------|-----------|-------|
| Strong Acid Leachable Me | etals, Continued                   |                       |           |           |           |       |
| Sample ID: TP2-1 (403040 | 3-03) [Soil] Sampled: Mar-03-14 14 | 4:00, Continued       |           |           |           |       |
| Titanium                 | 1290                               | 2                     | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Uranium                  | 0.6                                | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Vanadium                 | 107                                | 0.4                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Zinc                     | 66                                 | 2                     | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Zirconium                | 9                                  | 2                     | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Sample ID: TP3-1 (403040 | 3-04) [Soil] Sampled: Mar-03-14 14 | 4:00                  |           |           |           |       |
| Aluminum                 | 13400                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Antimony                 | 0.4                                | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Arsenic                  | 2.9                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Barium                   | 85                                 | 1                     | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Beryllium                | 0.5                                | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Bismuth                  | < 0.1                              | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Boron                    | 4                                  |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Cadmium                  | 0.12                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Calcium                  | 9420                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Chromium                 | 28.2                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Cobalt                   | 12.3                               | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Copper                   | 46.6                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Iron                     | 34000                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Lead                     | 2.9                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Lithium                  | 8.7                                | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Magnesium                | 8740                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Manganese                | 502                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Mercury                  | < 0.05                             |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Molybdenum               | 0.5                                | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Nickel                   | 29.6                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Phosphorus               | 882                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Potassium                | 784                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Selenium                 | < 0.5                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Silicon                  | < 3000                             |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Silver                   | < 0.2                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Sodium                   | 397                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Strontium                | 43.8                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Sulfur                   | < 1000                             |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Tellurium                | < 0.1                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Thallium                 | < 0.1                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Thorium                  | 1.5                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Tin                      | 0.4                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Titanium                 | 1290                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Uranium                  | 0.4                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Vanadium                 | 93.2                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Zinc                     | 54                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Zirconium                | 8                                  |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030403 Mar-19-14

| Analyte | Result / | MRL /<br>Units | Prepared | Analyzed | Notes |
|---------|----------|----------------|----------|----------|-------|
| , , , , | Recovery | Limit          |          |          |       |

### Strong Acid Leachable Metals, Continued

### Sample ID: TP4-1 (4030403-05) [Soil] Sampled: Mar-03-14 14:00

| Sample ID: TP4-1 (4030403 | -05) [Soil] Sampled: Mar-03-14 14:00 |      |           |           |           |
|---------------------------|--------------------------------------|------|-----------|-----------|-----------|
| Aluminum                  | 12700                                | 20   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Antimony                  | 0.4                                  | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Arsenic                   | 2.9                                  | 0.4  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Barium                    | 96                                   | 1    | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Beryllium                 | 0.5                                  | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Bismuth                   | < 0.1                                | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Boron                     | 4                                    | 2    | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Cadmium                   | 0.12                                 | 0.04 | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Calcium                   | 8910                                 | 100  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Chromium                  | 28.5                                 | 1.0  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Cobalt                    | 12.8                                 | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Copper                    | 47.0                                 | 0.2  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| ron                       | 34500                                | 20   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| _ead                      | 2.7                                  | 0.2  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| _ithium                   | 7.7                                  | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Magnesium                 | 8180                                 | 10   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Manganese                 | 533                                  | 0.4  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Mercury                   | 0.07                                 | 0.05 | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Molybdenum                | 0.6                                  | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Nickel                    | 28.4                                 | 0.4  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Phosphorus                | 883                                  | 10   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Potassium                 | 711                                  | 10   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Selenium                  | < 0.5                                | 0.5  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Silicon                   | < 3000                               | 3000 | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Silver                    | < 0.2                                | 0.2  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Sodium                    | 359                                  | 40   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Strontium                 | 47.7                                 | 0.2  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Sulfur                    | < 1000                               | 1000 | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Tellurium                 | < 0.1                                | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Гhallium                  | < 0.1                                | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Γhorium                   | 1.5                                  | 0.5  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Tin                       | 0.4                                  | 0.2  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Гitanium                  | 1060                                 | 2    | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Jranium                   | 0.4                                  | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Vanadium                  | 98.6                                 | 0.4  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Zinc                      | 52                                   |      | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Zirconium                 | 7                                    |      | mg/kg dry | Mar-12-14 | Mar-13-14 |

### Sample ID: TP5-1 (4030403-06) [Soil] Sampled: Mar-03-14 14:00

| Aluminum  | 15700 | 20 mg/kg dry  | Mar-12-14 | Mar-13-14 |
|-----------|-------|---------------|-----------|-----------|
| Antimony  | 0.3   | 0.1 mg/kg dry | Mar-12-14 | Mar-13-14 |
| Arsenic   | 3.5   | 0.4 mg/kg dry | Mar-12-14 | Mar-13-14 |
| Barium    | 112   | 1 mg/kg dry   | Mar-12-14 | Mar-13-14 |
| Beryllium | 0.5   | 0.1 mg/kg dry | Mar-12-14 | Mar-13-14 |
| Bismuth   | < 0.1 | 0.1 mg/kg dry | Mar-12-14 | Mar-13-14 |



| Analyte                  | Result /<br>Recovery                | MRL /<br><i>Limit</i> | Units     | Prepared  | Analyzed  | Notes |
|--------------------------|-------------------------------------|-----------------------|-----------|-----------|-----------|-------|
| Strong Acid Leachable Me | etals, Continued                    |                       |           |           |           |       |
| _                        | )3-06) [Soil] Sampled: Mar-03-14 14 | :00, Continued        |           |           |           |       |
| Boron                    | 3                                   | 2                     | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Cadmium                  | 0.14                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Calcium                  | 8210                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Chromium                 | 33.8                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Cobalt                   | 12.9                                | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Copper                   | 53.3                                | 0.2                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| ron                      | 35600                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| _ead                     | 3.2                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| _ithium                  | 8.4                                 | 0.1                   |           | Mar-12-14 | Mar-13-14 |       |
| Magnesium                | 8450                                | 10                    | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Manganese                | 530                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Mercury                  | < 0.05                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Molybdenum               | 0.6                                 | 0.1                   |           | Mar-12-14 | Mar-13-14 |       |
| Nickel                   | 26.1                                | 0.4                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Phosphorus               | 890                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Potassium                | 865                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Selenium                 | < 0.5                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Silicon                  | < 3000                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Silver                   | < 0.2                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Sodium                   | 220                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Strontium                | 46.3                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Sulfur                   | < 1000                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Tellurium                | < 0.1                               | 0.1                   |           | Mar-12-14 | Mar-13-14 |       |
| Fhallium                 | < 0.1                               | 0.1                   |           | Mar-12-14 | Mar-13-14 |       |
| Thorium                  | 1.5                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Γin                      | 0.4                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| <br>Fitanium             | 988                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Jranium                  | 0.6                                 | 0.1                   |           | Mar-12-14 | Mar-13-14 |       |
| /anadium                 | 89.3                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Zinc                     | 70                                  |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Zirconium                | 8                                   |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
|                          |                                     |                       | 99 4)     |           |           |       |
|                          | 03-08) [Soil] Sampled: Mar-03-14 14 |                       | malles do | Mor 10 14 | Mor 12 14 |       |
| Aluminum                 | 16100                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Antimony                 | 0.3                                 | 0.1                   |           | Mar-12-14 | Mar-13-14 |       |
| Arsenic                  | 2.8                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Barium                   | 163                                 | 1                     | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Beryllium                | 0.5                                 | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Bismuth                  | < 0.1                               | 0.1                   |           | Mar-12-14 | Mar-13-14 |       |
| Boron                    | 3                                   |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Cadmium                  | 0.14                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Calcium                  | 7710                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Chromium                 | 27.8                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Cobalt                   | 11.3                                | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Copper                   | 48.0                                | 0.2                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |



| Analyte                 | Result /<br>Recovery                | MRL /<br><i>Limit</i> | Units     | Prepared  | Analyzed  | Notes |
|-------------------------|-------------------------------------|-----------------------|-----------|-----------|-----------|-------|
| trong Acid Leachable Me | etals, Continued                    |                       |           |           |           |       |
|                         | )3-08) [Soil] Sampled: Mar-03-14 14 | :00, Continued        |           |           |           |       |
| Iron                    | 32100                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Lead                    | 3.8                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Lithium                 | 8.6                                 | 0.1                   |           | Mar-12-14 | Mar-13-14 |       |
| Magnesium               | 6430                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Manganese               | 567                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Mercury                 | < 0.05                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Molybdenum              | 0.9                                 | 0.1                   |           | Mar-12-14 | Mar-13-14 |       |
| Nickel                  | 23.9                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Phosphorus              | 744                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Potassium               | 1020                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Selenium                | < 0.5                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Silicon                 | < 3000                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Silver                  | < 0.2                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Sodium                  | 402                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Strontium               | 38.5                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
|                         | < 1000                              |                       |           | Mar-12-14 |           |       |
| Sulfur                  |                                     |                       | mg/kg dry |           | Mar-13-14 |       |
| ellurium                | < 0.1                               | 0.1                   |           | Mar-12-14 | Mar-13-14 |       |
| hallium<br>-, ·         | < 0.1                               | 0.1                   |           | Mar-12-14 | Mar-13-14 |       |
| horium<br>              | 1.8                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
|                         | 0.4                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| - Titanium              | 1290                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Jranium                 | 0.6                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| /anadium                | 83.9                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Zinc                    | 78                                  |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Zirconium               | 11                                  | 2                     | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| ample ID: TP8-1 (403040 | 3-09) [Soil] Sampled: Mar-03-14 14  |                       |           |           |           |       |
| Aluminum                | 13300                               | 20                    | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Antimony                | 0.4                                 | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Arsenic                 | 2.7                                 | 0.4                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Barium                  | 73                                  | 1                     | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Beryllium               | 0.4                                 | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Bismuth                 | < 0.1                               | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Boron                   | 3                                   | 2                     | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Cadmium                 | 0.12                                | 0.04                  | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Calcium                 | 13200                               | 100                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Chromium                | 23.4                                | 1.0                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Cobalt                  | 12.2                                | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Copper                  | 52.0                                | 0.2                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| ron                     | 30100                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| _ead                    | 2.7                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Lithium                 | 8.6                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| /lagnesium              | 8840                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Manganese               | 532                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Mercury                 | < 0.05                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |



| 10<br>10<br>0.5               | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                | Mar-12-14<br>Mar-12-14                                                                                                                                                                                                                          | Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.1<br>0.4<br>10<br>10<br>0.5 | mg/kg dry<br>mg/kg dry                                          | Mar-12-14                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.4<br>10<br>10<br>0.5        | mg/kg dry<br>mg/kg dry                                          | Mar-12-14                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10<br>10<br>0.5               | mg/kg dry<br>mg/kg dry                                          |                                                                                                                                                                                                                                                 | Mor 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10<br>10<br>0.5               | mg/kg dry                                                       | Mor 40 44                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10<br>0.5                     |                                                                 | Mar-12-14                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.5                           | TIME IN A COLUMN                                                | Mar-12-14                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | mg/kg dry                                                       | Mar-12-14                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | mg/kg dry                                                       | Mar-12-14                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.2                           | mg/kg dry                                                       | Mar-12-14                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | mg/kg dry                                                       | Mar-12-14                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | mg/kg dry                                                       | Mar-12-14                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 | Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | ma/ka dn                                                        | Mor 12 14                                                                                                                                                                                                                                       | Mor 12 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               |                                                                 | Mar-12-14                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10                            |                                                                 |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | mg/kg dry<br>mg/kg dry                                          | Mar-12-14<br>Mar-12-14                                                                                                                                                                                                                          | Mar-13-14<br>Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | 0.1 0.1 0.5 0.2 2 0.1 0.4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.1 mg/kg dry 0.5 mg/kg dry 0.2 mg/kg dry 2 mg/kg dry 0.1 mg/kg dry 0.4 mg/kg dry 2 mg/kg dry 2 mg/kg dry 2 mg/kg dry 2 mg/kg dry 1 mg/kg dry 0.1 mg/kg dry | 0.1 mg/kg dry Mar-12-14 0.1 mg/kg dry Mar-12-14 0.5 mg/kg dry Mar-12-14 0.2 mg/kg dry Mar-12-14 2 mg/kg dry Mar-12-14 0.1 mg/kg dry Mar-12-14 0.1 mg/kg dry Mar-12-14 0.2 mg/kg dry Mar-12-14 0.3 mg/kg dry Mar-12-14 0.4 mg/kg dry Mar-12-14 0.7 mg/kg dry Mar-12-14 0.8 mg/kg dry Mar-12-14 0.9 mg/kg dry Mar-12-14 0.1 mg/kg dry Mar-12-14 0.04 mg/kg dry Mar-12-14 0.05 mg/kg dry Mar-12-14 0.1 mg/kg dry Mar-12-14 0.1 mg/kg dry Mar-12-14 0.2 mg/kg dry Mar-12-14 0.2 mg/kg dry Mar-12-14 0.3 mg/kg dry Mar-12-14 0.4 mg/kg dry Mar-12-14 0.5 mg/kg dry Mar-12-14 0.6 mg/kg dry Mar-12-14 0.7 mg/kg dry Mar-12-14 0.8 mg/kg dry Mar-12-14 0.9 mg/kg dry Mar-12-14 | 0.1 mg/kg dry Mar-12-14 Mar-13-14 0.1 mg/kg dry Mar-12-14 Mar-13-14 0.5 mg/kg dry Mar-12-14 Mar-13-14 0.2 mg/kg dry Mar-12-14 Mar-13-14 0.2 mg/kg dry Mar-12-14 Mar-13-14 0.1 mg/kg dry Mar-12-14 Mar-13-14 0.1 mg/kg dry Mar-12-14 Mar-13-14 0.4 mg/kg dry Mar-12-14 Mar-13-14 2 mg/kg dry Mar-12-14 Mar-13-14 2 mg/kg dry Mar-12-14 Mar-13-14 0.1 mg/kg dry Mar-12-14 Mar-13-14 0.0 mg/kg dry Mar-12-14 Mar-13-14 0.1 mg/kg dry Mar-12-14 Mar-13-14 0.2 mg/kg dry Mar-12-14 Mar-13-14 0.1 mg/kg dry Mar-12-14 Mar-13-14 0.2 mg/kg dry Mar-12-14 Mar-13-14 0.1 mg/kg dry Mar-12-14 Mar-13-14 0.2 mg/kg dry Mar-12-14 Mar-13-14 0.1 mg/kg dry Mar-12-14 Mar-13-14 |



| Analyte                  | Result /<br>Recovery                | MRL /<br><i>Limit</i> | Units     | Prepared  | Analyzed    | Notes |
|--------------------------|-------------------------------------|-----------------------|-----------|-----------|-------------|-------|
| Strong Acid Leachable Me | etals Continued                     |                       |           |           |             |       |
|                          | 03-10) [Soil] Sampled: Mar-04-14 09 | 9:00. Continued       |           |           |             |       |
| Silver                   | < 0.2                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Sodium                   | 437                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Strontium                | 63.8                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Sulfur                   | < 1000                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Tellurium                | < 0.1                               | 0.1                   |           | Mar-12-14 | Mar-13-14   |       |
| Thallium                 | < 0.1                               | 0.1                   |           | Mar-12-14 | Mar-13-14   |       |
| Thorium                  | 1.2                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Tin                      | 0.4                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Titanium                 | 1170                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Jranium                  | 0.4                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Vanadium                 | 70.3                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Zinc                     | 49                                  |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Zirconium                | 7                                   |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
|                          |                                     |                       | mg/kg dry | Wai-12-14 | IVIAI-13-14 |       |
|                          | 03-18) [Soil] Sampled: Mar-04-14 13 |                       |           |           |             |       |
| Aluminum                 | 12500                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Antimony                 | 0.3                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Arsenic                  | 3.2                                 | 0.4                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Barium                   | 63                                  | 1                     | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Beryllium                | 0.3                                 | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Bismuth                  | < 0.1                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Boron                    | 2                                   |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Cadmium                  | 0.08                                | 0.04                  | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Calcium                  | 12800                               | 100                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Chromium                 | 27.4                                | 1.0                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Cobalt                   | 10.8                                | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Copper                   | 40.4                                | 0.2                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| ron                      | 30800                               | 20                    | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| _ead                     | 3.3                                 | 0.2                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| _ithium                  | 7.9                                 | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Magnesium                | 9470                                | 10                    | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Manganese                | 481                                 | 0.4                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Mercury                  | < 0.05                              | 0.05                  | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Molybdenum               | 0.8                                 | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Nickel                   | 18.4                                | 0.4                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Phosphorus               | 706                                 | 10                    | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Potassium                | 652                                 | 10                    | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Selenium                 | < 0.5                               | 0.5                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Silicon                  | < 3000                              | 3000                  | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Silver                   | < 0.2                               | 0.2                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Sodium                   | 439                                 | 40                    | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Strontium                | 59.1                                | 0.2                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Sulfur                   | < 1000                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14   |       |
| Tellurium                | < 0.1                               | 0.1                   |           | Mar-12-14 | Mar-13-14   |       |
| Thallium                 | < 0.1                               | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14   |       |



REPORTED TO Columbia Environmental Consulting Ltd WORK
PROJECT 14-0493 REPO

WORK ORDER 4030403 REPORTED Mar-19-14

| Analyte                  | Result /<br>Recovery               | MRL /<br><i>Limit</i> | Units     | Prepared  | Analyzed  | Notes |
|--------------------------|------------------------------------|-----------------------|-----------|-----------|-----------|-------|
| Strong Acid Leachable Me | etals, Continued                   |                       |           |           |           |       |
| Sample ID: BH7-1 (40304) | 03-18) [Soil] Sampled: Mar-04-14 1 | 3:00, Continued       |           |           |           |       |
| Thorium                  | 1.1                                | 0.5                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Tin                      | 0.4                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Titanium                 | 1180                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Uranium                  | 0.4                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Vanadium                 | 74.8                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Zinc                     | 47                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Zirconium                | 7                                  |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Sample ID: BH8-1 (40304) | 03-19) [Soil] Sampled: Mar-04-14 1 |                       |           |           |           |       |
| Aluminum                 | 18800                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Antimony                 | 0.4                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Arsenic                  | 4.0                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Barium                   | 152                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Beryllium                | 0.6                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Bismuth                  | < 0.1                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Boron                    | 4                                  |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Cadmium                  | 0.18                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Calcium                  | 13900                              | 100                   |           | Mar-12-14 | Mar-13-14 |       |
| Chromium                 | 46.8                               | 1.0                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Cobalt                   | 14.7                               | 0.1                   |           | Mar-12-14 | Mar-13-14 |       |
| Copper                   | 53.2                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| ron                      | 35100                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Lead                     | 4.9                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Lithium                  | 10.5                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Magnesium                | 10200                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Manganese                | 787                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Mercury                  | < 0.05                             |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Molybdenum               | 2.4                                | 0.1                   |           | Mar-12-14 | Mar-13-14 |       |
| Nickel                   | 35.3                               | 0.4                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Phosphorus               | 701                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| <br>Potassium            | 1840                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Selenium                 | 0.6                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Silicon                  | < 3000                             |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Silver                   | < 0.2                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Sodium                   | 455                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Strontium                | 77.5                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Sulfur                   | < 1000                             |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Tellurium                | < 0.1                              | 0.1                   | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Thallium                 | < 0.1                              |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Thorium                  | 2.2                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Tin                      | 0.6                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Titanium                 | 1220                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Uranium                  | 0.6                                |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Vanadium                 | 80.0                               |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Zinc                     | 68                                 |                       | mg/kg dry | Mar-12-14 | Mar-13-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

4030403 Mar-19-14

| Analyta | Result / | MRL /<br>Units | Droporod | Anglyzod | Notes |
|---------|----------|----------------|----------|----------|-------|
| Analyte | Recovery | Limit          | Prepared | Analyzed | Notes |

### Strong Acid Leachable Metals, Continued

### Sample ID: BH8-1 (4030403-19) [Soil] Sampled: Mar-04-14 13:00, Continued

| •                      | , <del>.</del>                           |      |           |           |           |
|------------------------|------------------------------------------|------|-----------|-----------|-----------|
| Zirconium              | 10                                       | 2    | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Sample ID: BH4-1 (4030 | 0403-20) [Soil] Sampled: Mar-04-14 13:00 |      |           |           |           |
| Aluminum               | 13500                                    | 20   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Antimony               | 0.3                                      | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Arsenic                | 3.2                                      | 0.4  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Barium                 | 98                                       | 1    | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Beryllium              | 0.3                                      | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Bismuth                | < 0.1                                    | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Boron                  | 3                                        | 2    | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Cadmium                | 0.10                                     | 0.04 | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Calcium                | 13700                                    | 100  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Chromium               | 28.2                                     | 1.0  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Cobalt                 | 10.5                                     | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Copper                 | 37.9                                     | 0.2  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Iron                   | 29100                                    | 20   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Lead                   | 4.0                                      | 0.2  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Lithium                | 8.6                                      | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Magnesium              | 9170                                     | 10   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Manganese              | 532                                      |      | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Mercury                | < 0.05                                   | 0.05 | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Molybdenum             | 1.6                                      | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Nickel                 | 19.8                                     | 0.4  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Phosphorus             | 659                                      | 10   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Potassium              | 793                                      | 10   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Selenium               | < 0.5                                    | 0.5  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Silicon                | < 3000                                   | 3000 | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Silver                 | < 0.2                                    | 0.2  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Sodium                 | 458                                      | 40   | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Strontium              | 91.2                                     | 0.2  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Sulfur                 | < 1000                                   | 1000 | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Tellurium              | < 0.1                                    | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Thallium               | < 0.1                                    | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Thorium                | 1.4                                      | 0.5  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Tin                    | 0.5                                      | 0.2  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Titanium               | 1230                                     | 2    | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Uranium                | 0.4                                      | 0.1  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Vanadium               | 70.2                                     | 0.4  | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Zinc                   | 52                                       | 2    | mg/kg dry | Mar-12-14 | Mar-13-14 |
| Zirconium              | 7                                        | 2    | mg/kg dry | Mar-12-14 | Mar-13-14 |
|                        |                                          |      |           |           |           |

#### Sample ID: BH5-1 (4030403-21) [Soil] Sampled: Mar-04-14 13:00

| Janiple ID. Di 13-1 (40304 | 03-21) [3011] Sampled: Mai-04-14 13:00 |               |           |           |  |
|----------------------------|----------------------------------------|---------------|-----------|-----------|--|
| Aluminum                   | 14500                                  | 20 mg/kg dry  | Mar-12-14 | Mar-13-14 |  |
| Antimony                   | 0.3                                    | 0.1 mg/kg dry | Mar-12-14 | Mar-13-14 |  |
| Arsenic                    | 4.0                                    | 0.4 mg/kg dry | Mar-12-14 | Mar-13-14 |  |
| Barium                     | 90                                     | 1 mg/kg dry   | Mar-12-14 | Mar-13-14 |  |



REPORTED TO Columbia Environmental Consulting Ltd
PROJECT 14-0493

WORK ORDER
REPORTED

4030403 Mar-19-14

| 1100201                   |                                          |                |           | KLFOKILD  |           | Mai-13-1 |  |
|---------------------------|------------------------------------------|----------------|-----------|-----------|-----------|----------|--|
| Analyte                   | Result /<br>Recovery                     | MRL /<br>Limit | Units     | Prepared  | Analyzed  | Notes    |  |
| Strong Acid Leachable Met | als, Continued                           |                |           |           |           |          |  |
| Sample ID: BH5-1 (4030403 | 8-21) [Soil] Sampled: Mar-04-14 13:00, C | ontinued       |           |           |           |          |  |
| Beryllium                 | 0.4                                      | 0.1            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Bismuth                   | < 0.1                                    | 0.1            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Boron                     | 3                                        | 2              | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Cadmium                   | 0.10                                     | 0.04           | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Calcium                   | 16200                                    | 100            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Chromium                  | 26.6                                     | 1.0            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Cobalt                    | 11.6                                     | 0.1            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Copper                    | 39.5                                     | 0.2            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Iron                      | 31900                                    | 20             | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Lead                      | 3.1                                      | 0.2            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Lithium                   | 8.9                                      | 0.1            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Magnesium                 | 10100                                    | 10             | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Manganese                 | 583                                      | 0.4            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Mercury                   | < 0.05                                   | 0.05           | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Molybdenum                | 1.8                                      | 0.1            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Nickel                    | 25.2                                     | 0.4            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Phosphorus                | 691                                      | 10             | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Potassium                 | 825                                      | 10             | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Selenium                  | < 0.5                                    | 0.5            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Silicon                   | < 3000                                   | 3000           | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Silver                    | < 0.2                                    | 0.2            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Sodium                    | 588                                      | 40             | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Strontium                 | 80.2                                     | 0.2            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Sulfur                    | < 1000                                   | 1000           | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Tellurium                 | < 0.1                                    | 0.1            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Thallium                  | < 0.1                                    | 0.1            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Thorium                   | 1.9                                      | 0.5            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Tin                       | 0.5                                      | 0.2            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Titanium                  | 1310                                     | 2              | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Jranium                   | 0.4                                      | 0.1            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| √anadium                  | 74.9                                     | 0.4            | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Zinc                      | 53                                       | 2              | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Zirconium                 | 8                                        | 2              | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| ample ID: BH6-1 (4030403  | 3-22) [Soil] Sampled: Mar-04-14 13:00    |                |           |           |           |          |  |
| Aluminum                  | 13400                                    | 20             | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Antimony                  | 0.3                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Arsenic                   | 4.5                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Barium                    | 63                                       |                | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Beryllium                 | 0.3                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
| Bismuth                   | < 0.1                                    |                | mg/kg dry | Mar-12-14 | Mar-13-14 |          |  |
|                           |                                          |                |           | 10.44     | 11 10 11  |          |  |

2 mg/kg dry

0.04 mg/kg dry

100 mg/kg dry

1.0 mg/kg dry

Mar-12-14

Mar-12-14

Mar-12-14

Mar-12-14

Mar-13-14

Mar-13-14 Mar-13-14

Mar-13-14

2

0.07

26.2

13200

Boron

Cadmium

Chromium

Calcium



| Analyte                 | Result /<br>Recovery                     | MRL /<br>Limit | Units     | Prepared  | Analyzed  | Notes |
|-------------------------|------------------------------------------|----------------|-----------|-----------|-----------|-------|
| Strong Acid Leachable M | letals, Continued                        |                |           |           |           |       |
| Sample ID: BH6-1 (40304 | 103-22) [Soil] Sampled: Mar-04-14 13:00, | Continued      |           |           |           |       |
| Cobalt                  | 10.8                                     | 0.1            | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Copper                  | 35.6                                     |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Iron                    | 30800                                    |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Lead                    | 12.5                                     |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Lithium                 | 9.5                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Magnesium               | 10500                                    |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Manganese               | 536                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Mercury                 | < 0.05                                   |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Molybdenum              | 2.1                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Nickel                  | 25.9                                     |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Phosphorus              | 741                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Potassium               | 662                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Selenium                | < 0.5                                    |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Silicon                 | < 3000                                   |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Silver                  | < 0.2                                    |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Sodium                  | 519                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Strontium               | 62.2                                     |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Sulfur                  | < 1000                                   |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Tellurium               | < 0.1                                    |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Thallium                | < 0.1                                    |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Thorium                 | 1.1                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Tin                     | 0.5                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Titanium                | 1210                                     |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Uranium                 | 0.4                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Vanadium                | 70.3                                     |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
|                         |                                          |                |           |           |           |       |
| Zinc                    | 52                                       |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Zirconium               | 7                                        |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Sample ID: BH2-1 (40304 | 103-23) [Soil] Sampled: Mar-05-14 09:00  |                |           |           |           |       |
| Aluminum                | 16300                                    |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Antimony                | 0.5                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Arsenic                 | 3.6                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Barium                  | 152                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Beryllium               | 0.6                                      | 0.1            | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Bismuth                 | < 0.1                                    |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Boron                   | 4                                        |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Cadmium                 | 0.16                                     | 0.04           | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Calcium                 | 33300                                    | 100            | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Chromium                | 31.0                                     | 1.0            | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Cobalt                  | 12.4                                     | 0.1            | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Copper                  | 82.0                                     | 0.2            | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Iron                    | 32900                                    | 20             | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Lead                    | 4.6                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Lithium                 | 9.3                                      |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Magnesium               | 9020                                     |                | mg/kg dry | Mar-12-14 | Mar-13-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd WORK ORDER PROJECT 14-0493 REPORTED

| Analyte                 | Result /<br><i>Recovery</i>          | MRL /<br><i>Limit</i> | Units     | Prepared   | Analyzed   | Notes |
|-------------------------|--------------------------------------|-----------------------|-----------|------------|------------|-------|
| Strong Acid Leachable M | letals, Continued                    |                       |           |            |            |       |
| •                       | 103-23) [Soil] Sampled: Mar-05-14 09 | 9:00. Continued       |           |            |            |       |
| Manganese               | 615                                  | <del>-</del>          | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Mercury                 | < 0.05                               |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Molybdenum              | 0.9                                  | 0.1                   |           | Mar-12-14  | Mar-13-14  |       |
| Nickel                  | 23.7                                 |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Phosphorus              | 847                                  |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Potassium               | 1000                                 |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Selenium                | 0.5                                  |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Silicon                 | < 3000                               |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Silver                  | < 0.2                                |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Sodium                  | 588                                  |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Strontium               | 98.7                                 |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Sulfur                  | < 1000                               |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Tellurium               | < 0.1                                | 0.1                   |           | Mar-12-14  | Mar-13-14  |       |
| Thallium                | < 0.1                                | 0.1                   |           | Mar-12-14  | Mar-13-14  |       |
| Thorium                 | 3.4                                  |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Tin                     | 0.6                                  |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Titanium                | 1310                                 |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Jranium                 | 0.9                                  |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Vanadium                | 91.3                                 |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Zinc                    | 56                                   |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Zirconium               | 8                                    |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
|                         |                                      |                       | mg/ng dry | WIGH-12-14 | WIGH-10-14 |       |
|                         | 30403-24) [Soil] Sampled: Mar-05-14  |                       |           |            |            |       |
| Aluminum                | 15900                                |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Antimony                | 0.4                                  | 0.1                   | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Arsenic                 | 3.5                                  | 0.4                   | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Barium                  | 151                                  | 1                     | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Beryllium               | 0.5                                  | 0.1                   | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Bismuth                 | < 0.1                                | 0.1                   | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Boron                   | 4                                    | 2                     | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Cadmium                 | 0.14                                 |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Calcium                 | 32100                                |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Chromium                | 30.7                                 |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Cobalt                  | 12.2                                 | 0.1                   | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Copper                  | 81.9                                 | 0.2                   | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| ron                     | 31900                                | 20                    | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| _ead                    | 4.3                                  | 0.2                   | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| _ithium                 | 9.0                                  | 0.1                   | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Magnesium               | 8660                                 | 10                    | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Manganese               | 595                                  | 0.4                   | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Mercury                 | < 0.05                               | 0.05                  | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Molybdenum              | 0.9                                  | 0.1                   | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Nickel                  | 23.2                                 | 0.4                   | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Phosphorus              | 808                                  |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |
| Potassium               | 1010                                 |                       | mg/kg dry | Mar-12-14  | Mar-13-14  |       |

4030403



| Analyte                                                                                                                                                                                             | Result /<br>Recovery                                                                                              | MRL /<br><i>Limit</i>                                                                              | Units                                                                                                                                                                                                                                                                                                                                                         | Prepared                                                                                                                                                                                                                                                                                                                        | Analyzed                                                                                                                                                                                                                                                                                                    | Notes |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Strong Acid Leachable Me                                                                                                                                                                            | etals, Continued                                                                                                  |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                             |       |
| · ·                                                                                                                                                                                                 | 0403-24) [Soil] Sampled: Mar-05-14                                                                                | 09:00, Continued                                                                                   | ı                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                             |       |
| Selenium                                                                                                                                                                                            | 0.5                                                                                                               | 0.5                                                                                                | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Silicon                                                                                                                                                                                             | < 3000                                                                                                            | 3000                                                                                               | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Silver                                                                                                                                                                                              | < 0.2                                                                                                             | 0.2                                                                                                | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Sodium                                                                                                                                                                                              | 547                                                                                                               |                                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Strontium                                                                                                                                                                                           | 99.4                                                                                                              |                                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Sulfur                                                                                                                                                                                              | < 1000                                                                                                            |                                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Tellurium                                                                                                                                                                                           | < 0.1                                                                                                             |                                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Thallium                                                                                                                                                                                            | < 0.1                                                                                                             |                                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Thorium                                                                                                                                                                                             | 3.4                                                                                                               |                                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| <br>Tin                                                                                                                                                                                             | 0.6                                                                                                               |                                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Titanium                                                                                                                                                                                            | 1270                                                                                                              |                                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Jranium                                                                                                                                                                                             | 0.9                                                                                                               |                                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Vanadium                                                                                                                                                                                            | 88.0                                                                                                              |                                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Zinc                                                                                                                                                                                                | 54                                                                                                                |                                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Zirconium                                                                                                                                                                                           | 8                                                                                                                 |                                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
|                                                                                                                                                                                                     |                                                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                             |       |
| ample ID: BH3-3 (403040                                                                                                                                                                             | 03-35) [Soil] Sampled: Mar-06-14 09                                                                               | 0:00                                                                                               |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                             |       |
|                                                                                                                                                                                                     |                                                                                                                   |                                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Aluminum                                                                                                                                                                                            | 13600                                                                                                             | 20                                                                                                 | ilig/kg ury                                                                                                                                                                                                                                                                                                                                                   | Wildi 12 17                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                             |       |
|                                                                                                                                                                                                     | 13600<br>0.3                                                                                                      |                                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Antimony                                                                                                                                                                                            |                                                                                                                   | 0.1                                                                                                |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                             |       |
| Antimony<br>Arsenic                                                                                                                                                                                 | 0.3                                                                                                               | 0.1<br>0.4                                                                                         | mg/kg dry<br>mg/kg dry                                                                                                                                                                                                                                                                                                                                        | Mar-12-14                                                                                                                                                                                                                                                                                                                       | Mar-13-14                                                                                                                                                                                                                                                                                                   |       |
| Antimony<br>Arsenic<br>Barium                                                                                                                                                                       | 0.3<br>3.2                                                                                                        | 0.1<br>0.4<br>1                                                                                    | mg/kg dry                                                                                                                                                                                                                                                                                                                                                     | Mar-12-14<br>Mar-12-14                                                                                                                                                                                                                                                                                                          | Mar-13-14<br>Mar-13-14                                                                                                                                                                                                                                                                                      |       |
| Antimony<br>Arsenic<br>Barium<br>Beryllium                                                                                                                                                          | 0.3<br>3.2<br>74                                                                                                  | 0.1<br>0.4<br>1<br>0.1                                                                             | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                                                                                                                                              | Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                                                                                                                                                                                                                             | Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                                                                                                                                                                                         |       |
| Antimony<br>Arsenic<br>Barium<br>Beryllium<br>Bismuth                                                                                                                                               | 0.3<br>3.2<br>74<br>0.4                                                                                           | 0.1<br>0.4<br>1<br>0.1<br>0.1                                                                      | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                                                                                                                                 | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                                                                                                                                                                                                                | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                                                                                                                                                                            |       |
| Antimony<br>Arsenic<br>Barium<br>Beryllium<br>Bismuth<br>Boron                                                                                                                                      | 0.3<br>3.2<br>74<br>0.4<br>< 0.1                                                                                  | 0.1<br>0.4<br>1<br>0.1<br>0.1<br>2                                                                 | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                                                                                                                    | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                                                                                                                                                                                                   | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                                                                                                                                                                            |       |
| Antimony<br>Arsenic<br>Barium<br>Beryllium<br>Bismuth<br>Boron<br>Cadmium                                                                                                                           | 0.3 3.2 74 0.4 < 0.1 3 0.07                                                                                       | 0.1<br>0.4<br>1<br>0.1<br>0.1<br>2<br>0.04                                                         | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                                                                                                       | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                                                                                                                                                                                                   | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                                                                                                                                                               |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium                                                                                                                                     | 0.3 3.2 74 0.4 < 0.1 3 0.07                                                                                       | 0.1<br>0.4<br>1<br>0.1<br>0.1<br>2<br>0.04<br>100                                                  | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                                                                                          | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                                                                                                                                                                         | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                                                                                                                                     |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium                                                                                                                            | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1                                                                             | 0.1<br>0.4<br>1<br>0.1<br>0.1<br>2<br>0.04<br>100                                                  | mg/kg dry                                                                                                                                                                                                                                                           | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                                                                                                                                                            | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                                                                                                                        |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt                                                                                                                     | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3                                                                        | 0.1<br>0.4<br>1<br>0.1<br>0.1<br>2<br>0.04<br>100<br>1.0                                           | mg/kg dry                                                                                                                                                                                                                                                 | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                                                                                                                                                            | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                                                                                                                        |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper                                                                                                              | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7                                                                   | 0.1<br>0.4<br>1<br>0.1<br>0.1<br>2<br>0.04<br>100<br>1.0<br>0.1<br>0.2                             | mg/kg dry                                                                                                                                                                                                                             | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                                                                                                                                  | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                                                                                                           |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper                                                                                                              | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7 32200                                                             | 0.1<br>0.4<br>1<br>0.1<br>0.1<br>2<br>0.04<br>100<br>1.0<br>0.1<br>0.2                             | mg/kg dry                                                                                                                                                                                                                   | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                                                                                                                                  | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                                                                                              |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper ron Lead                                                                                                     | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7 32200 2.6                                                         | 0.1<br>0.4<br>1<br>0.1<br>0.1<br>2<br>0.04<br>100<br>1.0<br>0.1<br>0.2<br>20                       | mg/kg dry                                                                                                                                                                                               | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                                                                                                                     | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                                                                                 |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper ron Lead                                                                                                     | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7 32200 2.6 8.0                                                     | 0.1<br>0.4<br>1<br>0.1<br>0.1<br>2<br>0.04<br>100<br>1.0<br>0.1<br>0.2<br>20<br>0.2<br>0.2         | mg/kg dry                                                                                                                                                                                     | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                                                                                                        | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                                                                    |       |
| Aluminum Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Chromium Chromium Cobalt Copper ron Lead Lithium Magnesium Manganese                                                               | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7 32200 2.6 8.0 9570                                                | 0.1 0.4 1 0.1 0.1 2 0.04 100 1.0 0.1 0.2 20 0.2 0.1 10                                             | mg/kg dry                                                                                                                                                                 | Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14<br>Mar-12-14                                                                                                                                                           | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                                                                    |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper ron Lead Lithium Magnesium Manganese                                                                         | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7 32200 2.6 8.0 9570 551                                            | 0.1 0.4 1 0.1 0.1 2 0.04 100 1.0 0.1 0.2 20 0.2 0.1 10 0.4                                         | mg/kg dry                                                                                                                                             | Mar-12-14                                                                                                                                   | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                                                       |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper ron Lead Lithium Magnesium Manganese Mercury                                                                 | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7 32200 2.6 8.0 9570 551 < 0.05                                     | 0.1 0.4 1 0.1 0.1 2 0.04 100 1.0 0.1 0.2 20 0.2 0.1 10 0.4 0.05                                    | mg/kg dry                                                                                                                                   | Mar-12-14                                                                                                                         | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                                          |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper ron Lead Lithium Magnesium Manganese Mercury Molybdenum                                                      | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7 32200 2.6 8.0 9570 551 < 0.05 1.1                                 | 0.1 0.4 1 0.1 0.1 2 0.04 100 1.0 0.1 0.2 20 0.2 0.1 10 0.4 0.05 0.1                                | mg/kg dry                                                                                                               | Mar-12-14                                                                                                     | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                             |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper ron Lead Lithium Magnesium Marganese Mercury Molybdenum                                                      | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7 32200 2.6 8.0 9570 551 < 0.05 1.1 21.0                            | 0.1 0.4 1 0.1 0.1 2 0.04 100 1.0 0.1 0.2 20 0.2 0.1 10 0.4 0.05 0.1 0.4                            | mg/kg dry                                                                                           | Mar-12-14                                                                                                     | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                                             |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper ron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel                                               | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7 32200 2.6 8.0 9570 551 < 0.05 1.1 21.0 689                        | 0.1 0.4 1 0.1 0.1 2 0.04 100 1.0 0.1 0.2 20 0.2 20 0.2 0.1 10 0.4 0.05 0.1 0.4 10                  | mg/kg dry                                                                                           | Mar-12-14                                                                                 | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                                   |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper ron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Phosphorus                                    | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7 32200 2.6 8.0 9570 551 < 0.05 1.1 21.0 689 827                    | 0.1 0.4 1 0.1 0.1 0.1 2 0.04 100 1.0 0.1 0.2 20 0.2 20 0.2 0.1 10 0.4 0.05 0.1 0.4 10 0.4 10 10    | mg/kg dry                                                   | Mar-12-14                                                                       | Mar-13-14                                                             |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper ron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Phosphorus Potassium Selenium                 | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7 32200 2.6 8.0 9570 551 < 0.05 1.1 21.0 689 827 < 0.5              | 0.1 0.4 1 0.1 0.1 2 0.04 100 1.0 0.1 0.2 20 0.2 20 0.2 0.1 10 0.4 0.05 0.1 0.4 10 0.5              | mg/kg dry                                         | Mar-12-14                               | Mar-13-14                               |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper ron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Phosphorus Potassium Selenium Silicon         | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7 32200 2.6 8.0 9570 551 < 0.05 1.1 21.0 689 827 < 0.5 < 3000       | 0.1 0.4 1 0.1 0.1 0.1 2 0.04 100 1.0 0.1 0.2 20 0.2 20 0.2 0.1 10 0.4 0.05 0.1 0.4 10 0.5 3000     | mg/kg dry                               | Mar-12-14           | Mar-13-14                     |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper ron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Phosphorus Potassium Selenium Bilicon Biliver | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7 32200 2.6 8.0 9570 551 < 0.05 1.1 21.0 689 827 < 0.5 < 3000 < 0.2 | 0.1 0.4 1 0.1 0.1 0.1 2 0.04 100 1.0 0.1 0.2 20 0.2 20 0.2 0.1 10 0.4 0.05 0.1 0.4 10 0.5 3000 0.2 | mg/kg dry | Mar-12-14 | Mar-13-14 |       |
| Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium Calcium Chromium Cobalt Copper ron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Phosphorus Potassium Gelenium                 | 0.3 3.2 74 0.4 < 0.1 3 0.07 8650 25.1 11.3 41.7 32200 2.6 8.0 9570 551 < 0.05 1.1 21.0 689 827 < 0.5 < 3000       | 0.1 0.4 1 0.1 0.1 2 0.04 100 1.0 0.1 0.2 20 0.2 20 0.2 0.1 10 0.4 0.05 0.1 0.4 10 0.5 3000 0.2 40  | mg/kg dry                               | Mar-12-14           | Mar-13-14                     |       |



| Result /<br>Recovery                | MRL /<br><i>Limit</i>                                                                                           | Units            | Prepared                 | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| etals, Continued                    |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 03-35) [Soil] Sampled: Mar-06-14 09 | :00, Continued                                                                                                  |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| < 0.1                               | 0.1                                                                                                             | ma/ka drv        | Mar-12-14                | Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u>                            |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  | Mar-12-14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  | Mar-12-14                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                   |                                                                                                                 |                  |                          | Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13-40) [Soil] Sampled: Mar-07-14 09 |                                                                                                                 | 00,              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 | ma/ka drv        | Mar-12-14                | Mar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                 |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1080                                | 2                                                                                                               | mg/kg dry        | ıvıar-12-14              | ıvıar-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     | Recovery  etals, Continued  03-35) [Soil] Sampled: Mar-06-14 09  < 0.1  < 0.1  1.3  0.5  1300  0.3  80.2  53  7 | Recovery   Limit | Recovery   Limit   Units | Prepared   Prepared | ### Recovery   Limit   Units   Prepared   Analyzed   ### Stals, Continued   ### Stals, Cont |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030403 Mar-19-14

|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | REPORTED                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MRL /<br>Limit      | Units                                                                                                                                                                                                                                                                                                                                                                   | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analyzed                                           | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14 09:00, Continued |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                 | mg/kg dry                                                                                                                                                                                                                                                                                                                                                               | Mar-12-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar-13-14                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                   | mg/kg dry                                                                                                                                                                                                                                                                                                                                                               | Mar-12-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar-13-14                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                   | mg/kg dry                                                                                                                                                                                                                                                                                                                                                               | Mar-12-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar-13-14                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 07-14 09:00         |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20                  | mg/kg dry                                                                                                                                                                                                                                                                                                                                                               | Mar-12-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar-13-14                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1                 | mg/kg dry                                                                                                                                                                                                                                                                                                                                                               | Mar-12-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar-13-14                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4                 | mg/kg dry                                                                                                                                                                                                                                                                                                                                                               | Mar-12-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar-13-14                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                   | mg/kg dry                                                                                                                                                                                                                                                                                                                                                               | Mar-12-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar-13-14                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | mg/kg dry                                                                                                                                                                                                                                                                                                                                                               | Mar-12-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar-13-14                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1                 |                                                                                                                                                                                                                                                                                                                                                                         | Mar-12-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar-13-14                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.2                 |                                                                                                                                                                                                                                                                                                                                                                         | Mar-12-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar-13-14                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                   | тід/кд агу                                                                                                                                                                                                                                                                                                                                                              | iviar-12-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iviar-13-14                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | -14 09:00, Continued  0.4 2 2 07-14 09:00  20 0.1 0.4 1 0.1 0.1 2 0.04 100 1.0 0.1 0.2 20 0.2 0.1 10 0.4 100 0.1 10 0.5 3000 0.2 40 0.2 1000 0.1 0.5 3000 0.2 20 0.1 0.4 10 0.5 0.5 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.1 0.2 0.2 0.1 0.4 0.5 0.5 0.1 0.4 0.5 0.5 0.1 0.5 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.1 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 | -14 09:00, Continued  0.4 mg/kg dry 2 mg/kg dry 2 mg/kg dry 07-14 09:00  20 mg/kg dry 0.1 mg/kg dry 0.4 mg/kg dry 1 mg/kg dry 0.1 mg/kg dry 0.2 mg/kg dry 100 mg/kg dry 1.0 mg/kg dry 0.1 mg/kg dry 0.2 mg/kg dry 0.1 mg/kg dry 0.2 mg/kg dry 0.1 mg/kg dry 0.2 mg/kg dry 0.2 mg/kg dry 0.1 mg/kg dry 0.2 mg/kg dry 0.1 mg/kg dry 0.1 mg/kg dry 0.1 mg/kg dry 0.2 mg/kg dry | ### Continued    14 09:00, Continued   2 mg/kg dry | 14 09:00, Continued  0.4 mg/kg dry Mar-12-14 Mar-13-14 2 mg/kg dry Mar-12-14 Mar-13-14 2 mg/kg dry Mar-12-14 Mar-13-14 07-14 09:00  20 mg/kg dry Mar-12-14 Mar-13-14 0.1 mg/kg dry Mar-12-14 Mar-13-14 0.0 mg/kg dry Mar-12-14 Mar-13-14 0.2 mg/kg dry Mar-12-14 Mar-13-14 0.2 mg/kg dry Mar-12-14 Mar-13-14 0.2 mg/kg dry Mar-12-14 Mar-13-14 0.1 mg/kg dry Mar-12-14 Mar-13-14 0.2 mg/kg dry Mar-12-14 Mar-13-14 0.1 mg/kg dry Mar-12-14 Mar-13-14 0.2 mg/kg dry Mar-12-14 Mar-13-14 0.3 mg/kg dry Mar-12-14 Mar-13-14 0.4 mg/kg dry Mar-12-14 Mar-13-14 0.5 mg/kg dry Mar-12-14 Mar-13-14 0.6 mg/kg dry Mar-12-14 Mar-13-14 0.7 mg/kg dry Mar-12-14 Mar-13-14 0.9 mg/kg dry Mar-12-14 Mar-13-14 0.1 mg/kg dry Mar-12-14 Mar-13-14 0.2 mg/kg dry Mar-12-14 Mar-13-14 0.3 mg/kg dry Mar-12-14 Mar-13-14 0.4 mg/kg dry Mar-12-14 Mar-13-14 0.5 mg/kg d |

Aggregate Organic Parameters

CT2, HT



REPORTED TO PROJECT

Columbia Environmental Consulting Ltd

14-0493

WORK ORDER REPORTED

| Analyte                     | Result /<br>Recovery                   | MRL /<br><i>Limit</i> | Units     | Prepared  | Analyzed  | Notes   |
|-----------------------------|----------------------------------------|-----------------------|-----------|-----------|-----------|---------|
| Aggregate Organic Paramete  | ers, Continued                         |                       |           |           |           | CT2, HT |
| Sample ID: TP1-1 (4030403-  | 01) [Soil] Sampled: Mar-03-14 14:00    |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Sample ID: TP2-1 (4030403-  | 03) [Soil] Sampled: Mar-03-14 14:00    |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Sample ID: TP4-1 (4030403-0 | 05) [Soil] Sampled: Mar-03-14 14:00    |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Sample ID: TP7-1 (4030403-0 | 08) [Soil] Sampled: Mar-03-14 14:00    |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Sample ID: TP8-1 (4030403-0 | 09) [Soil] Sampled: Mar-03-14 14:00    |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Sample ID: BH1-1 (4030403-  | 10) [Soil] Sampled: Mar-04-14 09:00    |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Sample ID: BH7-1 (4030403-  | 18) [Soil] Sampled: Mar-04-14 13:00    |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Sample ID: BH8-1 (4030403-  | 19) [Soil] Sampled: Mar-04-14 13:00    |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Sample ID: BH4-1 (4030403-  | 20) [Soil] Sampled: Mar-04-14 13:00    |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Sample ID: BH6-1 (4030403-  | 22) [Soil] Sampled: Mar-04-14 13:00    |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Sample ID: BH2-1 (4030403-  | 23) [Soil] Sampled: Mar-05-14 09:00    |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Sample ID: BHDUP3 (40304)   | 03-24) [Soil] Sampled: Mar-05-14 09:00 |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Sample ID: BH3-3 (4030403-  | 35) [Soil] Sampled: Mar-06-14 09:00    |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Sample ID: BH9-1 (4030403-  | 40) [Soil] Sampled: Mar-07-14 09:00    |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Sample ID: BHDUP4 (40304)   | 03-42) [Soil] Sampled: Mar-07-14 09:00 |                       |           |           |           |         |
| VHs (6-10)                  | < 20                                   | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| · · ·                       |                                        |                       |           |           |           |         |
| CCME CWS Petroleum Hydr     | ocarbons                               |                       |           |           |           | CT2, HT |
| Sample ID: TP1-1 (4030403-  | 01) [Soil] Sampled: Mar-03-14 14:00    |                       |           |           |           |         |
| CCME PHC F1 (C6-C10)        | < 20                                   |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| CCME PHC F2 (C10-C16)       | < 100                                  | 100                   | mg/kg dry | Mar-11-14 | Mar-14-14 |         |



Columbia Environmental Consulting Ltd REPORTED TO

**PROJECT** 

**WORK ORDER** 4030403 REPORTED

| Analyte                             | Result /<br>Recovery         | MRL /<br><i>Limit</i> | Units     | Prepared  | Analyzed  | Notes |
|-------------------------------------|------------------------------|-----------------------|-----------|-----------|-----------|-------|
| CCME CWS Petroleum Hydrocarbo       | ns, Continued                |                       |           |           |           |       |
| Sample ID: TP1-1 (4030403-01) [So   | il] Sampled: Mar-03-14 14:0  | 0, Continued          |           |           |           |       |
| CCME PHC F3 (C16-C34)               | < 200                        | 200                   | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)               | < 200                        | 200                   | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| Signal returned to baseline at nC50 | YES                          |                       |           | Mar-11-14 | Mar-14-14 |       |
| Sample ID: TP2-1 (4030403-03) [So   | oil] Sampled: Mar-03-14 14:0 | 0                     |           |           |           |       |
| CCME PHC F1 (C6-C10)                | < 20                         | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| CCME PHC F2 (C10-C16)               | < 100                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F3 (C16-C34)               | < 200                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)               | < 200                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| Signal returned to baseline at nC50 | YES                          |                       | 3 3 7     | Mar-11-14 | Mar-14-14 |       |
| Sample ID: TP4-1 (4030403-05) [So   | il] Sampled: Mar-03-14 14:0  | 0                     |           |           |           |       |
| CCME PHC F1 (C6-C10)                | < 20                         | 20                    | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| CCME PHC F2 (C10-C16)               | < 100                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F3 (C16-C34)               | < 200                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)               | < 200                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| Signal returned to baseline at nC50 | YES                          |                       |           | Mar-11-14 | Mar-14-14 |       |
| Sample ID: TP7-1 (4030403-08) [So   | ill Sampled: Mar-03-14 14:0  | 0                     |           |           |           |       |
| CCME PHC F1 (C6-C10)                | < 20                         |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| CCME PHC F2 (C10-C16)               | < 100                        | 100                   | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F3 (C16-C34)               | < 200                        | 200                   | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)               | < 200                        | 200                   | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| Signal returned to baseline at nC50 | YES                          |                       |           | Mar-11-14 | Mar-14-14 |       |
| Sample ID: TP8-1 (4030403-09) [So   | oil] Sampled: Mar-03-14 14:0 | 0                     |           |           |           |       |
| CCME PHC F1 (C6-C10)                | < 20                         |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| CCME PHC F2 (C10-C16)               | < 100                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F3 (C16-C34)               | < 200                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)               | < 200                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| Signal returned to baseline at nC50 | YES                          |                       | 0 0 7     | Mar-11-14 | Mar-14-14 |       |
| Sample ID: BH1-1 (4030403-10) [So   | oil] Sampled: Mar-04-14 09:0 | 00                    |           |           |           |       |
| CCME PHC F1 (C6-C10)                | < 20                         |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| CCME PHC F2 (C10-C16)               | < 100                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F3 (C16-C34)               | < 200                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)               | < 200                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| Signal returned to baseline at nC50 | YES                          |                       |           | Mar-11-14 | Mar-14-14 |       |
| Sample ID: BH7-1 (4030403-18) [Sc   | oil] Sampled: Mar-04-14 13:0 | 00                    |           |           |           |       |
| CCME PHC F1 (C6-C10)                | < 20                         |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| CCME PHC F2 (C10-C16)               | < 100                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F3 (C16-C34)               | < 200                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)               | < 200                        |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
|                                     |                              | _00                   |           |           |           |       |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                             | Result /<br>Recovery            | MRL /<br>Limit | Units     | Prepared  | Analyzed  | Notes |
|-------------------------------------|---------------------------------|----------------|-----------|-----------|-----------|-------|
| CCME CWS Petroleum Hydrocarbo       | ons, Continued                  |                |           |           |           |       |
| Sample ID: BH8-1 (4030403-19) [S    | oil] Sampled: Mar-04-14 13:00   |                |           |           |           |       |
| CCME PHC F1 (C6-C10)                | < 20                            | 20             | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| CCME PHC F2 (C10-C16)               | < 100                           |                | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F3 (C16-C34)               | < 200                           | 200            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)               | < 200                           |                | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| Signal returned to baseline at nC50 | YES                             |                |           | Mar-11-14 | Mar-14-14 |       |
| Sample ID: BH4-1 (4030403-20) [S    | oil] Sampled: Mar-04-14 13:00   |                |           |           |           |       |
| CCME PHC F1 (C6-C10)                | < 20                            | 20             | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| CCME PHC F2 (C10-C16)               | < 100                           | 100            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F3 (C16-C34)               | < 200                           | 200            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)               | < 200                           | 200            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| Signal returned to baseline at nC50 | YES                             |                |           | Mar-11-14 | Mar-14-14 |       |
| Sample ID: BH6-1 (4030403-22) [S    | oil] Sampled: Mar-04-14 13:00   |                |           |           |           |       |
| CCME PHC F1 (C6-C10)                | < 20                            | 20             | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| CCME PHC F2 (C10-C16)               | < 100                           | 100            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F3 (C16-C34)               | < 200                           | 200            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)               | < 200                           | 200            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| Signal returned to baseline at nC50 | YES                             |                |           | Mar-11-14 | Mar-14-14 |       |
| Sample ID: BH2-1 (4030403-23) [S    | oil] Sampled: Mar-05-14 09:00   |                |           |           |           |       |
| CCME PHC F1 (C6-C10)                | < 20                            | 20             | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| CCME PHC F2 (C10-C16)               | < 100                           |                | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F3 (C16-C34)               | < 200                           |                | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)               | < 200                           |                | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| Signal returned to baseline at nC50 | YES                             |                | 3 3 7     | Mar-11-14 | Mar-14-14 |       |
| Sample ID: BHDUP3 (4030403-24)      | [Soil] Sampled: Mar-05-14 09:00 |                |           |           |           |       |
| CCME PHC F1 (C6-C10)                | < 20                            | 20             | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| CCME PHC F2 (C10-C16)               | < 100                           |                | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F3 (C16-C34)               | < 200                           | 200            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)               | < 200                           | 200            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| Signal returned to baseline at nC50 | YES                             |                |           | Mar-11-14 | Mar-14-14 |       |
| Sample ID: BH3-3 (4030403-35) [S    | oil] Sampled: Mar-06-14 09:00   |                |           |           |           |       |
| CCME PHC F1 (C6-C10)                | < 20                            | 20             | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| CCME PHC F2 (C10-C16)               | < 100                           | 100            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F3 (C16-C34)               | < 200                           | 200            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)               | < 200                           | 200            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| Signal returned to baseline at nC50 | YES                             |                |           | Mar-11-14 | Mar-14-14 |       |
| Sample ID: BH9-1 (4030403-40) [S    | oil] Sampled: Mar-07-14 09:00   |                |           |           |           |       |
| CCME PHC F1 (C6-C10)                | < 20                            | 20             | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| CCME PHC F2 (C10-C16)               | < 100                           | 100            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F3 (C16-C34)               | < 200                           | 200            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)               | < 200                           | 200            | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| Signal returned to baseline at nC50 | YES                             |                |           | Mar-11-14 | Mar-14-14 |       |



| Analyte                                                             | Result /<br>Recovery      | MRL /<br><i>Limit</i> | Units     | Prepared  | Analyzed  | Notes |
|---------------------------------------------------------------------|---------------------------|-----------------------|-----------|-----------|-----------|-------|
| CCME CWS Petroleum Hydrocarb                                        | ons, Continued            |                       |           |           |           |       |
| Sample ID: BHDUP4 (4030403-42)                                      | [Soil] Sampled: Mar-07-14 | 09:00                 |           |           |           |       |
| CCME PHC F1 (C6-C10)                                                | < 20                      |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| CCME PHC F2 (C10-C16)                                               | < 100                     |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F3 (C16-C34)                                               | < 200                     |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| CCME PHC F4 (C34-C50)                                               | < 200                     |                       | mg/kg dry | Mar-11-14 | Mar-14-14 |       |
| Signal returned to baseline at nC50                                 | YES                       |                       |           | Mar-11-14 | Mar-14-14 |       |
| Polycyclic Aromatic Hydrocarbon<br>Sample ID: TP1-1 (4030403-01) [S | ,                         | :00                   |           |           |           |       |
| 2-Methylnaphthalene                                                 | < 10                      | 10                    | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Acenaphthene                                                        | < 5                       |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Acenaphthylene                                                      | 34                        |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Anthracene                                                          | 48                        |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (a) anthracene                                                | 76                        |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (a) pyrene                                                    | 63                        |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (b) fluoranthene                                              | 236                       |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (g,h,i) perylene                                              | 68                        | 20                    | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (k) fluoranthene                                              | 77                        | 10                    | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Chrysene                                                            | 151                       |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Dibenz (a,h) anthracene                                             | 15                        | 5                     | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Fluoranthene                                                        | 198                       | 10                    | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Fluorene                                                            | < 10                      | 10                    | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Indeno (1,2,3-cd) pyrene                                            | 61                        | 20                    | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Naphthalene                                                         | < 10                      | 10                    | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Phenanthrene                                                        | 95                        | 20                    | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Pyrene                                                              | 124                       | 20                    | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Surrogate: Naphthalene-d8                                           | 117 %                     | 72-117                |           | Mar-11-14 | Mar-14-14 |       |
| Surrogate: Acenaphthene-d10                                         | 106 %                     | 74-111                |           | Mar-11-14 | Mar-14-14 |       |
| Surrogate: Phenanthrene-d10                                         | 89 %                      | 66-106                |           | Mar-11-14 | Mar-14-14 |       |
| Surrogate: Chrysene-d12                                             | 99 %                      | 60-109                |           | Mar-11-14 | Mar-14-14 |       |
| Surrogate: Perylene-d12                                             | 93 %                      | 60-121                |           | Mar-11-14 | Mar-14-14 |       |
| Sample ID: TP2-1 (4030403-03) [S                                    |                           |                       |           |           |           |       |
| 2-Methylnaphthalene                                                 | < 10                      |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Acenaphthene                                                        | < 5                       |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Acenaphthylene                                                      | < 5                       |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Anthracene                                                          | < 10                      |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (a) anthracene                                                | < 10                      |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (a) pyrene                                                    | < 10                      |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (b) fluoranthene                                              | < 10                      |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (g,h,i) perylene                                              | < 20                      |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (k) fluoranthene                                              | < 10                      |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Chrysene                                                            | < 10                      |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Dibenz (a,h) anthracene                                             | < 5                       |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Diberiz (a.ii) allullacene                                          |                           |                       |           |           |           |       |



| Analyte                          | Result /<br>Recovery              | MRL /<br><i>Limit</i> | Units     | Prepared  | Analyzed  | Notes |
|----------------------------------|-----------------------------------|-----------------------|-----------|-----------|-----------|-------|
| Polycyclic Aromatic Hydrocarbons | s (PAH), Continued                |                       |           |           |           |       |
| Sample ID: TP2-1 (4030403-03) [S | oil] Sampled: Mar-03-14 14        | :00, Continued        |           |           |           |       |
| Fluorene                         | < 10                              | 10                    | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Indeno (1,2,3-cd) pyrene         | < 20                              | 20                    | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Naphthalene                      | < 10                              | 10                    | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Phenanthrene                     | < 20                              | 20                    | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Pyrene                           | < 20                              | 20                    | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Surrogate: Naphthalene-d8        | 115 %                             | 72-117                |           | Mar-11-14 | Mar-14-14 |       |
| Surrogate: Acenaphthene-d10      | 114 %                             | 74-111                |           | Mar-11-14 | Mar-14-14 | S02   |
| Surrogate: Phenanthrene-d10      | 93 %                              | 66-106                |           | Mar-11-14 | Mar-14-14 |       |
| Surrogate: Chrysene-d12          | 108 %                             | 60-109                |           | Mar-11-14 | Mar-14-14 |       |
| Surrogate: Perylene-d12          | 101 %                             | 60-121                |           | Mar-11-14 | Mar-14-14 |       |
| Sample ID: TP3-1 (4030403-04) [S | oill Sampled: Mar-03-14 14        | :00                   |           |           |           |       |
| 2-Methylnaphthalene              | < 10                              |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Acenaphthene                     | 6                                 |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Acenaphthylene                   | <b>0</b><br>< 5                   |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Anthracene                       | < 10                              |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (a) anthracene             | < 10                              |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (a) pyrene                 | < 10                              |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (b) fluoranthene           | < 10                              |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (g,h,i) perylene           | < 20                              |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Benzo (k) fluoranthene           | < 10                              |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Chrysene                         | < 10                              |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Dibenz (a,h) anthracene          | < 5                               |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Fluoranthene                     | 18                                |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Fluorene                         | < 10                              |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Indeno (1,2,3-cd) pyrene         | < 20                              |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Naphthalene                      | < 10                              |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Phenanthrene                     | 37                                |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Pyrene                           | < 20                              |                       | ug/kg dry | Mar-11-14 | Mar-14-14 |       |
| Surrogate: Naphthalene-d8        | 109 %                             | 72-117                | 3 3 3     | Mar-11-14 | Mar-14-14 |       |
| Surrogate: Acenaphthene-d10      | 107 %                             | 74-111                |           | Mar-11-14 | Mar-14-14 |       |
| Surrogate: Phenanthrene-d10      | 92 %                              | 66-106                |           | Mar-11-14 | Mar-14-14 |       |
| Surrogate: Chrysene-d12          | 105 %                             | 60-109                |           | Mar-11-14 | Mar-14-14 |       |
| Surrogate: Perylene-d12          | 100 %                             | 60-121                |           | Mar-11-14 | Mar-14-14 |       |
| Sample ID: TP4-1 (4030403-05) [S |                                   |                       |           |           |           |       |
| 2-Methylnaphthalene              | onj Sampied: Mar-03-14-14<br>< 10 |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Acenaphthene                     | < 5                               |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Acenaphthylene                   | < 5                               |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Anthracene                       | < 10                              |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) anthracene             | < 10                              |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) pyrene                 | < 10                              |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (b) fluoranthene           | < 10                              |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (g,h,i) perylene           | < 20                              |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (k) fluoranthene           | < 10                              |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |



| Analyte                                                 | Result /<br>Recovery              | MRL /<br>Limit | Units     | Prepared    | Analyzed    | Notes |
|---------------------------------------------------------|-----------------------------------|----------------|-----------|-------------|-------------|-------|
| Polycyclic Aromatic Hydrocarbon                         | s (PAH), Continued                |                |           |             |             |       |
| Sample ID: TP4-1 (4030403-05) [S                        | Soil] Sampled: Mar-03-14 14:00, C | ontinued       |           |             |             |       |
| Chrysene                                                | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Dibenz (a,h) anthracene                                 | < 5                               |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Fluoranthene                                            | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Fluorene                                                | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Indeno (1,2,3-cd) pyrene                                | < 20                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Naphthalene                                             | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Phenanthrene                                            | < 20                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Pyrene                                                  | < 20                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Surrogate: Naphthalene-d8                               | 114 %                             | 72-117         |           | Mar-11-14   | Mar-13-14   |       |
| Surrogate: Acenaphthene-d10                             | 106 %                             | 74-111         |           | Mar-11-14   | Mar-13-14   |       |
| Surrogate: Phenanthrene-d10                             | 88 %                              | 66-106         |           | Mar-11-14   | Mar-13-14   |       |
| Surrogate: Chrysene-d12                                 | 109 %                             | 60-109         |           | Mar-11-14   | Mar-13-14   |       |
| Surrogate: Perylene-d12                                 | 104 %                             | 60-121         |           | Mar-11-14   | Mar-13-14   |       |
|                                                         |                                   |                |           |             |             |       |
| tample ID: TP7-1 (4030403-08) [S<br>2-Methylnaphthalene | < 10                              | 10             | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Acenaphthene                                            | < 5                               |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Acenaphthylene                                          | < 5                               |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Anthracene                                              | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Benzo (a) anthracene                                    | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Benzo (a) pyrene                                        | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Benzo (b) fluoranthene                                  | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Benzo (g,h,i) perylene                                  | < 20                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Benzo (k) fluoranthene                                  | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Chrysene                                                | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Dibenz (a,h) anthracene                                 | < 5                               |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Fluoranthene                                            | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Fluorene                                                | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| ndeno (1,2,3-cd) pyrene                                 | < 20                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Naphthalene                                             | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Phenanthrene                                            | < 20                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Pyrene                                                  | < 20                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Surrogate: Naphthalene-d8                               | 121 %                             | 72-117         |           | Mar-11-14   | Mar-13-14   | S02   |
| Surrogate: Acenaphthene-d10                             | 111 %                             | 74-111         |           | Mar-11-14   | Mar-13-14   |       |
| Surrogate: Phenanthrene-d10                             | 92 %                              | 66-106         |           | Mar-11-14   | Mar-13-14   |       |
| Surrogate: Chrysene-d12                                 | 108 %                             | 60-109         |           | Mar-11-14   | Mar-13-14   |       |
| Surrogate: Perylene-d12                                 | 103 %                             | 60-121         |           | Mar-11-14   | Mar-13-14   |       |
|                                                         |                                   | 00-121         |           | IVIAI-11-14 | IVIAI-13-14 |       |
| ample ID: TP8-1 (4030403-09) [S                         |                                   |                |           |             |             |       |
| 2-Methylnaphthalene                                     | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Acenaphthene                                            | < 5                               |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Acenaphthylene                                          | < 5                               |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Anthracene                                              | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Benzo (a) anthracene                                    | < 10                              |                | ug/kg dry | Mar-11-14   | Mar-13-14   |       |
| Benzo (a) pyrene                                        | < 10                              | 10             | ug/kg dry | Mar-11-14   | Mar-13-14   |       |



| Analyte                                            | Result /<br>Recovery                     | MRL /<br><i>Limit</i> | Units     | Prepared  | Analyzed  | Notes |
|----------------------------------------------------|------------------------------------------|-----------------------|-----------|-----------|-----------|-------|
| Polycyclic Aromatic Hydrocarbon                    | ns (PAH), Continued                      |                       |           |           |           |       |
| Sample ID: TP8-1 (4030403-09) [                    | Soil] Sampled: Mar-03-14 14:             | 00, Continued         |           |           |           |       |
| Benzo (b) fluoranthene                             | < 10                                     | 10                    | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (g,h,i) perylene                             | < 20                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (k) fluoranthene                             | < 10                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Chrysene                                           | < 10                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Dibenz (a,h) anthracene                            | < 5                                      |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Fluoranthene                                       | < 10                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Fluorene                                           | < 10                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Indeno (1,2,3-cd) pyrene                           | < 20                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Naphthalene                                        | < 10                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Phenanthrene                                       | < 20                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Pyrene                                             | < 20                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Naphthalene-d8                          | 126 %                                    | 72-117                |           | Mar-11-14 | Mar-13-14 | S02   |
| Surrogate: Acenaphthene-d10                        | 115 %                                    | 74-111                |           | Mar-11-14 | Mar-13-14 | S02   |
| Surrogate: Phenanthrene-d10                        | 94 %                                     | 66-106                |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Chrysene-d12                            | 111 %                                    | 60-109                |           | Mar-11-14 | Mar-13-14 | S02   |
| Surrogate: Perylene-d12                            | 108 %                                    | 60-121                |           | Mar-11-14 | Mar-13-14 | 002   |
| ample ID: BH1-1 (4030403-10) [32-Methylnaphthalene | Soil]   Sampled: Mar-04-14 09:<br>  < 10 |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
|                                                    |                                          |                       |           |           |           |       |
| Acenaphthene                                       | < 5                                      |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Acenaphthylene                                     | < 5                                      |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Anthracene                                         | < 10                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) anthracene                               | < 10                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) pyrene                                   | < 10                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (b) fluoranthene                             | < 10                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (g,h,i) perylene                             | < 20                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (k) fluoranthene                             | < 10                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Chrysene                                           | < 10                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Dibenz (a,h) anthracene                            | < 5                                      |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Fluoranthene                                       | < 10                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Fluorene                                           | < 10                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| ndeno (1,2,3-cd) pyrene                            | < 20                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Naphthalene                                        | < 10                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Phenanthrene                                       | < 20                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Pyrene Nambula I a a d                             | < 20                                     |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Naphthalene-d8                          | 117 %                                    | 72-117                |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Acenaphthene-d10                        | 109 %                                    | 74-111                |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Phenanthrene-d10                        | 90 %                                     | 66-106                |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Chrysene-d12                            | 100 %                                    | 60-109                |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Perylene-d12                            | 98 %                                     | 60-121                |           | Mar-11-14 | Mar-13-14 |       |
| Sample ID: BH7-1 (4030403-18) [                    | Soil] Sampled: Mar-04-14 13:             | 00                    |           |           |           |       |
| 2-Methylnaphthalene                                | < 10                                     | 10                    | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Acenaphthene                                       | < 5                                      | 5                     | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Acenaphthylene                                     | < 5                                      | 5                     | ug/kg dry | Mar-11-14 | Mar-13-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd

PROJECT 14-0493 WORK ORDER

REPORTED

| Analyte                                                                                                                                                                                                             | Result /<br><i>Recovery</i>                                                      | MRL /<br><i>Limit</i>                                                       | Units                                                                                     | Prepared                                                                                                                       | Analyzed                                                                                                          | Notes |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------|
| Polycyclic Aromatic Hydrocarbor                                                                                                                                                                                     | ns (PAH), Continued                                                              |                                                                             |                                                                                           |                                                                                                                                |                                                                                                                   |       |
| Sample ID: BH7-1 (4030403-18) [                                                                                                                                                                                     | Soil] Sampled: Mar-04-14 13                                                      | :00, Continued                                                              |                                                                                           |                                                                                                                                |                                                                                                                   |       |
| Anthracene                                                                                                                                                                                                          | < 10                                                                             | 10                                                                          | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Benzo (a) anthracene                                                                                                                                                                                                | < 10                                                                             | 10                                                                          | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Benzo (a) pyrene                                                                                                                                                                                                    | < 10                                                                             | 10                                                                          | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Benzo (b) fluoranthene                                                                                                                                                                                              | < 10                                                                             | 10                                                                          | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Benzo (g,h,i) perylene                                                                                                                                                                                              | < 20                                                                             | 20                                                                          | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Benzo (k) fluoranthene                                                                                                                                                                                              | < 10                                                                             | 10                                                                          | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Chrysene                                                                                                                                                                                                            | < 10                                                                             | 10                                                                          | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Dibenz (a,h) anthracene                                                                                                                                                                                             | < 5                                                                              | 5                                                                           | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Fluoranthene                                                                                                                                                                                                        | < 10                                                                             | 10                                                                          | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Fluorene                                                                                                                                                                                                            | < 10                                                                             | 10                                                                          | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Indeno (1,2,3-cd) pyrene                                                                                                                                                                                            | < 20                                                                             | 20                                                                          | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Naphthalene                                                                                                                                                                                                         | < 10                                                                             |                                                                             | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Phenanthrene                                                                                                                                                                                                        | < 20                                                                             |                                                                             | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Pyrene                                                                                                                                                                                                              | < 20                                                                             | 20                                                                          | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Surrogate: Naphthalene-d8                                                                                                                                                                                           | 108 %                                                                            | 72-117                                                                      |                                                                                           | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Surrogate: Acenaphthene-d10                                                                                                                                                                                         | 104 %                                                                            | 74-111                                                                      |                                                                                           | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Surrogate: Phenanthrene-d10                                                                                                                                                                                         | 90 %                                                                             | 66-106                                                                      |                                                                                           | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Surrogate: Chrysene-d12                                                                                                                                                                                             | 93 %                                                                             | 60-109                                                                      |                                                                                           | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Surrogate: Perylene-d12                                                                                                                                                                                             | 95 %                                                                             | 60-121                                                                      |                                                                                           | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| ample ID: BH8-1 (4030403-19) [<br>2-Methylnaphthalene                                                                                                                                                               | < 10                                                                             | 10                                                                          | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Acenaphthene                                                                                                                                                                                                        | < 5                                                                              |                                                                             | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Acenaphthylene                                                                                                                                                                                                      | < 5                                                                              |                                                                             | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Anthracene                                                                                                                                                                                                          | < 10                                                                             |                                                                             | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Benzo (a) anthracene                                                                                                                                                                                                | < 10                                                                             |                                                                             | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Benzo (a) pyrene                                                                                                                                                                                                    | < 10                                                                             |                                                                             | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
| Benzo (b) fluoranthene                                                                                                                                                                                              | < 10                                                                             |                                                                             |                                                                                           |                                                                                                                                |                                                                                                                   |       |
|                                                                                                                                                                                                                     |                                                                                  |                                                                             | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
|                                                                                                                                                                                                                     | < 20                                                                             | 20                                                                          | ug/kg dry                                                                                 | Mar-11-14                                                                                                                      | Mar-13-14                                                                                                         |       |
|                                                                                                                                                                                                                     |                                                                                  | 20<br>10                                                                    | ug/kg dry<br>ug/kg dry                                                                    |                                                                                                                                |                                                                                                                   |       |
| Benzo (k) fluoranthene<br>Chrysene                                                                                                                                                                                  | < 20                                                                             | 20<br>10<br>10                                                              | ug/kg dry<br>ug/kg dry<br>ug/kg dry                                                       | Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                            | Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                               |       |
| Benzo (k) fluoranthene<br>Chrysene                                                                                                                                                                                  | < 20<br>< 10                                                                     | 20<br>10<br>10<br>5                                                         | ug/kg dry<br>ug/kg dry<br>ug/kg dry<br>ug/kg dry                                          | Mar-11-14<br>Mar-11-14                                                                                                         | Mar-13-14<br>Mar-13-14                                                                                            |       |
| Benzo (k) fluoranthene<br>Chrysene<br>Dibenz (a,h) anthracene                                                                                                                                                       | < 20<br>< 10<br>< 10                                                             | 20<br>10<br>10<br>5<br>10                                                   | ug/kg dry<br>ug/kg dry<br>ug/kg dry<br>ug/kg dry<br>ug/kg dry                             | Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                            | Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                               |       |
| Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene                                                                                                                                                | < 20<br>< 10<br>< 10<br>< 5                                                      | 20<br>10<br>10<br>5<br>10                                                   | ug/kg dry<br>ug/kg dry<br>ug/kg dry<br>ug/kg dry<br>ug/kg dry<br>ug/kg dry                | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                               | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                                  |       |
| Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene                                                                                                                                       | < 20<br>< 10<br>< 10<br>< 5<br>< 10                                              | 20<br>10<br>10<br>5<br>10<br>10<br>20                                       | ug/kg dry<br>ug/kg dry<br>ug/kg dry<br>ug/kg dry<br>ug/kg dry<br>ug/kg dry<br>ug/kg dry   | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                  | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                     |       |
| Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene                                                                                                              | < 20<br>< 10<br>< 10<br>< 5<br>< 10<br>< 10                                      | 20<br>10<br>10<br>5<br>10<br>10<br>20                                       | ug/kg dry           | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                  | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                                     |       |
| Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene                                                                                                  | < 20<br>< 10<br>< 10<br>< 5<br>< 10<br>< 10<br>< 20                              | 20<br>10<br>10<br>5<br>10<br>10<br>20<br>10                                 | ug/kg dry | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                     | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                                        |       |
| Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene                                                                                     | < 20 < 10 < 10 < 5 < 10 < 10 < 10 < 10 < 10 < 10 < 20 < 10                       | 20<br>10<br>10<br>5<br>10<br>10<br>20<br>10                                 | ug/kg dry           | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                        | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                           |       |
| Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene                                                                              | < 20 < 10 < 10 < 5 < 10 < 10 < 10 < 10 < 20 < 10 < 20                            | 20<br>10<br>10<br>5<br>10<br>10<br>20<br>10                                 | ug/kg dry | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                           | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14                           | S02   |
| Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Surrogate: Naphthalene-d8 Surrogate: Acenaphthene-d10 | < 20 < 10 < 10 < 5 < 10 < 10 < 10 < 10 < 20 < 10 < 20 < 20 < 20                  | 20<br>10<br>10<br>5<br>10<br>10<br>20<br>10<br>20                           | ug/kg dry | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                           | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14              | S02   |
| Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Surrogate: Naphthalene-d8                                                    | < 20 < 10 < 10 < 5 < 10 < 10 < 5 < 10 < 10 < 20 < 20 < 20 < 20 < 20 < 23 %       | 20<br>10<br>10<br>5<br>10<br>10<br>20<br>10<br>20<br>20<br>72-117           | ug/kg dry | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14              | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14 | S02   |
| Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Surrogate: Naphthalene-d8 Surrogate: Acenaphthene-d10                        | < 20 < 10 < 10 < 5 < 10 < 10 < 10 < 10 < 10 < 20 < 11 < 20 < 20 < 20 123 % 111 % | 20<br>10<br>10<br>5<br>10<br>10<br>20<br>10<br>20<br>20<br>72-117<br>74-111 | ug/kg dry | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14 | Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14<br>Mar-13-14 | S02   |

4030403



REPORTED TO Columbia Environmental Consulting Ltd WORK ORDER PROJECT 14-0493 REPORTED

| Analyte                         | Result /<br>Recovery           | MRL /<br>Limit | Units     | Prepared                | Analyzed    | Notes |
|---------------------------------|--------------------------------|----------------|-----------|-------------------------|-------------|-------|
| Polycyclic Aromatic Hydrocarbon | ns (PAH), Continued            |                |           |                         |             |       |
| Sample ID: BH4-1 (4030403-20) [ | Soil] Sampled: Mar-04-14 13:00 |                |           |                         |             |       |
| 2-Methylnaphthalene             | < 10                           | 10             | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Acenaphthene                    | < 5                            |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Acenaphthylene                  | < 5                            |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Anthracene                      | < 10                           |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Benzo (a) anthracene            | < 10                           |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Benzo (a) pyrene                | < 10                           |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Benzo (b) fluoranthene          | 13                             |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Benzo (g,h,i) perylene          | < 20                           |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Benzo (k) fluoranthene          | < 10                           |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Chrysene                        | 13                             |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Dibenz (a,h) anthracene         | < 5                            |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Fluoranthene                    | < 10                           |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Fluorene                        | < 10                           |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Indeno (1,2,3-cd) pyrene        | < 20                           |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Naphthalene                     | < 10                           |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Phenanthrene                    | < 20                           | 20             |           | Mar-11-14               | Mar-13-14   |       |
| Pyrene                          | < 20                           |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Surrogate: Naphthalene-d8       | 116 %                          | 72-117         | -3 3 - 7  | Mar-11-14               | Mar-13-14   |       |
| Surrogate: Acenaphthene-d10     | 109 %                          | 74-111         |           | Mar-11-14               | Mar-13-14   |       |
| Surrogate: Phenanthrene-d10     | 93 %                           | 66-106         |           | Mar-11-14               | Mar-13-14   |       |
| Surrogate: Chrysene-d12         | 91 %                           | 60-109         |           | Mar-11-14               | Mar-13-14   |       |
| Surrogate: Perylene-d12         | 95 %                           | 60-109         |           | Mar-11-14               | Mar-13-14   |       |
| Surrogate. Ferylene-u12         | 95 /6                          | 00-121         |           | iviai-11-1 <del>4</del> | Iviai-13-14 |       |
| Sample ID: BH5-1 (4030403-21) [ | Soil] Sampled: Mar-04-14 13:00 |                |           |                         |             |       |
| 2-Methylnaphthalene             | < 10                           | 10             | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Acenaphthene                    | < 5                            | 5              | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Acenaphthylene                  | < 5                            | 5              | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Anthracene                      | < 10                           | 10             | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Benzo (a) anthracene            | < 10                           | 10             | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Benzo (a) pyrene                | < 10                           | 10             | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Benzo (b) fluoranthene          | < 10                           | 10             | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Benzo (g,h,i) perylene          | < 20                           | 20             | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Benzo (k) fluoranthene          | < 10                           | 10             | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Chrysene                        | < 10                           |                | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Dibenz (a,h) anthracene         | < 5                            | 5              | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Fluoranthene                    | < 10                           | 10             | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Fluorene                        | < 10                           | 10             | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Indeno (1,2,3-cd) pyrene        | < 20                           | 20             | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Naphthalene                     | < 10                           | 10             | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Phenanthrene                    | < 20                           | 20             | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Pyrene                          | < 20                           | 20             | ug/kg dry | Mar-11-14               | Mar-13-14   |       |
| Surrogate: Naphthalene-d8       | 125 %                          | 72-117         |           | Mar-11-14               | Mar-13-14   | S02   |
| Surrogate: Acenaphthene-d10     | 114 %                          | 74-111         |           | Mar-11-14               | Mar-13-14   | S02   |
| Surrogate: Phenanthrene-d10     | 95 %                           | 66-106         |           | Mar-11-14               | Mar-13-14   |       |
| Surrogate: Chrysene-d12         | 105 %                          | 60-109         |           | Mar-11-14               | Mar-13-14   |       |

4030403



Columbia Environmental Consulting Ltd REPORTED TO **PROJECT** 

**WORK ORDER** REPORTED

| Analyte                                                 | Result /<br>Recovery              | MRL /<br><i>Limit</i> | Units                  | Prepared  | Analyzed  | Notes |
|---------------------------------------------------------|-----------------------------------|-----------------------|------------------------|-----------|-----------|-------|
| Polycyclic Aromatic Hydrocarbon                         | s (PAH), Continued                |                       |                        |           |           |       |
| Sample ID: BH5-1 (4030403-21)                           | Soil] Sampled: Mar-04-14 13:00, C | ontinued              |                        |           |           |       |
| Surrogate: Perylene-d12                                 | 105 %                             | 60-121                |                        | Mar-11-14 | Mar-13-14 |       |
| Sample ID: BH6-1 (4030403-22) [                         | Soil] Sampled: Mar-04-14 13:00    |                       |                        |           |           |       |
| 2-Methylnaphthalene                                     | < 10                              | 10                    | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Acenaphthene                                            | < 5                               |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Acenaphthylene                                          | < 5                               |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Anthracene                                              | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) anthracene                                    | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) pyrene                                        | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Benzo (b) fluoranthene                                  | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Benzo (g,h,i) perylene                                  | < 20                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Benzo (k) fluoranthene                                  | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Chrysene                                                | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Dibenz (a,h) anthracene                                 | < 5                               |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Fluoranthene                                            | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Fluorene                                                | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Indeno (1,2,3-cd) pyrene                                | < 20                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Naphthalene                                             | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Phenanthrene                                            | < 20                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Pyrene                                                  | < 20                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Naphthalene-d8                               | 118 %                             | 72-117                | 00,                    | Mar-11-14 | Mar-13-14 | S02   |
| Surrogate: Acenaphthene-d10                             | 110 %                             | 74-111                |                        | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Phenanthrene-d10                             | 91 %                              | 66-106                |                        | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Chrysene-d12                                 | 107 %                             | 60-109                |                        | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Perylene-d12                                 | 102 %                             | 60-121                |                        | Mar-11-14 | Mar-13-14 |       |
|                                                         |                                   | 00-121                |                        | Wai-11-14 | Wai-13-14 |       |
| Sample ID: BH2-1 (4030403-23) [3<br>2-Methylnaphthalene | < 10                              | 10                    | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Acenaphthene                                            | < 5                               |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Acenaphthylene                                          | < 5                               |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Anthracene                                              | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) anthracene                                    | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) pyrene                                        | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Benzo (b) fluoranthene                                  | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Benzo (g,h,i) perylene                                  | < 20                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Benzo (k) fluoranthene                                  | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Chrysene                                                | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Dibenz (a,h) anthracene                                 | < 5                               |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Fluoranthene                                            | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Fluorene                                                | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Indeno (1,2,3-cd) pyrene                                | < 20                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Naphthalene                                             | < 10                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Phenanthrene                                            | < 20                              |                       | ug/kg dry<br>ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Pyrene                                                  | < 20                              |                       | ug/kg dry              | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Naphthalene-d8                               | 133 %                             | 72-117                | agring ary             | Mar-11-14 | Mar-13-14 | S02   |



| Analyte                          | Result /<br>Recovery       | MRL /<br>Limit  | Units     | Prepared  | Analyzed  | Notes |
|----------------------------------|----------------------------|-----------------|-----------|-----------|-----------|-------|
| Polycyclic Aromatic Hydrocarbons | (PAH), Continued           |                 |           |           |           |       |
| Sample ID: BH2-1 (4030403-23) [S | oil] Sampled: Mar-05-14 09 | 9:00, Continued |           |           |           |       |
| Surrogate: Acenaphthene-d10      | 120 %                      | 74-111          |           | Mar-11-14 | Mar-13-14 | S02   |
| Surrogate: Phenanthrene-d10      | 101 %                      | 66-106          |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Chrysene-d12          | 109 %                      | 60-109          |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Perylene-d12          | 111 %                      | 60-121          |           | Mar-11-14 | Mar-13-14 |       |
| Sample ID: BHDUP3 (4030403-24)   | [Soil] Sampled: Mar-05-14  | 09:00           |           |           |           |       |
| 2-Methylnaphthalene              | < 10                       | 10              | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Acenaphthene                     | < 5                        | 5               | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Acenaphthylene                   | < 5                        | 5               | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Anthracene                       | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) anthracene             | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) pyrene                 | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (b) fluoranthene           | < 10                       | 10              | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (g,h,i) perylene           | < 20                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (k) fluoranthene           | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Chrysene                         | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Dibenz (a,h) anthracene          | < 5                        |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Fluoranthene                     | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| luorene                          | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| ndeno (1,2,3-cd) pyrene          | < 20                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Naphthalene                      | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Phenanthrene                     | < 20                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Pyrene                           | < 20                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Naphthalene-d8        | 119 %                      | 72-117          | 0 0 ,     | Mar-11-14 | Mar-13-14 | S02   |
| Surrogate: Acenaphthene-d10      | 111 %                      | 74-111          |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Phenanthrene-d10      | 95 %                       | 66-106          |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Chrysene-d12          | 101 %                      | 60-109          |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Perylene-d12          | 102 %                      | 60-121          |           | Mar-11-14 | Mar-13-14 |       |
| sample ID: BH3-3 (4030403-35) [S |                            |                 |           |           |           |       |
| 2-Methylnaphthalene              | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Acenaphthene                     | < 5                        | 5               | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Acenaphthylene                   | < 5                        |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Anthracene                       | < 10                       | 10              | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) anthracene             | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) pyrene                 | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (b) fluoranthene           | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (g,h,i) perylene           | < 20                       | 20              | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (k) fluoranthene           | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Chrysene                         | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Dibenz (a,h) anthracene          | < 5                        |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Fluoranthene                     | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Fluorene                         | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Indeno (1,2,3-cd) pyrene         | < 20                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Naphthalene                      | < 10                       |                 | ug/kg dry | Mar-11-14 | Mar-13-14 |       |



| Analyte                               | Result /<br>Recovery         | MRL /<br><i>Limit</i> | Units     | Prepared  | Analyzed  | Notes |
|---------------------------------------|------------------------------|-----------------------|-----------|-----------|-----------|-------|
| Polycyclic Aromatic Hydrocarbo        | ns (PAH), Continued          |                       |           |           |           |       |
| Sample ID: BH3-3 (4030403-35)         | [Soil] Sampled: Mar-06-14 09 | 9:00, Continued       |           |           |           |       |
| Phenanthrene                          | < 20                         | 20                    | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Pyrene                                | < 20                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Naphthalene-d8             | 110 %                        | 72-117                |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Acenaphthene-d10           | 101 %                        | 74-111                |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Phenanthrene-d10           | 88 %                         | 66-106                |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Chrysene-d12               | 92 %                         | 60-109                |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Perylene-d12               | 92 %                         | 60-121                |           | Mar-11-14 | Mar-13-14 |       |
| Sample ID: BH9-1 (4030403-40)         | [Soil] Sampled: Mar-07-14 09 | 9:00                  |           |           |           |       |
| 2-Methylnaphthalene                   | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Acenaphthene                          | < 5                          |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Acenaphthylene                        | < 5                          |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Anthracene                            | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) anthracene                  | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) pyrene                      | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (b) fluoranthene                | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (g,h,i) perylene                | < 20                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (k) fluoranthene                | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Chrysene                              | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Dibenz (a,h) anthracene               | < 5                          |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Fluoranthene                          | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Fluorene                              | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| ndeno (1,2,3-cd) pyrene               | < 20                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Naphthalene                           | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Phenanthrene                          | < 20                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Pyrene                                | < 20                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Naphthalene-d8             | 124 %                        | 72-117                | ug/kg ury | Mar-11-14 | Mar-13-14 | S02   |
| · · · · · · · · · · · · · · · · · · · |                              |                       |           |           |           |       |
| Surrogate: Acenaphthene-d10           | 114 %                        | 74-111                |           | Mar-11-14 | Mar-13-14 | S02   |
| Surrogate: Phenanthrene-d10           | 97 %                         | 66-106                |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Chrysene-d12               | 105 %                        | 60-109                |           | Mar-11-14 | Mar-13-14 |       |
| Surrogate: Perylene-d12               | 103 %                        | 60-121                |           | Mar-11-14 | Mar-13-14 |       |
| Sample ID: BHDUP4 (4030403-42         | <u> </u>                     |                       |           |           | M (0.44   |       |
| 2-Methylnaphthalene                   | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Acenaphthene                          | < 5                          |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Acenaphthylene                        | < 5                          |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Anthracene                            | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) anthracene                  | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (a) pyrene                      | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (b) fluoranthene                | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (g,h,i) perylene                | < 20                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Benzo (k) fluoranthene                | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Chrysene                              | < 10                         |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Dibenz (a,h) anthracene               | < 5                          |                       | ug/kg dry | Mar-11-14 | Mar-13-14 |       |
| Fluoranthene                          | < 10                         | 10                    | ug/kg dry | Mar-11-14 | Mar-13-14 |       |



REPORTED TO PROJECT

Columbia Environmental Consulting Ltd

14-0493

WORK ORDER REPORTED 4030403 Mar-19-14

| Analyta | Result / | MRL /<br>Units | Droporod | Anglyzed | Notes |
|---------|----------|----------------|----------|----------|-------|
| Analyte | Recovery | Limit          | Prepared | Analyzed | Notes |

#### Polycyclic Aromatic Hydrocarbons (PAH), Continued

#### Sample ID: BHDUP4 (4030403-42) [Soil] Sampled: Mar-07-14 09:00, Continued

| Fluorene                    | < 10  | 10 ug/kg dry | Mar-11-14 | Mar-13-14 |     |
|-----------------------------|-------|--------------|-----------|-----------|-----|
| Indeno (1,2,3-cd) pyrene    | < 20  | 20 ug/kg dry | Mar-11-14 | Mar-13-14 |     |
| Naphthalene                 | < 10  | 10 ug/kg dry | Mar-11-14 | Mar-13-14 |     |
| Phenanthrene                | < 20  | 20 ug/kg dry | Mar-11-14 | Mar-13-14 |     |
| Pyrene                      | < 20  | 20 ug/kg dry | Mar-11-14 | Mar-13-14 |     |
| Surrogate: Naphthalene-d8   | 118 % | 72-117       | Mar-11-14 | Mar-13-14 | S02 |
| Surrogate: Acenaphthene-d10 | 111 % | 74-111       | Mar-11-14 | Mar-13-14 |     |
| Surrogate: Phenanthrene-d10 | 94 %  | 66-106       | Mar-11-14 | Mar-13-14 |     |
| Surrogate: Chrysene-d12     | 102 % | 60-109       | Mar-11-14 | Mar-13-14 |     |
| Surrogate: Perylene-d12     | 97 %  | 60-121       | Mar-11-14 | Mar-13-14 |     |

#### **SPLP Semivolatiles**

#### Sample ID: ASP-1 (4030403-31) [Soil] Sampled: Mar-04-14 13:00

| Acenaphthene                | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
|-----------------------------|---------|------------|-----------|-----------|
| Acenaphthylene              | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Acridine                    | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Anthracene                  | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Benzo (a) anthracene        | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Benzo (a) pyrene            | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Benzo (b) fluoranthene      | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Benzo (g,h,i) perylene      | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Benzo (k) fluoranthene      | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Chrysene                    | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Dibenz (a,h) anthracene     | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Fluoranthene                | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Fluorene                    | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Indeno (1,2,3-cd) pyrene    | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Naphthalene                 | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Phenanthrene                | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Pyrene                      | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Quinoline                   | < 0.001 | 0.001 mg/L | Mar-17-14 | Mar-18-14 |
| Surrogate: Naphthalene-d8   | 70 %    | 40-96      | Mar-17-14 | Mar-18-14 |
| Surrogate: Acenaphthene-d10 | 70 %    | 45-92      | Mar-17-14 | Mar-18-14 |
| Surrogate: Phenanthrene-d10 | 71 %    | 48-90      | Mar-17-14 | Mar-18-14 |
| Surrogate: Chrysene-d12     | 62 %    | 41-96      | Mar-17-14 | Mar-18-14 |
| Surrogate: Perylene-d12     | 63 %    | 47-104     | Mar-17-14 | Mar-18-14 |
| - *                         |         |            |           |           |

#### Volatile Organic Compounds (VOC)

CT2, HT

#### Sample ID: TP1-1 (4030403-01) [Soil] Sampled: Mar-03-14 14:00

| Benzene              | < 0.02 | 0.02 mg/kg dry | Mar-11-14 | Mar-17-14 |
|----------------------|--------|----------------|-----------|-----------|
| Bromodichloromethane | < 0.10 | 0.10 mg/kg dry | Mar-11-14 | Mar-17-14 |
| Bromoform            | < 0.10 | 0.10 mg/kg dry | Mar-11-14 | Mar-17-14 |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER 4030403 REPORTED Mar-19-14

| Analyte                           | Result /<br>Recovery      | MRL /<br><i>Limit</i> | Units     | Prepared  | Analyzed  | Notes   |
|-----------------------------------|---------------------------|-----------------------|-----------|-----------|-----------|---------|
| Volatile Organic Compounds (VOC)  | , Continued               |                       |           |           |           | CT2, HT |
| Sample ID: TP1-1 (4030403-01) [So | il] Sampled: Mar-03-14 1  | 4:00, Continued       |           |           |           |         |
| Carbon tetrachloride              | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Chlorobenzene                     | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Chloroform                        | < 0.07                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Dibromochloromethane              | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,2-Dibromoethane                 | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Dibromomethane                    | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,2-Dichlorobenzene               | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,3-Dichlorobenzene               | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,4-Dichlorobenzene               | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,1-Dichloroethane                | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,2-Dichloroethane                | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,1-Dichloroethene                | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| cis-1,2-Dichloroethene            | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| trans-1,2-Dichloroethene          | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,2-Dichloropropane               | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| cis-1,3-Dichloropropene           | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| trans-1,3-Dichloropropene         | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Ethylbenzene                      | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Methyl tert-butyl ether           | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Methylene chloride                | < 0.50                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Styrene                           | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,1,2,2-Tetrachloroethane         | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Tetrachloroethene                 | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Toluene                           | < 0.20                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,1,1-Trichloroethane             | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,1,2-Trichloroethane             | < 0.07                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Trichloroethene                   | < 0.01                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Trichlorofluoromethane            | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Vinyl chloride                    | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Xylenes (total)                   | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Surrogate: Toluene-d8             | 91 %                      | 63-121                |           | Mar-11-14 | Mar-17-14 |         |
| Surrogate: 4-Bromofluorobenzene   | 91 %                      | 49-108                |           | Mar-11-14 | Mar-17-14 |         |
| Surrogate: 1,4-Dichlorobenzene-d4 | 92 %                      | 50-107                |           | Mar-11-14 | Mar-17-14 |         |
| Sample ID: TP2-1 (4030403-03) [So | il] Sampled: Mar-03-14 14 | 4:00                  |           |           |           |         |
| Benzene                           | < 0.02                    | 0.02                  | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Bromodichloromethane              | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Bromoform                         | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Carbon tetrachloride              | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Chlorobenzene                     | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Chloroform                        | < 0.07                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Dibromochloromethane              | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,2-Dibromoethane                 | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Dibromomethane                    | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,2-Dichlorobenzene               | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER 4030403 REPORTED Mar-19-14

| Analyte                           | Result / Recovery         | MRL /<br><i>Limit</i> | Units     | Prepared    | Analyzed    | Notes |
|-----------------------------------|---------------------------|-----------------------|-----------|-------------|-------------|-------|
| Volatile Organic Compounds (VOC)  | , Continued               |                       |           |             |             | HT    |
| Sample ID: TP2-1 (4030403-03) [So | il] Sampled: Mar-03-14 14 | :00, Continued        |           |             |             |       |
| 1,3-Dichlorobenzene               | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,4-Dichlorobenzene               | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,1-Dichloroethane                | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,2-Dichloroethane                | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,1-Dichloroethene                | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| cis-1,2-Dichloroethene            | < 0.10                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| trans-1,2-Dichloroethene          | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,2-Dichloropropane               | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| cis-1,3-Dichloropropene           | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| trans-1,3-Dichloropropene         | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Ethylbenzene                      | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Methyl tert-butyl ether           | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Methylene chloride                | < 0.50                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Styrene                           | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,1,2,2-Tetrachloroethane         | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Tetrachloroethene                 | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Toluene                           | < 0.20                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,1,1-Trichloroethane             | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,1,2-Trichloroethane             | < 0.07                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Trichloroethene                   | < 0.01                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Trichlorofluoromethane            | < 0.10                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Vinyl chloride                    | < 0.10                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Xylenes (total)                   | < 0.10                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Surrogate: Toluene-d8             | 97 %                      | 63-121                | 99)       | Mar-11-14   | Mar-17-14   |       |
| Surrogate: 4-Bromofluorobenzene   | 98 %                      | 49-108                |           | Mar-11-14   | Mar-17-14   |       |
| Surrogate: 1,4-Dichlorobenzene-d4 | 99 %                      | 50-107                |           | Mar-11-14   | Mar-17-14   |       |
| <u> </u>                          |                           |                       |           | IVIAI-TT-14 | IVIAI-17-14 |       |
| Sample ID: TP4-1 (4030403-05) [So | <u> </u>                  |                       |           |             |             |       |
| Benzene                           | < 0.02                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Bromodichloromethane              | < 0.10                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Bromoform                         | < 0.10                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Carbon tetrachloride              | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Chlorobenzene                     | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Chloroform                        | < 0.07                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Dibromochloromethane              | < 0.10                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,2-Dibromoethane                 | < 0.10                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| Dibromomethane                    | < 0.10                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,2-Dichlorobenzene               | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,3-Dichlorobenzene               | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,4-Dichlorobenzene               | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,1-Dichloroethane                | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,2-Dichloroethane                | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| 1,1-Dichloroethene                | < 0.05                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| cis-1,2-Dichloroethene            | < 0.10                    |                       | mg/kg dry | Mar-11-14   | Mar-17-14   |       |
| trans-1,2-Dichloroethene          | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14   | Mar-17-14   |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result /<br>Recovery                                                                                                                                                                                                                                                                                                              | MRL /<br><i>Limit</i>                                                                                        | Units                                                                                                                                                                                                                                                                                   | Prepared                                                                                                                                                                                                                    | Analyzed                                                                                                                                                                                                                                                  | Notes |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| /olatile Organic Compounds (VOC)                                                                                                                                                                                                                                                                                                                                                                                                                                  | , Continued                                                                                                                                                                                                                                                                                                                       |                                                                                                              |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           | HT    |
| Sample ID: TP4-1 (4030403-05) [So                                                                                                                                                                                                                                                                                                                                                                                                                                 | il] Sampled: Mar-03-14 14                                                                                                                                                                                                                                                                                                         | :00, Continued                                                                                               |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |       |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.05                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                         | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.05                                                                                                                                                                                                                                                                                                                            |                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.05                                                                                                                                                                                                                                                                                                                            |                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.05                                                                                                                                                                                                                                                                                                                            |                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.05                                                                                                                                                                                                                                                                                                                            |                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.50                                                                                                                                                                                                                                                                                                                            | 0.50                                                                                                         | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.05                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                         | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.05                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                         | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.05                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                         | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.20                                                                                                                                                                                                                                                                                                                            |                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.05                                                                                                                                                                                                                                                                                                                            |                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.07                                                                                                                                                                                                                                                                                                                            |                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.01                                                                                                                                                                                                                                                                                                                            |                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.10                                                                                                                                                                                                                                                                                                                            |                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.10                                                                                                                                                                                                                                                                                                                            | 0.10                                                                                                         | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.10                                                                                                                                                                                                                                                                                                                            |                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Surrogate: Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95 %                                                                                                                                                                                                                                                                                                                              | 63-121                                                                                                       | 0 0 3                                                                                                                                                                                                                                                                                   | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Surrogate: 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96 %                                                                                                                                                                                                                                                                                                                              | 49-108                                                                                                       |                                                                                                                                                                                                                                                                                         | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Surrogate: 1,4-Dichlorobenzene-d4                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98 %                                                                                                                                                                                                                                                                                                                              | 50-107                                                                                                       |                                                                                                                                                                                                                                                                                         | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |       |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.02                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                         | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Benzene<br>Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.02<br>< 0.10                                                                                                                                                                                                                                                                                                                  | 0.02<br>0.10                                                                                                 | mg/kg dry                                                                                                                                                                                                                                                                               | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Benzene<br>Bromodichloromethane<br>Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.02<br>< 0.10<br>< 0.10                                                                                                                                                                                                                                                                                                        | 0.02<br>0.10<br>0.10                                                                                         | mg/kg dry<br>mg/kg dry                                                                                                                                                                                                                                                                  | Mar-11-14<br>Mar-11-14                                                                                                                                                                                                      | Mar-17-14<br>Mar-17-14                                                                                                                                                                                                                                    |       |
| Benzene<br>Bromodichloromethane<br>Bromoform<br>Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                              | < 0.02<br>< 0.10<br>< 0.10<br>< 0.05                                                                                                                                                                                                                                                                                              | 0.02<br>0.10<br>0.10<br>0.05                                                                                 | mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                                                                                     | Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                                                                                                                         | Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                                                                                                                                                       |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                         | < 0.02<br>< 0.10<br>< 0.10<br>< 0.05<br>< 0.05                                                                                                                                                                                                                                                                                    | 0.02<br>0.10<br>0.10<br>0.05<br>0.05                                                                         | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                                                                        | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                                                                                                            | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                                                                                                                                          |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform                                                                                                                                                                                                                                                                                                                                                                              | < 0.02<br>< 0.10<br>< 0.10<br>< 0.05<br>< 0.05<br>< 0.07                                                                                                                                                                                                                                                                          | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07                                                                 | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                                                           | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                                                                                               | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                                                                                                                             |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                         | < 0.02<br>< 0.10<br>< 0.10<br>< 0.05<br>< 0.05<br>< 0.07<br>< 0.10                                                                                                                                                                                                                                                                | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07                                                                 | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                                              | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                                                                                               | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                                                                                                                             |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                       | < 0.02<br>< 0.10<br>< 0.10<br>< 0.05<br>< 0.05<br>< 0.07<br>< 0.10<br>< 0.10                                                                                                                                                                                                                                                      | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10                                                         | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                                 | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                                                                                  | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                                                                                                                |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane                                                                                                                                                                                                                                                                                                                        | < 0.02 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10                                                                                                                                                                                                                                                                    | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10                                                 | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                    | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                                                                     | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                                                                                                   |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                    | < 0.02 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10                                                                                                                                                                                                                                                      | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.10<br>0.05                                 | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                       | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                                                        | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                                                                                      |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                               | < 0.02 < 0.10 < 0.10 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05                                                                                                                                                                                                                                               | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.10<br>0.05                                 | mg/kg dry                                                                                                                                                                           | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                                                        | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                                                                         |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene                                                                                                                                                                                                                                                            | < 0.02 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05                                                                                                                                                                                                                                 | 0.02<br>0.10<br>0.10<br>0.05<br>0.07<br>0.10<br>0.10<br>0.10<br>0.05<br>0.05                                 | mg/kg dry                                                                                                                                                       | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                                           | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                                                                         |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane                                                                                                                                                                                                                                         | < 0.02 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                                                                                                                                                                                                                   | 0.02<br>0.10<br>0.10<br>0.05<br>0.07<br>0.10<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05                         | mg/kg dry                                                                                                                                             | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                              | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                                                            |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane                                                                                                                                                                                                                      | < 0.02 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                                                                                                                                                                                                     | 0.02<br>0.10<br>0.10<br>0.05<br>0.07<br>0.10<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05<br>0.05                 | mg/kg dry                                                                                                                                   | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                 | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                                               |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane                                                                                                                                                                                | < 0.02 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                                                                                                                                                                                | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05         | mg/kg dry                                                                                                               | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                 | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                                  |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene                                                                                                                                                         | < 0.02 < 0.10 < 0.10 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                                                                                                                                                    | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | mg/kg dry                                                                                                     | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                    | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                     |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene                                                                                                             | < 0.02 < 0.10 < 0.10 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                                                                                                                                                    | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | mg/kg dry                                                                       | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                       | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                        |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane                                                                                                            | < 0.02 < 0.10 < 0.10 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                                                                                                                                      | 0.02 0.10 0.10 0.05 0.05 0.07 0.10 0.10 0.10 0.10 0.10 0.05 0.05 0.05                                        | mg/kg dry                                                             | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                                          | Mar-17-14                                                   |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene                                                                                                   | < 0.02 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                                                                                                   | 0.02 0.10 0.10 0.05 0.05 0.07 0.10 0.10 0.10 0.10 0.05 0.05 0.05 0.05                                        | mg/kg dry                                         | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                             | Mar-17-14                                         |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene                                                                             | < 0.02 < 0.10 < 0.10 < 0.10 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                             | 0.02 0.10 0.10 0.05 0.05 0.07 0.10 0.10 0.10 0.10 0.05 0.05 0.05 0.05                                        | mg/kg dry                               | Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14<br>Mar-11-14                             | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                              |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene                                                              | < 0.02 < 0.10 < 0.10 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05        | 0.02 0.10 0.10 0.05 0.05 0.07 0.10 0.10 0.10 0.10 0.05 0.05 0.05 0.05                                        | mg/kg dry           | Mar-11-14 | Mar-17-14           |       |
| Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Methyl tert-butyl ether                                                              | < 0.02 < 0.10 < 0.10 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 | 0.02 0.10 0.10 0.05 0.05 0.07 0.10 0.10 0.10 0.10 0.05 0.05 0.05 0.05                                        | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Bample ID: TP7-1 (4030403-08) [So Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloropropane cis-1,3-Dichloropropene Ethylbenzene Methyl tert-butyl ether Methylene chloride Styrene | < 0.02 < 0.10 < 0.10 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05        | 0.02 0.10 0.10 0.05 0.05 0.07 0.10 0.10 0.10 0.10 0.10 0.05 0.05 0.05                                        | mg/kg dry           | Mar-11-14 | Mar-17-14           |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER 4
REPORTED 1

| Analyte                           | Result /<br>Recovery       | MRL /<br><i>Limit</i> | Units     | Prepared    | Analyzed  | Notes |
|-----------------------------------|----------------------------|-----------------------|-----------|-------------|-----------|-------|
| Volatile Organic Compounds (VOC   | C), Continued              |                       |           |             |           | HT    |
| Sample ID: TP7-1 (4030403-08) [S  | oil] Sampled: Mar-03-14 14 | 1:00, Continued       |           |             |           |       |
| 1,1,2,2-Tetrachloroethane         | < 0.05                     | 0.05                  | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Tetrachloroethene                 | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Toluene                           | < 0.20                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| 1,1,1-Trichloroethane             | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| 1,1,2-Trichloroethane             | < 0.07                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Trichloroethene                   | < 0.01                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Trichlorofluoromethane            | < 0.10                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Vinyl chloride                    | < 0.10                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Xylenes (total)                   | < 0.10                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Surrogate: Toluene-d8             | 97 %                       | 63-121                | 0 0 7     | Mar-11-14   | Mar-17-14 |       |
| Surrogate: 4-Bromofluorobenzene   | 98 %                       | 49-108                |           | Mar-11-14   | Mar-17-14 |       |
| Surrogate: 1,4-Dichlorobenzene-d4 | 99 %                       | 50-107                |           | Mar-11-14   | Mar-17-14 |       |
| Sample ID: TP8-1 (4030403-09) [S  |                            |                       |           | - Mar 17 17 |           |       |
| Benzene                           | < 0.02                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Bromodichloromethane              | < 0.10                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Bromoform                         | < 0.10                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Carbon tetrachloride              | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Chlorobenzene                     | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Chloroform                        | < 0.07                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Dibromochloromethane              | < 0.10                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| 1,2-Dibromoethane                 | < 0.10                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Dibromomethane                    |                            |                       |           | Mar-11-14   | Mar-17-14 |       |
|                                   | < 0.10                     |                       | mg/kg dry |             | Mar-17-14 |       |
| 1,2-Dichlorobenzene               | < 0.05<br>< 0.05           |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| 1,3-Dichlorobenzene               |                            |                       | mg/kg dry | Mar-11-14   |           |       |
| 1,4-Dichlorobenzene               | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| 1,1-Dichloroethane                | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| 1,2-Dichloroethane                | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| 1,1-Dichloroethene                | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| cis-1,2-Dichloroethene            | < 0.10                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| trans-1,2-Dichloroethene          | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| 1,2-Dichloropropane               | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| cis-1,3-Dichloropropene           | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| trans-1,3-Dichloropropene         | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Ethylbenzene                      | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Methyl tert-butyl ether           | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Methylene chloride                | < 0.50                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Styrene                           | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| 1,1,2,2-Tetrachloroethane         | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Tetrachloroethene                 | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Toluene                           | < 0.20                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| 1,1,1-Trichloroethane             | < 0.05                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| 1,1,2-Trichloroethane             | < 0.07                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Trichloroethene                   | < 0.01                     |                       | mg/kg dry | Mar-11-14   | Mar-17-14 |       |
| Trichlorofluoromethane            | < 0.10                     | 0.10                  | mg/kg dry | Mar-11-14   | Mar-17-14 |       |



Columbia Environmental Consulting Ltd REPORTED TO

**PROJECT** 14-0493 **WORK ORDER** REPORTED

| Analyte                           | Result /<br>Recovery      | MRL /<br><i>Limit</i> | Units     | Prepared  | Analyzed  | Notes   |
|-----------------------------------|---------------------------|-----------------------|-----------|-----------|-----------|---------|
| Volatile Organic Compounds (VOC)  | , Continued               |                       |           |           |           | CT2, HT |
| Sample ID: TP8-1 (4030403-09) [So | il] Sampled: Mar-03-14 14 | 1:00, Continued       |           |           |           |         |
| Vinyl chloride                    | < 0.10                    | 0.10                  | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Xylenes (total)                   | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Surrogate: Toluene-d8             | 98 %                      | 63-121                |           | Mar-11-14 | Mar-17-14 |         |
| Surrogate: 4-Bromofluorobenzene   | 98 %                      | 49-108                |           | Mar-11-14 | Mar-17-14 |         |
| Surrogate: 1,4-Dichlorobenzene-d4 | 99 %                      | 50-107                |           | Mar-11-14 | Mar-17-14 |         |
| Sample ID: BH1-1 (4030403-10) [Sc | oil] Sampled: Mar-04-14 0 | 9:00                  |           |           |           |         |
| Benzene                           | < 0.02                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Bromodichloromethane              | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Bromoform                         | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Carbon tetrachloride              | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Chlorobenzene                     | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Chloroform                        | < 0.07                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Dibromochloromethane              | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,2-Dibromoethane                 | < 0.10                    | 0.10                  | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Dibromomethane                    | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,2-Dichlorobenzene               | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,3-Dichlorobenzene               | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,4-Dichlorobenzene               | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,1-Dichloroethane                | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,2-Dichloroethane                | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,1-Dichloroethene                | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| cis-1,2-Dichloroethene            | < 0.10                    | 0.10                  | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| trans-1,2-Dichloroethene          | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,2-Dichloropropane               | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| cis-1,3-Dichloropropene           | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| trans-1,3-Dichloropropene         | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Ethylbenzene                      | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Methyl tert-butyl ether           | < 0.05                    | 0.04                  | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Methylene chloride                | < 0.50                    | 0.50                  | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Styrene                           | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,1,2,2-Tetrachloroethane         | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Tetrachloroethene                 | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Toluene                           | < 0.20                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,1,1-Trichloroethane             | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| 1,1,2-Trichloroethane             | < 0.07                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Trichloroethene                   | < 0.01                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Trichlorofluoromethane            | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Vinyl chloride                    | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Xylenes (total)                   | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |         |
| Surrogate: Toluene-d8             | 95 %                      | 63-121                |           | Mar-11-14 | Mar-17-14 |         |
| Surrogate: 4-Bromofluorobenzene   | 95 %                      | 49-108                |           | Mar-11-14 | Mar-17-14 |         |
| Surrogate: 1,4-Dichlorobenzene-d4 | 96 %                      | 50-107                |           | Mar-11-14 | Mar-17-14 |         |



REPORTED TO Columbia Environmental Consulting Ltd WORK ORDER
PROJECT 14-0493 REPORTED

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result /<br>Recovery                                                                                                                                                                                                                                                                                                                         | MRL /<br>Limit                                                                                                                               | Units                                                                                                                                                                                                                                                     | Prepared                                                                                                                                                                                                                    | Analyzed                                                                                                                                                                                                                                                  | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| /olatile Organic Compounds (VOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C), Continued                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |       |
| Sample ID: BH7-1 (4030403-18) [S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Soil] Sampled: Mar-04-14 13:00                                                                                                                                                                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |       |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.02                                                                                                                                                                                                                                                                                                                                       | 0.02                                                                                                                                         | mg/kg dry                                                                                                                                                                                                                                                 | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.05                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                 | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.04                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                 | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.05                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                 | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.20                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                 | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.10                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                 | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Surrogate: Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84 %                                                                                                                                                                                                                                                                                                                                         | 63-121                                                                                                                                       |                                                                                                                                                                                                                                                           | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Surrogate: 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88 %                                                                                                                                                                                                                                                                                                                                         | 49-108                                                                                                                                       |                                                                                                                                                                                                                                                           | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Surrogate: 1,4-Dichlorobenzene-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93 %                                                                                                                                                                                                                                                                                                                                         | 50-107                                                                                                                                       |                                                                                                                                                                                                                                                           | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              | 30-107                                                                                                                                       |                                                                                                                                                                                                                                                           | IVIAI-11-14                                                                                                                                                                                                                 | IVIAI-17-14                                                                                                                                                                                                                                               |       |
| ample ID: BH8-1 (4030403-19) [S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |       |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.02                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                 | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.05                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                 | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.04                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                 | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.05                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                 | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.20                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                              | mg/kg dry                                                                                                                                                                                                                                                 | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.10                                                                                                                                                                                                                                                                                                                                       | 0.10                                                                                                                                         | mg/kg dry                                                                                                                                                                                                                                                 | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Surrogate: Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99 %                                                                                                                                                                                                                                                                                                                                         | 63-121                                                                                                                                       |                                                                                                                                                                                                                                                           | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |       |
| Surrogate: 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99 %                                                                                                                                                                                                                                                                                                                                         | 49-108                                                                                                                                       |                                                                                                                                                                                                                                                           | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Surrogate: 4-Bromofluorobenzene Surrogate: 1,4-Dichlorobenzene-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99 %<br>101 %                                                                                                                                                                                                                                                                                                                                | 49-108<br>50-107                                                                                                                             |                                                                                                                                                                                                                                                           | Mar-11-14<br>Mar-11-14                                                                                                                                                                                                      | Mar-17-14<br>Mar-17-14                                                                                                                                                                                                                                    |       |
| Surrogate: 1,4-Dichlorobenzene-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101 %                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101 %<br>Soil] Sampled: Mar-04-14 13:00                                                                                                                                                                                                                                                                                                      | 50-107                                                                                                                                       | ma/ka drv                                                                                                                                                                                                                                                 | Mar-11-14                                                                                                                                                                                                                   | Mar-17-14                                                                                                                                                                                                                                                 |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S  Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101 % Soil] Sampled: Mar-04-14 13:00 < 0.02                                                                                                                                                                                                                                                                                                  | 50-107                                                                                                                                       | mg/kg dry                                                                                                                                                                                                                                                 | Mar-11-14<br>Mar-11-14                                                                                                                                                                                                      | Mar-17-14<br>Mar-17-14                                                                                                                                                                                                                                    |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S  Benzene  Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10                                                                                                                                                                                                                                                                                         | 0.02<br>0.10                                                                                                                                 | mg/kg dry                                                                                                                                                                                                                                                 | Mar-11-14<br>Mar-11-14<br>Mar-11-14                                                                                                                                                                                         | Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                                                                                                                                                       |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S  Benzene  Bromodichloromethane  Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02  < 0.10  < 0.10                                                                                                                                                                                                                                                                                | 0.02<br>0.10<br>0.10                                                                                                                         | mg/kg dry<br>mg/kg dry                                                                                                                                                                                                                                    | Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14                                                                                                                                                                                  | Mar-17-14  Mar-17-14  Mar-17-14  Mar-17-14                                                                                                                                                                                                                |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S Benzene Bromodichloromethane Bromoform Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.10 < 0.05                                                                                                                                                                                                                                                                           | 0.02<br>0.10<br>0.10<br>0.05                                                                                                                 | mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                                                       | Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14                                                                                                                                                                       | Mar-17-14  Mar-17-14  Mar-17-14  Mar-17-14  Mar-17-14                                                                                                                                                                                                     |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.10 < 0.05 < 0.05                                                                                                                                                                                                                                                                    | 0.02<br>0.10<br>0.10<br>0.05<br>0.05                                                                                                         | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                                          | Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14                                                                                                                                                                       | Mar-17-14  Mar-17-14  Mar-17-14  Mar-17-14  Mar-17-14  Mar-17-14                                                                                                                                                                                          |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07                                                                                                                                                                                                                                                             | 0.02<br>0.10<br>0.10<br>0.05<br>0.05                                                                                                         | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                             | Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14                                                                                                                                                            | Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14                                                                                                                                                                                     |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10                                                                                                                                                                                                                                                      | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07                                                                                                 | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                                | Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14                                                                                                                                                 | Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14                                                                                                                                                                           |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [Sizenzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10                                                                                                                                                                                                                                        | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10                                                                                         | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                                   | Mar-11-14 Mar-11-14 Mar-11-14 Mar-11-14 Mar-11-14 Mar-11-14 Mar-11-14 Mar-11-14                                                                                                                                             | Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14<br>Mar-17-14                                                                                                                                                                   |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [Sizenzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10                                                                                                                                                                                                                          | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10                                                                                 | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                                      | Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14  Mar-11-14                                                                                                                           | Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14 Mar-17-14                                                                                                                                                                 |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10                                                                                                                                                                                                     | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.10                                                                         | mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry<br>mg/kg dry                                                                                                                                         | Mar-11-14                                                                                                                | Mar-17-14                                                                                                                                                       |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05                                                                                                                                                                                              | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.05<br>0.05                                                                 | mg/kg dry                                                                                                                                             | Mar-11-14                                                                                                     | Mar-17-14                                                                                                                                             |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.10 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05                                                                                                                                                                                | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.05<br>0.05                                                                 | mg/kg dry                                                                                                                         | Mar-11-14                                                                                          | Mar-17-14                                                                                                                         |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichlorobenzene 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                                                                                                                                                                         | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05                                                         | mg/kg dry                                                                                                               | Mar-11-14                                                                                 | Mar-17-14                                                                                                               |       |
| Surrogate: 1,4-Dichlorobenzene-d4  sample ID: BH4-1 (4030403-20) [Signature of the service of th | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                                                                                                                                                    | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05                                                         | mg/kg dry                                                                                                     | Mar-11-14                                                                       | Mar-17-14                                                                                                     |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [Signature of the service of th | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.05 < 0.005 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                                                                                                                              | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05<br>0.05                                                 | mg/kg dry                                                                                 | Mar-11-14                                                   | Mar-17-14                                                                                 |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [Signature of the state of the  | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                                                                                                   | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05<br>0.05                                                 | mg/kg dry                                                                                 | Mar-11-14                                         | Mar-17-14                                                                                 |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.10 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                                                                                                                 | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                 | mg/kg dry                                                   | Mar-11-14                                   | Mar-17-14                                                   |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S Benzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothane 1,1-Dichlorothane 1,1-Dichlorothane 1,1-Dichlorothane 1,1-Dichlorothane 1,1-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothane 1,2-Dichlorothane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.10 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 1.005 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                                                        | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                 | mg/kg dry                               | Mar-11-14             | Mar-17-14                                         |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [Sizenzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                                           | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                 | mg/kg dry                     | Mar-11-14 | Mar-17-14                               |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [Sizenzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                             | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05         | mg/kg dry | Mar-11-14 | Mar-17-14                               |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [Sizenzene Bromodichloromethane Bromoform Carbon tetrachloride Chlorobenzene Chloroform Dibromochloromethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloropropane cis-1,3-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05         | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Surrogate: 1,4-Dichlorobenzene-d4  Sample ID: BH4-1 (4030403-20) [S  Benzene  Bromodichloromethane  Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101 %  Soil] Sampled: Mar-04-14 13:00  < 0.02 < 0.10 < 0.05 < 0.05 < 0.07 < 0.10 < 0.10 < 0.10 < 0.10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05                             | 0.02<br>0.10<br>0.10<br>0.05<br>0.05<br>0.07<br>0.10<br>0.10<br>0.10<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | mg/kg dry | Mar-11-14 | Mar-17-14                               |       |

4030403



REPORTED TO Columbia Environmental Consulting Ltd
PROJECT 14-0493

WORK ORDER REPORTED

| PROJECT 14-0493                                     |                           |                 |                                     | REPORTED                            |                                     | Mar-19-14 |
|-----------------------------------------------------|---------------------------|-----------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------|
| Analyte                                             | Result /<br>Recovery      | MRL /<br>Limit  | Units                               | Prepared                            | Analyzed                            | Notes     |
| Volatile Organic Compounds (VOC)                    | , Continued               |                 |                                     |                                     |                                     |           |
| Sample ID: BH4-1 (4030403-20) [So                   | oil] Sampled: Mar-04-14 1 | 3:00, Continued |                                     |                                     |                                     |           |
| Styrene                                             | < 0.05                    | 0.05            | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| 1,1,2,2-Tetrachloroethane                           | < 0.05                    | 0.05            | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Tetrachloroethene                                   | < 0.05                    | 0.05            | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Toluene                                             | < 0.20                    | 0.20            | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| 1,1,1-Trichloroethane                               | < 0.05                    | 0.05            | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| 1,1,2-Trichloroethane                               | < 0.07                    | 0.07            | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Trichloroethene                                     | < 0.01                    | 0.01            | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Trichlorofluoromethane                              | < 0.10                    | 0.10            | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Vinyl chloride                                      | < 0.10                    | 0.10            | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Xylenes (total)                                     | < 0.10                    | 0.10            | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Surrogate: Toluene-d8                               | 100 %                     | 63-121          |                                     | Mar-11-14                           | Mar-17-14                           |           |
| Surrogate: 4-Bromofluorobenzene                     | 100 %                     | 49-108          |                                     | Mar-11-14                           | Mar-17-14                           |           |
| Surrogate: 1,4-Dichlorobenzene-d4                   | 101 %                     | 50-107          |                                     | Mar-11-14                           | Mar-17-14                           |           |
| Sample ID: BH6-1 (4030403-22) [So                   | oil] Sampled: Mar-04-14 1 | 3:00            |                                     |                                     |                                     |           |
| Benzene                                             | < 0.02                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Bromodichloromethane                                | < 0.10                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Bromoform                                           | < 0.10                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Carbon tetrachloride                                | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Chlorobenzene                                       | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Chloroform                                          | < 0.07                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Dibromochloromethane                                | < 0.10                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| 1,2-Dibromoethane                                   | < 0.10                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Dibromomethane                                      | < 0.10                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| 1,2-Dichlorobenzene                                 | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| 1,3-Dichlorobenzene                                 | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| 1.4-Dichlorobenzene                                 | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| 1,1-Dichloroethane                                  | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| 1,2-Dichloroethane                                  | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| 1,1-Dichloroethene                                  | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| cis-1,2-Dichloroethene                              | < 0.10                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| trans-1,2-Dichloroethene                            | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| 1,2-Dichloropropane                                 | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| cis-1,3-Dichloropropene                             | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| trans-1,3-Dichloropropene                           | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Ethylbenzene                                        | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Methyl tert-butyl ether                             | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Methylene chloride                                  | < 0.50                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Styrene                                             | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| 1,1,2,2-Tetrachloroethane                           | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Tetrachloroethene                                   | < 0.05                    |                 | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
|                                                     |                           | 0.03            | mg/kg ury                           | IVIAI - 1 1 - 14                    | IVIGIT 17-14                        |           |
|                                                     |                           |                 | ma/ka dry                           | Mar-11-14                           | Mar_17_1/                           |           |
| Toluene                                             | < 0.20                    | 0.20            | mg/kg dry                           | Mar-11-14                           | Mar-17-14                           |           |
| Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane |                           | 0.20<br>0.05    | mg/kg dry<br>mg/kg dry<br>mg/kg dry | Mar-11-14<br>Mar-11-14<br>Mar-11-14 | Mar-17-14<br>Mar-17-14<br>Mar-17-14 |           |



**REPORTED TO** Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                           | Result / Recovery         | MRL /<br><i>Limit</i> | Units     | Prepared  | Analyzed  | Notes |
|-----------------------------------|---------------------------|-----------------------|-----------|-----------|-----------|-------|
| Volatile Organic Compounds (VOC)  | , Continued               |                       |           |           |           |       |
| Sample ID: BH6-1 (4030403-22) [Sc | il] Sampled: Mar-04-14 1  | 3:00, Continued       |           |           |           |       |
| Trichlorofluoromethane            | < 0.10                    | 0.10                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Vinyl chloride                    | < 0.10                    | 0.10                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Xylenes (total)                   | < 0.10                    | 0.10                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Surrogate: Toluene-d8             | 96 %                      | 63-121                |           | Mar-11-14 | Mar-17-14 |       |
| Surrogate: 4-Bromofluorobenzene   | 98 %                      | 49-108                |           | Mar-11-14 | Mar-17-14 |       |
| Surrogate: 1,4-Dichlorobenzene-d4 | 99 %                      | 50-107                |           | Mar-11-14 | Mar-17-14 |       |
| Sample ID: BH2-1 (4030403-23) [Sc | oil] Sampled: Mar-05-14 0 | 9:00                  |           |           |           |       |
| Benzene                           | < 0.02                    | 0.02                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Bromodichloromethane              | < 0.10                    | 0.10                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Bromoform                         | < 0.10                    | 0.10                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Carbon tetrachloride              | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Chlorobenzene                     | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Chloroform                        | < 0.07                    | 0.07                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Dibromochloromethane              | < 0.10                    | 0.10                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,2-Dibromoethane                 | < 0.10                    | 0.10                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Dibromomethane                    | < 0.10                    | 0.10                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,2-Dichlorobenzene               | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,3-Dichlorobenzene               | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,4-Dichlorobenzene               | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,1-Dichloroethane                | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,2-Dichloroethane                | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,1-Dichloroethene                | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| cis-1,2-Dichloroethene            | < 0.10                    | 0.10                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| trans-1,2-Dichloroethene          | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,2-Dichloropropane               | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| cis-1,3-Dichloropropene           | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| trans-1,3-Dichloropropene         | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Ethylbenzene                      | < 0.05                    | 0.05                  | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Methyl tert-butyl ether           | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Methylene chloride                | < 0.50                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Styrene                           | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,1,2,2-Tetrachloroethane         | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Tetrachloroethene                 | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Toluene                           | < 0.20                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,1,1-Trichloroethane             | < 0.05                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,1,2-Trichloroethane             | < 0.07                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Trichloroethene                   | < 0.01                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Trichlorofluoromethane            | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Vinyl chloride                    | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Xylenes (total)                   | < 0.10                    |                       | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Surrogate: Toluene-d8             | 114 %                     | 63-121                | J J ***J  | Mar-11-14 | Mar-17-14 |       |
| Surrogate: 4-Bromofluorobenzene   | 116 %                     | 49-108                |           | Mar-11-14 | Mar-17-14 | S02   |
| Surrogate: 1,4-Dichlorobenzene-d4 | 117 %                     | 50-107                |           | Mar-11-14 | Mar-17-14 | S02   |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-049

WORK ORDER REPORTED

| Analyte                           | Result /<br>Recovery            | MRL /<br>Limit | Units     | Prepared  | Analyzed  | Notes |
|-----------------------------------|---------------------------------|----------------|-----------|-----------|-----------|-------|
| Volatile Organic Compounds (VOC)  | , Continued                     |                |           |           |           |       |
| Sample ID: BHDUP3 (4030403-24)    | [Soil] Sampled: Mar-05-14 09:00 |                |           |           |           |       |
| Benzene                           | < 0.02                          | 0.02           | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Bromodichloromethane              | < 0.10                          | 0.10           | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Bromoform                         | < 0.10                          | 0.10           | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Carbon tetrachloride              | < 0.05                          | 0.05           | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Chlorobenzene                     | < 0.05                          | 0.05           | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Chloroform                        | < 0.07                          | 0.07           | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Dibromochloromethane              | < 0.10                          | 0.10           | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,2-Dibromoethane                 | < 0.10                          | 0.10           | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Dibromomethane                    | < 0.10                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,2-Dichlorobenzene               | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,3-Dichlorobenzene               | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,4-Dichlorobenzene               | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,1-Dichloroethane                | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,2-Dichloroethane                | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,1-Dichloroethene                | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| cis-1,2-Dichloroethene            | < 0.10                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| rans-1,2-Dichloroethene           | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,2-Dichloropropane               | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| cis-1,3-Dichloropropene           | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| trans-1,3-Dichloropropene         | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Ethylbenzene                      | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Methyl tert-butyl ether           | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Methylene chloride                | < 0.50                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Styrene                           | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,1,2,2-Tetrachloroethane         | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Tetrachloroethene                 | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Toluene                           | < 0.20                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,1,1-Trichloroethane             | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| 1,1,2-Trichloroethane             | < 0.07                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Trichloroethene                   | < 0.01                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Trichlorofluoromethane            | < 0.10                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Vinyl chloride                    | < 0.10                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Xylenes (total)                   | < 0.10                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Surrogate: Toluene-d8             | 105 %                           | 63-121         | mg/kg ary | Mar-11-14 | Mar-17-14 |       |
| Surrogate: 4-Bromofluorobenzene   | 109 %                           | 49-108         |           | Mar-11-14 | Mar-17-14 | S02   |
|                                   | 111 %                           |                |           |           |           |       |
| Surrogate: 1,4-Dichlorobenzene-d4 |                                 | 50-107         |           | Mar-11-14 | Mar-17-14 | S02   |
| Sample ID: BH3-3 (4030403-35) [So |                                 | 0.00           | ma/ka de: | Mor 44 44 | Mor 47 44 |       |
| Benzene                           | < 0.02                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Ethylbenzene                      | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Methyl tert-butyl ether           | < 0.04                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Styrene                           | < 0.05                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Toluene                           | < 0.20                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Xylenes (total)                   | < 0.10                          |                | mg/kg dry | Mar-11-14 | Mar-17-14 |       |
| Surrogate: Toluene-d8             | 102 %                           | 63-121         |           | Mar-11-14 | Mar-17-14 |       |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                           | Result /<br>Recovery     | MRL /<br>Limit  | Units     | Prepared                | Analyzed               | Notes |
|-----------------------------------|--------------------------|-----------------|-----------|-------------------------|------------------------|-------|
| /olatile Organic Compounds (VOC), | Continued                |                 |           |                         |                        |       |
| Sample ID: BH3-3 (4030403-35) [So | ill Sampled: Mar-06-14 0 | 9:00. Continued |           |                         |                        |       |
| Surrogate: 4-Bromofluorobenzene   | 101 %                    | 49-108          |           | Mar-11-14               | Mar-17-14              |       |
| Surrogate: 1,4-Dichlorobenzene-d4 | 101 %                    | 50-107          |           | Mar-11-14               | Mar-17-14              |       |
| Sunogate: 1,4-Dichlorobenzene-u4  | 101 /6                   | 30-101          |           | IVIGI-11-1 <del>4</del> | IVIGI-17-14            |       |
| Sample ID: BH9-1 (4030403-40) [So | il] Sampled: Mar-07-14 0 | 9:00            |           |                         |                        |       |
| Benzene                           | < 0.02                   | 0.02            | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Bromodichloromethane              | < 0.10                   | 0.10            | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Bromoform                         | < 0.10                   | 0.10            | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Carbon tetrachloride              | < 0.05                   | 0.05            | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Chlorobenzene                     | < 0.05                   | 0.05            | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Chloroform                        | < 0.07                   | 0.07            | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Dibromochloromethane              | < 0.10                   | 0.10            | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| 1,2-Dibromoethane                 | < 0.10                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Dibromomethane                    | < 0.10                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| 1,2-Dichlorobenzene               | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| 1,3-Dichlorobenzene               | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| 1,4-Dichlorobenzene               | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| 1,1-Dichloroethane                | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| 1,2-Dichloroethane                | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| 1,1-Dichloroethene                | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| cis-1,2-Dichloroethene            | < 0.10                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| trans-1,2-Dichloroethene          | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| 1,2-Dichloropropane               | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| cis-1,3-Dichloropropene           | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| trans-1,3-Dichloropropene         | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Ethylbenzene                      | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Methyl tert-butyl ether           | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Methylene chloride                | < 0.50                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Styrene                           | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| 1,1,2,2-Tetrachloroethane         | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Tetrachloroethene                 | < 0.05                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Toluene                           | < 0.20                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| 1,1,1-Trichloroethane             | < 0.20                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| 1,1,2-Trichloroethane             | < 0.07                   |                 |           |                         | Mar-17-14              |       |
| Trichloroethene                   |                          |                 | mg/kg dry | Mar-11-14               |                        |       |
| Trichlorofluoromethane            | < 0.01                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14<br>Mar-17-14 |       |
|                                   | < 0.10                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14<br>Mar-17-14 |       |
| Vinyl chloride                    | < 0.10                   |                 | mg/kg dry | Mar-11-14               |                        |       |
| Xylenes (total)                   | < 0.10                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Surrogate: Toluene-d8             | 89 %                     | 63-121          |           | Mar-11-14               | Mar-17-14              |       |
| Surrogate: 4-Bromofluorobenzene   | 102 %                    | 49-108          |           | Mar-11-14               | Mar-17-14              |       |
| Surrogate: 1,4-Dichlorobenzene-d4 | 104 %                    | 50-107          |           | Mar-11-14               | Mar-17-14              |       |
| Sample ID: BHDUP4 (4030403-42) [  | Soil] Sampled: Mar-07-14 | 4 09:00         |           |                         |                        |       |
| Benzene                           | < 0.02                   | 0.02            | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Bromodichloromethane              | < 0.10                   | 0.10            | mg/kg dry | Mar-11-14               | Mar-17-14              |       |
| Bromoform                         | < 0.10                   |                 | mg/kg dry | Mar-11-14               | Mar-17-14              |       |



**REPORTED TO** Columbia Environmental Consulting Ltd **PROJECT** 

14-0493

**WORK ORDER** REPORTED

4030403 Mar-19-14

| Analyte | Result / | MRL /<br>Units | Propared | Analyzed  | Notes |
|---------|----------|----------------|----------|-----------|-------|
| Analyte | Recovery | Limit          | Frepareu | Allalyzeu | Notes |

#### Volatile Organic Compounds (VOC), Continued

## Ja ID. BUDUBA (4020402 42) [Saill Sa

| Sample ID: BHDUP4 (4030403-42)    | [Soil] Sampled: Mar-07-14 ( | 09:00, Continued |           |           |
|-----------------------------------|-----------------------------|------------------|-----------|-----------|
| Carbon tetrachloride              | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Chlorobenzene                     | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Chloroform                        | < 0.07                      | 0.07 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Dibromochloromethane              | < 0.10                      | 0.10 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| 1,2-Dibromoethane                 | < 0.10                      | 0.10 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Dibromomethane                    | < 0.10                      | 0.10 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| 1,2-Dichlorobenzene               | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| 1,3-Dichlorobenzene               | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| 1,4-Dichlorobenzene               | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| 1,1-Dichloroethane                | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| 1,2-Dichloroethane                | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| 1,1-Dichloroethene                | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| cis-1,2-Dichloroethene            | < 0.10                      | 0.10 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| trans-1,2-Dichloroethene          | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| 1,2-Dichloropropane               | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| cis-1,3-Dichloropropene           | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| trans-1,3-Dichloropropene         | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Ethylbenzene                      | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Methyl tert-butyl ether           | < 0.05                      | 0.04 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Methylene chloride                | < 0.50                      | 0.50 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Styrene                           | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| 1,1,2,2-Tetrachloroethane         | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Tetrachloroethene                 | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Toluene                           | < 0.20                      | 0.20 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| 1,1,1-Trichloroethane             | < 0.05                      | 0.05 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| 1,1,2-Trichloroethane             | < 0.07                      | 0.07 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Trichloroethene                   | < 0.01                      | 0.01 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Trichlorofluoromethane            | < 0.10                      | 0.10 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Vinyl chloride                    | < 0.10                      | 0.10 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Xylenes (total)                   | < 0.10                      | 0.10 mg/kg dry   | Mar-11-14 | Mar-17-14 |
| Surrogate: Toluene-d8             | 106 %                       | 63-121           | Mar-11-14 | Mar-17-14 |
| Surrogate: 4-Bromofluorobenzene   | 104 %                       | 49-108           | Mar-11-14 | Mar-17-14 |
| Surrogate: 1,4-Dichlorobenzene-d4 | 104 %                       | 50-107           | Mar-11-14 | Mar-17-14 |
|                                   |                             |                  |           |           |

#### Sample / Analysis Qualifiers:

CT2 Excessive headspace in sample container - VOC results may be compromised.

HT The sample was prepared / analyzed past the recommended holding time.

S02 Surrogate recovery outside of control limits. Data accepted based on acceptable recovery of other surrogates.



REPORTED TO PROJECT

Columbia Environmental Consulting Ltd

14-0493

WORK ORDER
REPORTED

4030403 Mar-19-14

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory environment
- **Duplicate (Dup)**: Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.
- Blank Spike (BS): A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).
- Standard Reference Material (SRM): A material of similar matrix to the samples, externally certified for the parameter(s) listed.
   Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

| Analyte                                                                                                                    | Result        | MRL Units      | Spike<br>Level  | Source<br>Result | % REC                                         | REC<br>Limit          | RPD | RPD<br>Limit | Notes |
|----------------------------------------------------------------------------------------------------------------------------|---------------|----------------|-----------------|------------------|-----------------------------------------------|-----------------------|-----|--------------|-------|
| Aggregate Organic Parameters, Batch                                                                                        | 1 B4C0349     |                |                 |                  |                                               |                       |     |              |       |
| Blank (B4C0349-BLK1)                                                                                                       |               |                | Prepared        | : Mar-11-14      | , Analyze                                     | d: Mar-17-            | 14  |              |       |
| VHs (6-10)                                                                                                                 | < 20          | 20 mg/kg wet   |                 |                  |                                               |                       |     |              |       |
| LCS (B4C0349-BS2)                                                                                                          |               |                | Prepared        | : Mar-11-14      | , Analyze                                     | ed: Mar-17-           | 14  |              |       |
| VHs (6-10)                                                                                                                 | 210           | 20 mg/kg wet   | 305             |                  | 70                                            | 54-112                |     |              |       |
| Duplicate (B4C0349-DUP1)                                                                                                   | Sour          | ce: 4030403-20 | Prepared        | : Mar-11-14      | , Analyze                                     | d: Mar-17-            | 14  |              |       |
| VHs (6-10)                                                                                                                 | < 20          | 20 mg/kg dry   |                 | < 20             |                                               |                       |     | 31           |       |
| Blank (B4C0349-BLK1)  CCME PHC F1 (C6-C10)                                                                                 | < 20          | 20 mg/kg wet   | Prepared        | : Mar-11-14      | , Analyze                                     | ed: Mar-17-           | 14  |              |       |
| Blank (B4C0349-BLK1)                                                                                                       |               |                | Prepared        | : Mar-11-14      | , Analyze                                     | ed: Mar-17-           | 14  |              |       |
| ,                                                                                                                          |               | 20 mg/kg wet   |                 |                  |                                               |                       |     |              |       |
| LCS (B4C0349-BS2)                                                                                                          |               |                | <u> </u>        | : Mar-11-14      | <u>, , , , , , , , , , , , , , , , , , , </u> |                       | 14  |              |       |
| CCME PHC F1 (C6-C10)                                                                                                       | 220           | 20 mg/kg wet   | 305             |                  | 74                                            | 54-101                |     |              |       |
| Duplicate (B4C0349-DUP1)                                                                                                   | Sour          | ce: 4030403-20 | Prepared        | : Mar-11-14      | , Analyze                                     | ed: Mar-17-           | 14  |              |       |
| CCME PHC F1 (C6-C10)                                                                                                       | < 20          | 20 mg/kg dry   |                 | < 20             |                                               |                       |     | 30           |       |
| CCME CWS Petroleum Hydrocarbons,<br>Blank (B4C0351-BLK1)                                                                   | Batch B4C0351 |                | Prepared        | : Mar-11-14      | , Analyze                                     | ed: Mar-14-           | 14  |              |       |
| CCME PHC F2 (C10-C16)                                                                                                      | < 100         | 100 mg/kg wet  |                 |                  |                                               |                       |     |              |       |
| CCME PHC F3 (C16-C34)                                                                                                      | < 200         | 200 mg/kg wet  |                 |                  |                                               |                       |     |              |       |
| ,                                                                                                                          |               | 200 mg/kg wet  |                 |                  |                                               |                       |     |              |       |
| CCME PHC F4 (C34-C50)                                                                                                      | < 200         | =oog.n.g not   |                 |                  |                                               |                       |     |              |       |
| CCME PHC F4 (C34-C50)                                                                                                      | < 200<br>YES  | mg/kg wet      |                 |                  |                                               |                       |     |              |       |
| CCME PHC F4 (C34-C50) Signal returned to baseline at nC50                                                                  |               |                | Prepared        | : Mar-11-14      | , Analyze                                     | ed: Mar-14-           | 14  |              |       |
| CCME PHC F4 (C34-C50) Signal returned to baseline at nC50 LCS (B4C0351-BS1)                                                |               |                | Prepared<br>342 | : Mar-11-14      | , Analyze                                     | ed: Mar-14-<br>48-128 | 14  |              |       |
| CCME PHC F4 (C34-C50) Signal returned to baseline at nC50  LCS (B4C0351-BS1)  CCME PHC F2 (C10-C16)  CCME PHC F3 (C16-C34) | YES           | mg/kg wet      | •               | : Mar-11-14      | •                                             |                       | 14  |              |       |

Source: 4030403-08

100 mg/kg dry

200 mg/kg dry

< 100

< 200

Prepared: Mar-11-14, Analyzed: Mar-14-14

< 100

< 200

Duplicate (B4C0351-DUP1)

CCME PHC F2 (C10-C16)

CCME PHC F3 (C16-C34)

40

40



Analyte

# **QUALITY CONTROL DATA**

Source

RPD

RPD

REC

% REC

REPORTED TOColumbia Environmental Consulting LtdWORK ORDER4030403PROJECT14-0493REPORTEDMar-19-14

**MRL Units** 

Spike

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Result                                                                                                                                                                                               | MRL Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Level                                                                    | Result        | % REC                                                                          | Limit                                                                                                           | RPD  | Limit | Note |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------|-------|------|
| CCME CWS Petroleum Hydrocarbons, Bate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ch B4C0351, C                                                                                                                                                                                        | ontinued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |               |                                                                                |                                                                                                                 |      |       |      |
| Duplicate (B4C0351-DUP1), Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sour                                                                                                                                                                                                 | ce: 4030403-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Prepared                                                                 | I: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| CCME PHC F4 (C34-C50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 200                                                                                                                                                                                                | 200 mg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          | < 200         |                                                                                |                                                                                                                 |      | 40    |      |
| General Parameters, Batch B4C0404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |               |                                                                                |                                                                                                                 |      |       |      |
| Duplicate (B4C0404-DUP1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sour                                                                                                                                                                                                 | ce: 4030403-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Prepared                                                                 | I: Mar-12-1   | 4, Analyze                                                                     | ed: Mar-12-                                                                                                     | -14  |       |      |
| Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.6                                                                                                                                                                                                  | 0.1 % wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                                        | 4.6           | •                                                                              |                                                                                                                 | 0.0  | 40    |      |
| General Parameters, Batch B4C0415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |               |                                                                                |                                                                                                                 |      |       |      |
| Duplicate (B4C0415-DUP1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sour                                                                                                                                                                                                 | ce: 4030403-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Prepared                                                                 | I: Mar-12-1   | 4, Analyze                                                                     | ed: Mar-12-                                                                                                     | -14  |       |      |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.6                                                                                                                                                                                                  | 0.1 pH units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                        | 7.6           | · ·                                                                            |                                                                                                                 | < 1  | 4     |      |
| Duplicate (B4C0415-DUP2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sour                                                                                                                                                                                                 | ce: 4030403-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Prepared                                                                 | I: Mar-12-1   | 4. Analyze                                                                     | ed: Mar-12-                                                                                                     | -14  |       |      |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.1                                                                                                                                                                                                  | 0.1 pH units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . roparou                                                                | 9.1           | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                        | ITIOI 12                                                                                                        | < 1  | 4     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                    | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Droporod                                                                 |               | 4 Apolyza                                                                      | nd: Mar 12                                                                                                      | 1/   |       |      |
| Reference (B4C0415-SRM1) pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.9                                                                                                                                                                                                  | 0.1 pH units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.58                                                                     | ı. ıvıaı-1∠-1 | 104<br>104                                                                     | ed: Mar-12-<br>90-115                                                                                           | - 14 |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.8                                                                                                                                                                                                  | υ. ι pπ units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |               |                                                                                |                                                                                                                 |      |       |      |
| Reference (B4C0415-SRM2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          | I: Mar-12-1   | 4, Analyze                                                                     | ed: Mar-12-                                                                                                     | -14  |       |      |
| рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.9                                                                                                                                                                                                  | 0.1 pH units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.58                                                                     |               | 104                                                                            | 90-115                                                                                                          |      |       |      |
| Blank (B4C0350-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| Blank (B4C0350-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 10                                                                                                                                                                                                 | 10 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene<br>Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 5                                                                                                                                                                                                  | 5 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene<br>Acenaphthene<br>Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 5<br>< 5                                                                                                                                                                                           | 5 ug/kg wet<br>5 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene<br>Acenaphthene<br>Acenaphthylene<br>Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 5                                                                                                                                                                                                  | 5 ug/kg wet<br>5 ug/kg wet<br>10 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 5<br>< 5<br>< 10                                                                                                                                                                                   | 5 ug/kg wet<br>5 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                     | < 5<br>< 5<br>< 10<br>< 10<br>< 10<br>< 10                                                                                                                                                           | 5 ug/kg wet<br>5 ug/kg wet<br>10 ug/kg wet<br>10 ug/kg wet<br>10 ug/kg wet<br>10 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene                                                                                                                                                                                                                                                                                                                                                                                              | < 5<br>< 5<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 20                                                                                                                                           | 5 ug/kg wet<br>5 ug/kg wet<br>10 ug/kg wet<br>10 ug/kg wet<br>10 ug/kg wet<br>10 ug/kg wet<br>20 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene                                                                                                                                                                                                                                                                                                                                                                       | <5 < 5 < 10 < 10 < 10 < 10 < 20 < 10                                                                                                                                                                 | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet 10 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene                                                                                                                                                                                                                                                                                                                                                              | <5 < 5 < 10 < 10 < 10 < 10 < 20 < 10 < 10                                                                                                                                                            | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet 10 ug/kg wet 10 ug/kg wet 10 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene                                                                                                                                                                                                                                                                                                                                      | <5 < 5 < 10 < 10 < 10 < 10 < 20 < 10 < 10 < 5                                                                                                                                                        | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet 10 ug/kg wet 10 ug/kg wet 10 ug/kg wet 5 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene                                                                                                                                                                                                                                                                           | <5 < 5 < 10 < 10 < 10 < 10 < 20 < 10 < 10 < 5 < 10                                                                                                                                                   | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet 10 ug/kg wet 10 ug/kg wet 5 ug/kg wet 10 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene                                                                                                                                                                                                                                                                  | <5 < 5 < 10 < 10 < 10 < 10 < 20 < 10 < 10 < 5                                                                                                                                                        | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet 10 ug/kg wet 10 ug/kg wet 10 ug/kg wet 5 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene                                                                                                                                                                                                                                                                                       | <5 < 5 < 10 < 10 < 10 < 10 < 20 < 10 < 10 < 5 < 10 < 10 < 10 < 10 < 10                                                                                                                               | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene                                                                                                                                                                                                                                                                           | <5 <5 <10 <10 <10 <10 <10 <20 <10 <10 <10 <20 <10 <10 <20 <20 <20 <20 <20 <20 <20 <20 <20 <2                                                                                                         | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet 10 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prepared                                                                 | l: Mar-11-1   | 4, Analyze                                                                     | ed: Mar-14-                                                                                                     | 14   |       |      |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene                                                                                                                                                                                                                                                       | <5 <5 <10 <10 <10 <10 <10 <20 <10 <10 <5 <10 <5 <10 <10 <20 <10 <20 <10 <20 <10 <20 <20 <20                                                                                                          | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet 20 ug/kg wet 20 ug/kg wet 20 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                          | l: Mar-11-1   |                                                                                |                                                                                                                 | 14   |       |      |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Surrogate: Naphthalene-d8                                                                                                                                                                                                                             | < 5 < 5 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 20 < 10 < 10 < 5 < 10 < 10 < 5 < 20 < 20 < 20 < 20 < 20 < 20 < 2040                                                                                     | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet                                                                                                                                                                                                                                                                                                                                                                                                       | 1700                                                                     | l: Mar-11-1   | 120                                                                            | 72-117                                                                                                          | 14   |       | \$02 |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Surrogate: Naphthalene-d8 Surrogate: Acenaphthene-d10                                                                                                                                                                          | < 5 < 5 < 10 < 10 < 10 < 10 < 10 < 20 < 10 < 10 < 5 < 10 < 10 < 20 < 10 < 10 < 5 < 10 < 10 < 20 < 10 < 10 < 20 < 10 < 10 < 20 < 10 < 20 < 10 < 20 < 10 < 20 < 20 < 20 2040 1850                      | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet                                                                                                                                                                                                                                                                                                                         | 1700<br>1660                                                             | l: Mar-11-1   | 120<br>111                                                                     | 72-117<br>74-111                                                                                                | 14   |       | S02  |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Surrogate: Naphthalene-d8 Surrogate: Acenaphthene-d10 Surrogate: Phenanthrene-d10                                                                                                                                              | < 5 < 5 < 10 < 10 < 10 < 10 < 10 < 10 < 20 < 10 < 5 < 10 < 10 < 20 < 10 < 10 < 10 < 5 < 10 < 10 < 20 < 10 < 10 < 20 < 10 < 10 < 20 < 10 < 20 < 10 < 20 < 10 < 20 < 20 < 20 < 20 < 2040 < 1850 < 1520 | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet                                                                                                                                                                                                                                                                                  | 1700<br>1660<br>1620                                                     | l: Mar-11-1   | 120<br>111<br>94                                                               | 72-117<br>74-111<br>66-106                                                                                      | 14   |       | S02  |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Surrogate: Naphthalene-d8 Surrogate: Acenaphthene-d10 Surrogate: Chrysene-d12                                                                                                                                                  | <5 <5 <10 <10 <10 <10 <10 <20 <10 <5 <10 <10 <20 <10 <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1                                                                                                      | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet 10 ug/kg wet 20 ug/kg wet                                                                                                                                                                                                                                           | 1700<br>1660<br>1620<br>1580                                             | l: Mar-11-1   | 120<br>111<br>94<br>106                                                        | 72-117<br>74-111<br>66-106<br>60-109                                                                            | 14   |       | Soci |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Surrogate: Naphthalene-d8 Surrogate: Acenaphthene-d10 Surrogate: Chrysene-d12                                                                                                                                                  | < 5 < 5 < 10 < 10 < 10 < 10 < 10 < 10 < 20 < 10 < 5 < 10 < 10 < 20 < 10 < 10 < 10 < 5 < 10 < 10 < 20 < 10 < 10 < 20 < 10 < 10 < 20 < 10 < 20 < 10 < 20 < 10 < 20 < 20 < 20 < 20 < 2040 < 1850 < 1520 | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet                                                                                                                                                                                                                                                                                  | 1700<br>1660<br>1620<br>1580<br>1650                                     |               | 120<br>111<br>94<br>106<br>104                                                 | 72-117<br>74-111<br>66-106<br>60-109<br>60-121                                                                  |      |       | Soci |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (c) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Surrogate: Naphthalene-d8 Surrogate: Acenaphthene-d10 Surrogate: Phenanthrene-d10 Surrogate: Chrysene-d12 Surrogate: Perylene-d12 LCS (B4C0350-BS1)       | <5 <5 <10 <10 <10 <10 <10 <20 <10 <5 <10 <20 <10 <20 <10 <10 <20 <10 <10 <20 <10 <10 <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1                                                                      | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet                                                                                                                                                                                                                 | 1700<br>1660<br>1620<br>1580<br>1650<br>Prepared                         |               | 120<br>111<br>94<br>106<br>104<br>4, Analyze                                   | 72-117<br>74-111<br>66-106<br>60-109<br>60-121<br>ed: Mar-12-                                                   |      |       | Soci |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluoranthene Fluoranthene Phenanthrene Phenanthrene Phenanthrene Pyrene Surrogate: Naphthalene-d8 Surrogate: Acenaphthene-d10 Surrogate: Phenanthrene-d10 Surrogate: Phenanthrene-d12 Surrogate: Perylene-d12 LCS (B4C0350-BS1) 2-Methylnaphthalene                       | <5 <5 <10 <10 <10 <10 <10 <20 <10 <10 <5 <10 <20 <10 <10 <20 <10 <10 <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1                                                                                      | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet                                                                                                                                                                                                    | 1700<br>1660<br>1620<br>1580<br>1650<br>Prepared                         |               | 120<br>111<br>94<br>106<br>104<br>4, Analyze                                   | 72-117<br>74-111<br>66-106<br>60-109<br>60-121<br>ed: Mar-12-<br>75-115                                         |      |       | SO   |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluoranthene Fluoranthene Phenanthrene Phenanthrene Phenanthrene Pyrene Surrogate: Naphthalene-d8 Surrogate: Acenaphthene-d10 Surrogate: Phenanthrene-d10 Surrogate: Perylene-d12 Surrogate: Perylene-d12 LCS (B4C0350-BS1) 2-Methylnaphthalene Acenaphthene              | <5 <5 <10 <10 <10 <10 <10 <20 <10 <5 <10 <20 <10 <20 <10 <10 <20 <10 <10 <20 <10 <10 <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1                                                                      | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet                                                                                                                                                | 1700<br>1660<br>1620<br>1580<br>1650<br>Prepared<br>1670                 |               | 120<br>1111<br>94<br>106<br>104<br>4, Analyze<br>103<br>109                    | 72-117<br>74-111<br>66-106<br>60-109<br>60-121<br>ed: Mar-12-<br>75-115<br>77-115                               |      |       | S0.  |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Surrogate: Naphthalene-d8 Surrogate: Acenaphthene-d10 Surrogate: Phenanthrene-d10 Surrogate: Perylene-d12 Surrogate: Perylene-d12 LCS (B4C0350-BS1) 2-Methylnaphthalene Acenaphthylene     | <5 <5 <10 <10 <10 <10 <10 <20 <10 <5 <10 <20 <10 <20 <10 <10 <20 <10 <10 <20 <10 <10 <20 <10 <10 <20 <10 <20 <10 <20 <10 <20 <10 <20 <20 2040 1850 1520 1670 1710                                    | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet | 1700<br>1660<br>1620<br>1580<br>1650<br>Prepared<br>1670<br>1670         |               | 120<br>1111<br>94<br>106<br>104<br>4, Analyze<br>103<br>109<br>110             | 72-117<br>74-111<br>66-106<br>60-109<br>60-121<br>ed: Mar-12-<br>75-115<br>77-115<br>73-114                     |      |       | Soci |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Surrogate: Naphthalene-d8 Surrogate: Acenaphthene-d10 Surrogate: Phenanthrene-d10 Surrogate: Phenathrene-d12 Surrogate: Perylene-d12 LCS (B4C0350-BS1) 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene | <5 <5 <10 <10 <10 <10 <10 <20 <10 <10 <5 <10 <20 <10 <20 <10 <20 <10 <20 <10 <20 <10 <20 <10 <20 10 <20 10 <20 10 <20 1850 1520 1670 1710  1810 1830 1380                                            | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet 30 ug/kg wet 5 ug/kg wet 5 ug/kg wet                                                                                              | 1700<br>1660<br>1620<br>1580<br>1650<br>Prepared<br>1670<br>1670<br>1670 |               | 120<br>1111<br>94<br>106<br>104<br>4, Analyze<br>103<br>109<br>110<br>83       | 72-117<br>74-111<br>66-106<br>60-109<br>60-121<br>ed: Mar-12-<br>75-115<br>77-115<br>73-114<br>74-110           |      |       | S0:  |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (g,h,i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluoranthene Fluoranthene Phenanthrene Phenanthrene Phenanthrene Pyrene Surrogate: Naphthalene-d8 Surrogate: Acenaphthene-d10 Surrogate: Phenanthrene-d10 Surrogate: Perylene-d12 Surrogate: Perylene-d12 LCS (B4C0350-BS1) 2-Methylnaphthalene Acenaphthylene Anthracene Benzo (a) anthracene   | <5 <5 <10 <10 <10 <10 <10 <20 <10 <10 <5 <10 <20 <10 <20 <10 <10 <20 <10 <10 <20 <10 <10 <20 <10 <10 <20 <10 <10 <20 1850 1520 1670 1710  1810 1830 1380 1630                                        | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet 30 ug/kg wet 30 ug/kg wet 30 ug/kg wet 30 ug/kg wet                                                                               | 1700<br>1660<br>1620<br>1580<br>1650<br>Prepared<br>1670<br>1670<br>1670 |               | 120<br>1111<br>94<br>106<br>104<br>4, Analyze<br>103<br>109<br>110<br>83<br>98 | 72-117<br>74-111<br>66-106<br>60-109<br>60-121<br>ed: Mar-12-<br>75-115<br>77-115<br>73-114<br>74-110<br>66-114 |      |       | S0:  |
| 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (c) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Surrogate: Naphthalene-d8 Surrogate: Acenaphthene-d10 Surrogate: Phenanthrene-d10 Surrogate: Chrysene-d12 Surrogate: Perylene-d12  | <5 <5 <10 <10 <10 <10 <10 <20 <10 <10 <5 <10 <20 <10 <20 <10 <20 <10 <20 <10 <20 <10 <20 <10 <20 10 <20 10 <20 10 <20 1850 1520 1670 1710  1810 1830 1380                                            | 5 ug/kg wet 5 ug/kg wet 10 ug/kg wet 20 ug/kg wet 30 ug/kg wet 5 ug/kg wet 5 ug/kg wet                                                                                              | 1700<br>1660<br>1620<br>1580<br>1650<br>Prepared<br>1670<br>1670<br>1670 |               | 120<br>1111<br>94<br>106<br>104<br>4, Analyze<br>103<br>109<br>110<br>83       | 72-117<br>74-111<br>66-106<br>60-109<br>60-121<br>ed: Mar-12-<br>75-115<br>77-115<br>73-114<br>74-110           |      |       | S02  |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED

| Analyte                                       | Result          | MRL Units                    | Spike<br>Level | Source<br>Result | % REC      | REC<br>Limit     | RPD | RPD<br>Limit | Notes |
|-----------------------------------------------|-----------------|------------------------------|----------------|------------------|------------|------------------|-----|--------------|-------|
| olycyclic Aromatic Hydrocarbons (PAH          | ), Batch B4C035 | 50, Continued                |                |                  |            |                  |     |              |       |
| LCS (B4C0350-BS1), Continued                  |                 |                              | Prepared       | d: Mar-11-1      | 4, Analyze | ed: Mar-12       | -14 |              |       |
| Benzo (k) fluoranthene                        | 1670            | 10 ug/kg wet                 | 1670           |                  | 100        | 69-119           |     |              |       |
| Chrysene                                      | 1700            | 10 ug/kg wet                 | 1670           |                  | 102        | 67-120           |     |              |       |
| Dibenz (a,h) anthracene                       | 1280            | 5 ug/kg wet                  | 1670           |                  | 77         | 63-115           |     |              |       |
| Fluoranthene                                  | 1400            | 10 ug/kg wet                 | 1670           |                  | 84         | 72-112           |     |              |       |
| Fluorene                                      | 1470            | 10 ug/kg wet                 | 1670           |                  | 88         | 75-108           |     |              |       |
| ndeno (1,2,3-cd) pyrene                       | 1420            | 20 ug/kg wet                 | 1670           |                  | 85         | 65-118           |     |              |       |
| Naphthalene                                   | 1760            | 10 ug/kg wet                 | 1670           |                  | 106        | 70-115           |     |              |       |
| Phenanthrene                                  | 1470            | 20 ug/kg wet                 | 1670           |                  | 88         | 75-111           |     |              |       |
| Pyrene                                        | 1420            | 20 ug/kg wet                 | 1670           |                  | 85         | 73-112           |     |              |       |
| Surrogate: Naphthalene-d8                     | 1880            | ug/kg wet                    | 1700           |                  | 110        | 72-117           |     |              |       |
| Surrogate: Acenaphthene-d10                   | 1830            | ug/kg wet                    | 1660           |                  | 110        | 74-111           |     |              |       |
| Surrogate: Phenanthrene-d10                   | 1500            | ug/kg wet                    | 1620           |                  | 93         | 66-106           |     |              |       |
| Surrogate: Chrysene-d12                       | 1690            | ug/kg wet                    | 1580           |                  | 107        | 60-109           |     |              |       |
| Surrogate: Perylene-d12                       | 1630            | ug/kg wet                    | 1650           |                  | 99         | 60-109           |     |              |       |
| Ourrogate. r erytette-u i 2                   | 1030            | ug/kg wet                    | 1000           |                  | 33         | 00-121           |     |              |       |
| Duplicate (B4C0350-DUP1)                      |                 | rce: 4030403-08              | Prepared       | d: Mar-11-1      | 4, Analyze | ed: Mar-13       | -14 |              |       |
| 2-Methylnaphthalene                           | < 10            | 10 ug/kg dry                 |                | < 10             |            |                  |     | 50           |       |
| Acenaphthene                                  | < 5             | 5 ug/kg dry                  |                | < 5              |            |                  |     | 50           |       |
| Acenaphthylene                                | < 5             | 5 ug/kg dry                  |                | < 5              |            |                  |     | 50           |       |
| Anthracene                                    | < 10            | 10 ug/kg dry                 |                | < 10             |            |                  |     | 50           |       |
| Benzo (a) anthracene                          | < 10            | 10 ug/kg dry                 |                | < 10             |            |                  |     | 50           |       |
| Benzo (a) pyrene                              | < 10            | 10 ug/kg dry                 |                | < 10             |            |                  |     | 50           |       |
| Benzo (b) fluoranthene                        | < 10            | 10 ug/kg dry                 |                | < 10             |            |                  |     | 50           |       |
| Benzo (g,h,i) perylene                        | < 20            | 20 ug/kg dry                 |                | < 20             |            |                  |     | 50           |       |
| Benzo (k) fluoranthene                        | < 10            | 10 ug/kg dry                 |                | < 10             |            |                  |     | 50           |       |
| Chrysene                                      | < 10            | 10 ug/kg dry                 |                | < 10             |            |                  |     | 50           |       |
| Dibenz (a,h) anthracene                       | < 5             | 5 ug/kg dry                  |                | < 5              |            |                  |     | 50           |       |
| Fluoranthene                                  | < 10            | 10 ug/kg dry                 |                | < 10             |            |                  |     | 50           |       |
| Fluorene                                      | < 10            | 10 ug/kg dry                 |                | < 10             |            |                  |     | 50           |       |
| Indeno (1,2,3-cd) pyrene                      | < 20            | 20 ug/kg dry                 |                | < 20             |            |                  |     | 50           |       |
| Naphthalene                                   | < 10            | 10 ug/kg dry                 |                | < 10             |            |                  |     | 50           |       |
| Phenanthrene                                  | < 20            | 20 ug/kg dry                 |                | < 20             |            |                  |     | 50           |       |
| Pyrene                                        | < 20            | 20 ug/kg dry                 |                | < 20             |            |                  |     | 50           |       |
| Surrogate: Naphthalene-d8                     | 2030            | ug/kg dry                    | 1700           |                  | 119        | 72-117           |     |              | S02   |
| Surrogate: Acenaphthene-d10                   | 1760            | ug/kg dry                    | 1660           |                  | 106        | 74-111           |     |              |       |
| Surrogate: Phenanthrene-d10                   | 1480            | ug/kg dry                    | 1620           |                  | 91         | 66-106           |     |              |       |
| Surrogate: Chrysene-d12                       | 1660            | ug/kg dry                    | 1590           |                  | 105        | 60-109           |     |              |       |
| Surrogate: Perylene-d12                       | 1750            | ug/kg dry                    | 1650           |                  | 106        | 60-121           |     |              |       |
| Reference (B4C0350-SRM1)                      |                 |                              | Prenared       | d: Mar-11-1      | 4 Analyze  | d· Mar-12        | -14 |              |       |
| 2-Methylnaphthalene                           | 1700            | 10 ug/kg wet                 | 1380           | . IVICII-11-1    | 123        | 70-130           | 17  |              |       |
| Acenaphthene                                  | 132             | 5 ug/kg wet                  | 1300           |                  | 101        | 60-140           |     |              |       |
| Anthracene                                    | 269             | 10 ug/kg wet                 | 310            |                  | 87         | 70-130           |     |              |       |
|                                               | 3420            | 10 ug/kg wet                 | 3510           |                  | 97         | 70-130           |     |              |       |
| Benzo (a) pyrene                              | 220             | 10 ug/kg wet                 | 291            |                  | 76         | 70-130           |     |              |       |
| Benzo (a) pyrene                              | 1600            | 10 ug/kg wet                 | 1400           |                  | 114        | 70-130           |     |              |       |
| Benzo (b) fluoranthene Benzo (g,h,i) perylene | 5040            | 20 ug/kg wet                 | 4990           |                  |            | 70-130           |     |              |       |
|                                               | 4230            |                              |                |                  | 101        | 70-130           |     |              |       |
| Benzo (k) fluoranthene                        |                 | 10 ug/kg wet                 | 3680           |                  | 115        | 70-130           |     |              |       |
| Chrysene                                      | 8630            | 10 ug/kg wet                 | 7620           |                  | 113        |                  |     |              |       |
| Dibenz (a,h) anthracene Fluoranthene          | 4940            | 5 ug/kg wet                  | 4800           |                  | 103        | 70-130           |     |              |       |
|                                               | 4060            | 10 ug/kg wet                 | 3870           |                  | 105        | 70-130           |     |              |       |
| Fluorene<br>Indeno (1,2,3-cd) pyrene          | 5510            | 10 ug/kg wet                 | 5670           |                  | 97         | 70-130           |     |              |       |
| moeno (1 / 3-ca) byrene                       | 2690            | 20 ug/kg wet                 | 2220<br>1200   |                  | 121        | 70-130<br>60-140 |     |              | 00.   |
|                                               |                 |                              | 1700           |                  | 143        | nu-140           |     |              | SRN   |
| Naphthalene                                   | 1720            | 10 ug/kg wet                 |                |                  |            |                  |     |              |       |
|                                               | 2440<br>514     | 20 ug/kg wet<br>20 ug/kg wet | 1900<br>670    |                  | 129<br>77  | 70-130<br>70-130 |     |              |       |



**REPORTED TO** Columbia Environmental Consulting Ltd **PROJECT** 14-0493

**WORK ORDER REPORTED** 

4030403 Mar-19-14

| Analyte                                 | Result       | MRL Units    | Spike<br>Level | Source<br>Result | % REC | REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------------------|--------------|--------------|----------------|------------------|-------|--------------|-----|--------------|-------|
| Polycyclic Aromatic Hydrocarbons (PAH), | Batch B4C035 | ), Continued |                |                  |       |              |     |              |       |

| Reference (B4C0350-SRM1), Continued |      | Prepared: Ma   | ar-11-14, Analyzed: Mar-12-14 |   |
|-------------------------------------|------|----------------|-------------------------------|---|
| Surrogate: Acenaphthene-d10         | 2230 | ug/kg wet 2210 | 101 74-111                    | • |
| Surrogate: Phenanthrene-d10         | 2000 | ug/kg wet 2150 | 93 66-106                     |   |
| Surrogate: Chrysene-d12             | 2280 | ug/kg wet 2110 | 108 60-109                    |   |
| Surrogate: Perylene-d12             | 2040 | ug/kg wet 2200 | 93 60-121                     |   |

#### SPLP Semivolatiles, Batch B4C0654

| Blank (B4C0654-BLK1)                                                                                                              |                                                                                                   |                                                                                         | Prepared: Mar-                                                                                   | 17-14, Analyz                          | ed: Mar-18-                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------|
| Acenaphthene                                                                                                                      | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Acenaphthylene                                                                                                                    | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Acridine                                                                                                                          | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Anthracene                                                                                                                        | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Benzo (a) anthracene                                                                                                              | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Benzo (a) pyrene                                                                                                                  | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Benzo (b) fluoranthene                                                                                                            | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Benzo (g,h,i) perylene                                                                                                            | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Benzo (k) fluoranthene                                                                                                            | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Chrysene                                                                                                                          | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Dibenz (a,h) anthracene                                                                                                           | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Fluoranthene                                                                                                                      | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Fluorene                                                                                                                          | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Indeno (1,2,3-cd) pyrene                                                                                                          | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Naphthalene                                                                                                                       | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Phenanthrene                                                                                                                      | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Pyrene                                                                                                                            | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Quinoline                                                                                                                         | < 0.001                                                                                           | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Surrogate: Naphthalene-d8                                                                                                         | 0.00158                                                                                           | mg/L                                                                                    | 0.00204                                                                                          | 78                                     | 40-96                                                                  |
| Surrogate: Acenaphthene-d10                                                                                                       | 0.00162                                                                                           | mg/L                                                                                    | 0.00199                                                                                          | 82                                     | 45-92                                                                  |
| Surrogate: Phenanthrene-d10                                                                                                       | 0.00166                                                                                           | mg/L                                                                                    | 0.00194                                                                                          | 85                                     | 48-90                                                                  |
| Surrogate: Chrysene-d12                                                                                                           | 0.00148                                                                                           | mg/L                                                                                    | 0.00190                                                                                          | 78                                     | 41-96                                                                  |
| Surrogate: Perylene-d12                                                                                                           | 0.00158                                                                                           | mg/L                                                                                    | 0.00198                                                                                          | 80                                     | 47-104                                                                 |
| LCS (B4C0654-BS1)                                                                                                                 |                                                                                                   |                                                                                         | Prepared: Mar-                                                                                   | 17-14, Analyz                          | ed: Mar-18-                                                            |
| Acenaphthene                                                                                                                      | < 0.001                                                                                           | 0.001 mg/L                                                                              | 0.00100                                                                                          | 65                                     | 54-92                                                                  |
| Acenaphthylene                                                                                                                    | < 0.001                                                                                           | 0.001 mg/L                                                                              | 0.00100                                                                                          | 72                                     | 54-95                                                                  |
| Acridine                                                                                                                          | < 0.001                                                                                           | 0.001 mg/L                                                                              | 0.00100                                                                                          | 71                                     | 49-87                                                                  |
| Anthracene                                                                                                                        | < 0.001                                                                                           | 0.001 mg/L                                                                              | 0.00100                                                                                          | 69                                     | 53-94                                                                  |
| Benzo (a) anthracene                                                                                                              | < 0.001                                                                                           | 0.001 mg/L                                                                              | 0.00100                                                                                          | 63                                     | 52-95                                                                  |
| Benzo (a) pyrene                                                                                                                  | < 0.001                                                                                           | 0.001 mg/L                                                                              | 0.00100                                                                                          | 69                                     | 52-103                                                                 |
| Benzo (b) fluoranthene                                                                                                            | < 0.001                                                                                           | 0.001 mg/L                                                                              | 0.00100                                                                                          | 61                                     | 49-94                                                                  |
| Benzo (g,h,i) perylene                                                                                                            | < 0.001                                                                                           | 0.001 mg/L                                                                              | 0.00100                                                                                          | 77                                     | 51-98                                                                  |
| Benzo (k) fluoranthene                                                                                                            | < 0.001                                                                                           | 0.001 mg/L                                                                              | 0.00100                                                                                          | 62                                     | 49-105                                                                 |
| Chrysene                                                                                                                          | < 0.001                                                                                           | 0.001 mg/L                                                                              | 0.00100                                                                                          | 62                                     | 50-104                                                                 |
| Dibenz (a,h) anthracene                                                                                                           | < 0.001                                                                                           | 0.001 mg/L                                                                              | 0.00100                                                                                          | 77                                     | 49-96                                                                  |
|                                                                                                                                   |                                                                                                   |                                                                                         |                                                                                                  | 71                                     | 53-102                                                                 |
| Fluoranthene                                                                                                                      | < 0.001                                                                                           | 0.001 mg/L                                                                              | 0.00100                                                                                          | / 1                                    |                                                                        |
|                                                                                                                                   | < 0.001<br>< 0.001                                                                                | 0.001 mg/L<br>0.001 mg/L                                                                | 0.00100                                                                                          | 69                                     | 54-91                                                                  |
| Fluorene                                                                                                                          |                                                                                                   | 0.001 mg/L                                                                              |                                                                                                  |                                        |                                                                        |
| Fluorene<br>Indeno (1,2,3-cd) pyrene                                                                                              | < 0.001                                                                                           |                                                                                         | 0.00100                                                                                          | 69                                     | 54-91                                                                  |
| Fluorene<br>Indeno (1,2,3-cd) pyrene<br>Naphthalene                                                                               | < 0.001<br>< 0.001                                                                                | 0.001 mg/L<br>0.001 mg/L<br>0.001 mg/L                                                  | 0.00100<br>0.00100                                                                               | 69<br>73                               | 54-91<br>51-99                                                         |
| Fluorene<br>Indeno (1,2,3-cd) pyrene<br>Naphthalene<br>Phenanthrene                                                               | < 0.001<br>< 0.001<br>< 0.001                                                                     | 0.001 mg/L<br>0.001 mg/L                                                                | 0.00100<br>0.00100<br>0.00100                                                                    | 69<br>73<br>62                         | 54-91<br>51-99<br>51-91                                                |
| Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Quinoline                                          | < 0.001<br>< 0.001<br>< 0.001<br>< 0.001                                                          | 0.001 mg/L<br>0.001 mg/L<br>0.001 mg/L<br>0.001 mg/L                                    | 0.00100<br>0.00100<br>0.00100<br>0.00100                                                         | 69<br>73<br>62<br>67                   | 54-91<br>51-99<br>51-91<br>56-96                                       |
| Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Quinoline                                                       | < 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001                                               | 0.001 mg/L<br>0.001 mg/L<br>0.001 mg/L<br>0.001 mg/L<br>0.001 mg/L<br>0.001 mg/L        | 0.00100<br>0.00100<br>0.00100<br>0.00100<br>0.00100<br>0.00100                                   | 69<br>73<br>62<br>67<br>68             | 54-91<br>51-99<br>51-91<br>56-96<br>51-105<br>48-126                   |
| Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Quinoline Surrogate: Naphthalene-d8                             | < 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001                                    | 0.001 mg/L | 0.00100<br>0.00100<br>0.00100<br>0.00100<br>0.00100<br>0.00100<br>0.00100                        | 69<br>73<br>62<br>67<br>68<br>62<br>64 | 54-91<br>51-99<br>51-91<br>56-96<br>51-105<br>48-126<br>40-96          |
| Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Quinoline Surrogate: Naphthalene-d8 Surrogate: Acenaphthene-d10 | < 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>0.000654<br>0.000673 | 0.001 mg/L mg/L mg/L  | 0.00100<br>0.00100<br>0.00100<br>0.00100<br>0.00100<br>0.00100<br>0.00100<br>0.00102<br>0.000995 | 69<br>73<br>62<br>67<br>68<br>62<br>64 | 54-91<br>51-99<br>51-91<br>56-96<br>51-105<br>48-126<br>40-96<br>45-92 |
| Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene Pyrene Quinoline Surrogate: Naphthalene-d8                             | < 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001                         | 0.001 mg/L | 0.00100<br>0.00100<br>0.00100<br>0.00100<br>0.00100<br>0.00100<br>0.00100                        | 69<br>73<br>62<br>67<br>68<br>62<br>64 | 54-91<br>51-99<br>51-91<br>56-96<br>51-105<br>48-126<br>40-96          |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4030403 Mar-19-14

| Analyte | Result | MRL Units | Spike | Source | % REC | REC   | RPD | RPD   | Notes |
|---------|--------|-----------|-------|--------|-------|-------|-----|-------|-------|
| 7       |        |           | Level | Result | ,,,,, | Limit |     | Limit |       |

#### SPLP Semivolatiles, Batch B4C0654, Continued

| Duplicate (B4C0654-DUP1)    | Sou      | Source: 4030403-31 Prepared: Mar-17-14, Analyzed: |         |    | ed: Mar-18-14 | Mar-18-14 |  |  |
|-----------------------------|----------|---------------------------------------------------|---------|----|---------------|-----------|--|--|
| Acenaphthene                | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Acenaphthylene              | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Acridine                    | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Anthracene                  | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Benzo (a) anthracene        | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Benzo (a) pyrene            | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Benzo (b) fluoranthene      | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Benzo (g,h,i) perylene      | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Benzo (k) fluoranthene      | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Chrysene                    | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Dibenz (a,h) anthracene     | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Fluoranthene                | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Fluorene                    | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Indeno (1,2,3-cd) pyrene    | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Naphthalene                 | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Phenanthrene                | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Pyrene                      | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Quinoline                   | < 0.001  | 0.001 mg/L                                        | < 0.001 |    |               | 25        |  |  |
| Surrogate: Naphthalene-d8   | 0.000401 | mg/L                                              | 0.00200 | 20 | 40-96         |           |  |  |
| Surrogate: Acenaphthene-d10 | 0.000410 | mg/L                                              | 0.00195 | 21 | 45-92         |           |  |  |
| Surrogate: Phenanthrene-d10 | 0.000418 | mg/L                                              | 0.00190 | 22 | 48-90         |           |  |  |
| Surrogate: Chrysene-d12     | 0.000306 | mg/L                                              | 0.00186 | 16 | 41-96         |           |  |  |
| Surrogate: Perylene-d12     | 0.000478 | mg/L                                              | 0.00194 | 25 | 47-104        |           |  |  |

#### Strong Acid Leachable Metals, Batch B4C0407

| Blank (B4C0407-BLK1) | Prepared: Mar-12-14, Analyzed: Mar-13-14 |
|----------------------|------------------------------------------|

| Blank (B4C0407-BLK1) |        |                | Prepared. Mai-12-14, Arialyzed. Mai-13-14 |
|----------------------|--------|----------------|-------------------------------------------|
| Aluminum             | < 20   | 20 mg/kg dry   |                                           |
| Antimony             | < 0.1  | 0.1 mg/kg dry  |                                           |
| Arsenic              | < 0.4  | 0.4 mg/kg dry  |                                           |
| Barium               | < 1    | 1 mg/kg dry    |                                           |
| Beryllium            | < 0.1  | 0.1 mg/kg dry  |                                           |
| Bismuth              | < 0.1  | 0.1 mg/kg dry  |                                           |
| Boron                | < 2    | 2 mg/kg dry    |                                           |
| Cadmium              | < 0.04 | 0.04 mg/kg dry |                                           |
| Calcium              | < 100  | 100 mg/kg dry  |                                           |
| Chromium             | < 1.0  | 1.0 mg/kg dry  |                                           |
| Cobalt               | < 0.1  | 0.1 mg/kg dry  |                                           |
| Copper               | < 0.2  | 0.2 mg/kg dry  |                                           |
| Iron                 | < 20   | 20 mg/kg dry   |                                           |
| Lead                 | < 0.2  | 0.2 mg/kg dry  |                                           |
| Lithium              | < 0.1  | 0.1 mg/kg dry  |                                           |
| Magnesium            | < 10   | 10 mg/kg dry   |                                           |
| Manganese            | < 0.4  | 0.4 mg/kg dry  |                                           |
| Mercury              | < 0.05 | 0.05 mg/kg dry |                                           |
| Molybdenum           | < 0.1  | 0.1 mg/kg dry  |                                           |
| Nickel               | < 0.4  | 0.4 mg/kg dry  |                                           |
| Phosphorus           | < 10   | 10 mg/kg dry   |                                           |
| Potassium            | < 10   | 10 mg/kg dry   |                                           |
| Selenium             | < 0.5  | 0.5 mg/kg dry  |                                           |
| Silicon              | < 3000 | 3000 mg/kg dry |                                           |
| Silver               | < 0.2  | 0.2 mg/kg dry  |                                           |
| Sodium               | < 40   | 40 mg/kg dry   |                                           |
| Strontium            | < 0.2  | 0.2 mg/kg dry  |                                           |
| Sulfur               | < 1000 | 1000 mg/kg dry |                                           |
| Tellurium            | < 0.1  | 0.1 mg/kg dry  |                                           |
|                      |        |                |                                           |



REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER 40
REPORTED Ma

| Analyte                             | Result               | MRL Units      | Spike<br>Level | Source<br>Result | % REC      | REC<br>Limit | RPD  | RPD<br>Limit | Notes |
|-------------------------------------|----------------------|----------------|----------------|------------------|------------|--------------|------|--------------|-------|
| Strong Acid Leachable Metals, Batch | h B4C0407, Continued |                |                |                  |            |              |      |              |       |
| Blank (B4C0407-BLK1), Continued     |                      |                | Prepared       | d: Mar-12-1      | 4, Analyze | ed: Mar-13   | -14  |              |       |
| Thallium                            | < 0.1                | 0.1 mg/kg dry  |                |                  | , - ,      |              |      |              |       |
| Thorium                             | < 0.5                | 0.5 mg/kg dry  |                |                  |            |              |      |              |       |
| Tin                                 | < 0.2                | 0.2 mg/kg dry  |                |                  |            |              |      |              |       |
| Titanium                            | < 2                  | 2 mg/kg dry    |                |                  |            |              |      |              |       |
| Uranium                             | < 0.1                | 0.1 mg/kg dry  |                |                  |            |              |      |              |       |
| Vanadium                            | < 0.4                | 0.4 mg/kg dry  |                |                  |            |              |      |              |       |
| Zinc                                | < 2                  | 2 mg/kg dry    |                |                  |            |              |      |              |       |
| Zirconium                           | < 2                  | 2 mg/kg dry    |                |                  |            |              |      |              |       |
| Blank (B4C0407-BLK2)                |                      |                | Prenareo       | d: Mar-12-1      | 4 Analyze  | d· Mar-13    | -14  |              |       |
| Aluminum                            | < 20                 | 20 mg/kg dry   | Troparce       | a. IVIGIT 12-1   | +, Analyzo | a. Mai-10    | - 1- |              |       |
| Antimony                            | < 0.1                | 0.1 mg/kg dry  |                |                  |            |              |      |              |       |
| Arsenic                             | < 0.4                | 0.4 mg/kg dry  |                |                  |            |              |      |              |       |
| Barium                              | < 1                  | 1 mg/kg dry    |                |                  |            |              |      |              |       |
| Beryllium                           | < 0.1                | 0.1 mg/kg dry  |                |                  |            |              |      |              |       |
| Bismuth                             | < 0.1                | 0.1 mg/kg dry  |                |                  |            |              |      |              |       |
| Boron                               | < 2                  | 2 mg/kg dry    |                |                  |            |              |      |              |       |
| Cadmium                             | < 0.04               | 0.04 mg/kg dry |                |                  |            |              |      |              |       |
| Calcium                             | < 100                | 100 mg/kg dry  |                |                  |            |              |      |              |       |
| Chromium                            | < 1.0                | 1.0 mg/kg dry  |                |                  |            |              |      |              |       |
| Cobalt                              | < 0.1                | 0.1 mg/kg dry  |                |                  |            |              |      |              |       |
| Copper                              | < 0.2                | 0.2 mg/kg dry  |                |                  |            |              |      |              |       |
| ron                                 | < 20                 | 20 mg/kg dry   |                |                  |            |              |      |              |       |
| _ead                                | < 0.2                | 0.2 mg/kg dry  |                |                  |            |              |      |              |       |
| Lithium                             | < 0.1                | 0.1 mg/kg dry  |                |                  |            |              |      |              |       |
| Magnesium                           | < 10                 | 10 mg/kg dry   |                |                  |            |              |      |              |       |
| Manganese                           | < 0.4                | 0.4 mg/kg dry  |                |                  |            |              |      |              |       |
| Mercury                             | < 0.05               | 0.05 mg/kg dry |                |                  |            |              |      |              |       |
| Molybdenum                          | < 0.1                | 0.1 mg/kg dry  |                |                  |            |              |      |              |       |
| Nickel                              | < 0.4                | 0.4 mg/kg dry  |                |                  |            |              |      |              |       |
| Phosphorus                          | < 10                 | 10 mg/kg dry   |                |                  |            |              |      |              |       |
| Potassium                           | < 10                 | 10 mg/kg dry   |                |                  |            |              |      |              |       |
| Selenium                            | < 0.5                | 0.5 mg/kg dry  |                |                  |            |              |      |              |       |
| Silicon                             | < 3000               | 3000 mg/kg dry |                |                  |            |              |      |              |       |
| Silver                              | < 0.2                | 0.2 mg/kg dry  |                |                  |            |              |      |              |       |
| Sodium                              | < 40                 | 40 mg/kg dry   |                |                  |            |              |      |              |       |
| Strontium                           | < 0.2                | 0.2 mg/kg dry  |                |                  |            |              |      |              |       |
| Sulfur                              | < 1000               | 1000 mg/kg dry |                |                  |            |              |      |              |       |
| Tellurium                           | < 0.1                | 0.1 mg/kg dry  |                |                  |            |              |      |              |       |
| Гhallium                            | < 0.1                | 0.1 mg/kg dry  |                |                  |            |              |      |              |       |
| Thorium                             | < 0.5                | 0.5 mg/kg dry  |                |                  |            |              |      |              |       |
| Гin                                 | < 0.2                | 0.2 mg/kg dry  |                |                  |            |              |      |              |       |
| Гitanium                            | < 2                  | 2 mg/kg dry    |                |                  |            |              |      |              |       |
| Uranium                             | < 0.1                | 0.1 mg/kg dry  |                |                  |            |              |      |              |       |
| Vanadium                            | < 0.4                | 0.4 mg/kg dry  |                |                  |            |              |      |              |       |
| Zinc                                | < 2                  | 2 mg/kg dry    |                |                  |            |              |      |              |       |
| Zirconium                           | < 2                  | 2 mg/kg dry    |                |                  |            |              |      |              |       |
| Duplicate (B4C0407-DUP1)            |                      | e: 4030403-06  | Prepared       | d: Mar-12-1      | 4, Analyze | ed: Mar-13   |      |              |       |
| Aluminum                            | 15500                | 20 mg/kg dry   |                | 15700            |            |              | 2    | 24           |       |
| Antimony                            | 0.4                  | 0.1 mg/kg dry  |                | 0.3              |            |              |      | 60           |       |
| Arsenic                             | 3.0                  | 0.4 mg/kg dry  |                | 3.5              |            |              | 17   | 42           |       |
| Barium                              | 106                  | 1 mg/kg dry    |                | 112              |            |              | 5    | 38           |       |
| Beryllium                           | 0.5                  | 0.1 mg/kg dry  |                | 0.5              |            |              | 3    | 37           |       |
| Bismuth                             | < 0.1                | 0.1 mg/kg dry  |                | < 0.1            |            |              |      | 33           |       |
| Boron                               | 3                    | 2 mg/kg dry    |                | 3                |            |              |      | 29           |       |
| Cadmium                             | 0.13                 | 0.04 mg/kg dry |                | 0.14             |            |              |      | 32           |       |
|                                     |                      |                |                |                  |            |              |      |              |       |



Source

Result

< 0.1

3

0.10

16200

26.6

11.6

39.5

31900

3.1

8.9

10100

583

< 0.05

1.8

25.2

691

825

< 0.5

< 3000

< 0.2

588

Spike

Level

MRL Units

Result

REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

Analyte

WORK ORDER REPORTED

RPD

**REC** 

Limit

% REC

4030403 Mar-19-14

Notes

**RPD** 

Limit

| Duplicate (B4C0407-DUP1), Continued | Sou    | rce: 4030403-06 | Prepared: Mar-12-14, Analyz | zed: Mar-13-14 |    |     |
|-------------------------------------|--------|-----------------|-----------------------------|----------------|----|-----|
| Calcium                             | 7780   | 100 mg/kg dry   | 8210                        | 5              | 33 |     |
| Chromium                            | 35.2   | 1.0 mg/kg dry   | 33.8                        | 4              | 32 |     |
| Cobalt                              | 13.4   | 0.1 mg/kg dry   | 12.9                        | 4              | 26 |     |
| Copper                              | 54.4   | 0.2 mg/kg dry   | 53.3                        | 2              | 38 |     |
| Iron                                | 36300  | 20 mg/kg dry    | 35600                       | 2              | 28 |     |
| Lead                                | 3.1    | 0.2 mg/kg dry   | 3.2                         | 3              | 46 |     |
| Lithium                             | 8.0    | 0.1 mg/kg dry   | 8.4                         | 5              | 28 |     |
| Magnesium                           | 8330   | 10 mg/kg dry    | 8450                        | 1              | 23 |     |
| Manganese                           | 517    | 0.4 mg/kg dry   | 530                         | 3              | 23 |     |
| Mercury                             | < 0.05 | 0.05 mg/kg dry  | < 0.05                      |                | 42 |     |
| Molybdenum                          | 0.6    | 0.1 mg/kg dry   | 0.6                         | 6              | 52 |     |
| Nickel                              | 28.0   | 0.4 mg/kg dry   | 26.1                        | 7              | 29 |     |
| Phosphorus                          | 891    | 10 mg/kg dry    | 890                         | < 1            | 20 |     |
| Potassium                           | 892    | 10 mg/kg dry    | 865                         | 3              | 28 |     |
| Selenium                            | < 0.5  | 0.5 mg/kg dry   | < 0.5                       |                | 19 |     |
| Silicon                             | < 3000 | 3000 mg/kg dry  | < 3000                      |                | 18 |     |
| Silver                              | < 0.2  | 0.2 mg/kg dry   | < 0.2                       |                | 35 |     |
| Sodium                              | 320    | 40 mg/kg dry    | 220                         | 37             | 23 | RPD |
| Strontium                           | 43.7   | 0.2 mg/kg dry   | 46.3                        | 6              | 25 |     |
| Sulfur                              | < 1000 | 1000 mg/kg dry  | < 1000                      |                | 26 |     |
| Tellurium                           | < 0.1  | 0.1 mg/kg dry   | < 0.1                       |                | 38 |     |
| Thallium                            | < 0.1  | 0.1 mg/kg dry   | < 0.1                       |                | 27 |     |
| Thorium                             | 1.7    | 0.5 mg/kg dry   | 1.5                         |                | 39 |     |
| Tin                                 | 0.4    | 0.2 mg/kg dry   | 0.4                         |                | 85 |     |
| Titanium                            | 1270   | 2 mg/kg dry     | 988                         | 25             | 29 |     |
| Uranium                             | 0.6    | 0.1 mg/kg dry   | 0.6                         | 1              | 36 |     |
| Vanadium                            | 93.8   | 0.4 mg/kg dry   | 89.3                        | 5              | 23 |     |
| Zinc                                | 70     | 2 mg/kg dry     | 70                          | < 1            | 30 |     |
| Zirconium                           | 8      | 2 mg/kg dry     | 8                           |                | 32 |     |
| Duplicate (B4C0407-DUP2)            | Sou    | rce: 4030403-21 | Prepared: Mar-12-14, Analyz | zed: Mar-13-14 |    |     |
| Aluminum                            | 14100  | 20 mg/kg dry    | 14500                       | 3              | 24 |     |
| Antimony                            | 0.3    | 0.1 mg/kg dry   | 0.3                         |                | 60 |     |
| Arsenic                             | 3.4    | 0.4 mg/kg dry   | 4.0                         | 17             | 42 |     |
| Barium                              | 85     | 1 mg/kg dry     | 90                          | 5              | 38 |     |
| Beryllium                           | 0.4    | 0.1 mg/kg dry   | 0.4                         |                | 37 |     |
|                                     |        |                 |                             |                |    |     |

0.1 mg/kg dry

0.04 mg/kg dry

100 mg/kg dry

1.0 mg/kg dry

0.1 mg/kg dry

0.2 mg/kg dry

20 mg/kg dry

0.2 mg/kg dry

0.1 mg/kg dry

10 mg/kg dry

0.4 mg/kg dry

0.1 mg/kg dry

0.4 mg/kg dry

10 mg/kg dry

10 mg/kg dry

0.5 mg/kg dry

0.2 mg/kg dry

40 mg/kg dry

3000 mg/kg dry

0.05 mg/kg dry

2 mg/kg dry

< 0.1

0.10

27.4

11.7

39.9

3.1

8.9

9680

549

1.3

22.7

662

808

0.5

< 3000

< 0.2

597

< 0.05

31100

15100

3

Bismuth

Cadmium

Chromium

Calcium

Cobalt

Copper

Iron

Lead

Lithium

Mercury

Nickel

Magnesium

Manganese

Molybdenum

Phosphorus

Potassium

Selenium

Silicon

Silver

Sodium

Boron

33

29

32

33

32

26

38

28

46

28

23

23

42

52

29 20

28

19

18

35

23

3

< 1

< 1

3

< 1

< 1

4

6

33

11

4

2



REPORTED TO Columbia Environmental Consulting Ltd
PROJECT 14-0493

WORK ORDER
REPORTED

4030403 Mar-19-14

| Analyte   | Result | MRL Units   | Spike | Source | % REC   | REC   | RPD | RPD   | Notes |
|-----------|--------|-------------|-------|--------|---------|-------|-----|-------|-------|
| 7 mary to | rtooun | mite office | Level | Result | /0 IXEO | Limit | 5   | Limit |       |

#### Strong Acid Leachable Metals, Batch B4C0407, Continued

| Duplicate (B4C0407-DUP2), Continued | Source: 4030403-21 P |                | Prepared: Mar-12-14, Analyzed | d: Mar-13-14 |    |  |
|-------------------------------------|----------------------|----------------|-------------------------------|--------------|----|--|
| Strontium                           | 72.9                 | 0.2 mg/kg dry  | 80.2                          | 9            | 25 |  |
| Sulfur                              | < 1000               | 1000 mg/kg dry | < 1000                        |              | 26 |  |
| Tellurium                           | < 0.1                | 0.1 mg/kg dry  | < 0.1                         |              | 38 |  |
| Thallium                            | < 0.1                | 0.1 mg/kg dry  | < 0.1                         |              | 27 |  |
| Thorium                             | 1.7                  | 0.5 mg/kg dry  | 1.9                           |              | 39 |  |
| Tin                                 | 0.5                  | 0.2 mg/kg dry  | 0.5                           |              | 85 |  |
| Titanium                            | 1380                 | 2 mg/kg dry    | 1310                          | 5            | 29 |  |
| Uranium                             | 0.6                  | 0.1 mg/kg dry  | 0.4                           | 24           | 36 |  |
| Vanadium                            | 73.4                 | 0.4 mg/kg dry  | 74.9                          | 2            | 23 |  |
| Zinc                                | 52                   | 2 mg/kg dry    | 53                            | 3            | 30 |  |
| Zirconium                           | 7                    | 2 mg/kg dry    | 8                             |              | 32 |  |

|                          | · · · · · · · · · · · · · · · · · · · |                |           |                                |
|--------------------------|---------------------------------------|----------------|-----------|--------------------------------|
| Reference (B4C0407-SRM2) |                                       |                | Prepared: | Mar-12-14, Analyzed: Mar-13-14 |
| Aluminum                 | 17000                                 | 20 mg/kg dry   | 18200     | 94 86-118                      |
| Antimony                 | 7.1                                   | 0.1 mg/kg dry  | 6.27      | 113 73-138                     |
| Arsenic                  | 14.8                                  | 0.4 mg/kg dry  | 15.4      | 96 87-106                      |
| Barium                   | 88                                    | 1 mg/kg dry    | 80.6      | 110 72-119                     |
| Beryllium                | 0.6                                   | 0.1 mg/kg dry  | 0.544     | 110 73-128                     |
| Bismuth                  | 2.0                                   | 0.1 mg/kg dry  | 2.12      | 96 78-97                       |
| Boron                    | 3                                     | 2 mg/kg dry    | 2.68      | 129 58-139                     |
| Cadmium                  | 0.23                                  | 0.04 mg/kg dry | 0.230     | 100 88-121                     |
| Calcium                  | 3360                                  | 100 mg/kg dry  | 3320      | 101 92-113                     |
| Chromium                 | 27.5                                  | 1.0 mg/kg dry  | 27.2      | 101 91-113                     |
| Cobalt                   | 11.9                                  | 0.1 mg/kg dry  | 12.5      | 95 90-109                      |
| Copper                   | 44.5                                  | 0.2 mg/kg dry  | 44.9      | 99 92-112                      |
| Iron                     | 33900                                 | 20 mg/kg dry   | 33300     | 102 91-112                     |
| Lead                     | 14.6                                  | 0.2 mg/kg dry  | 14.4      | 101 89-111                     |
| Lithium                  | 11.1                                  | 0.1 mg/kg dry  | 9.26      | 120 73-124                     |
| Magnesium                | 5510                                  | 10 mg/kg dry   | 5830      | 95 89-116                      |
| Manganese                | 1110                                  | 0.4 mg/kg dry  | 1100      | 101 93-112                     |
| Mercury                  | 0.09                                  | 0.05 mg/kg dry | 0.0980    | 94 74-126                      |
| Molybdenum               | 0.8                                   | 0.1 mg/kg dry  | 0.738     | 104 93-120                     |
| Nickel                   | 17.8                                  | 0.4 mg/kg dry  | 17.4      | 102 93-110                     |
| Phosphorus               | 684                                   | 10 mg/kg dry   | 796       | 86 86-111                      |
| Potassium                | 591                                   | 10 mg/kg dry   | 619       | 96 83-117                      |
| Sodium                   | 331                                   | 40 mg/kg dry   | 340       | 97 79-130                      |
| Strontium                | 12.4                                  | 0.2 mg/kg dry  | 11.6      | 107 85-116                     |
| Thorium                  | 3.7                                   | 0.5 mg/kg dry  | 4.46      | 83 78-100                      |
| Tin                      | 1.2                                   | 0.2 mg/kg dry  | 1.10      | 105 78-120                     |
| Titanium                 | 944                                   | 2 mg/kg dry    | 764       | 124 72-143                     |
| Uranium                  | 0.9                                   | 0.1 mg/kg dry  | 0.940     | 94 80-102                      |
| Vanadium                 | 54.0                                  | 0.4 mg/kg dry  | 54.9      | 98 87-116                      |
| Zinc                     | 69                                    | 2 mg/kg dry    | 67.5      | 102 91-113                     |

#### Volatile Organic Compounds (VOC), Batch B4C0349

| Blank (B4C0349-BLK1) | Prepared: Mar-11-14 Analyzed: Mar-17-14 |
|----------------------|-----------------------------------------|

| Benzene              | < 0.02 | 0.02 mg/kg wet |
|----------------------|--------|----------------|
| Bromodichloromethane | < 0.10 | 0.10 mg/kg wet |
| Bromoform            | < 0.10 | 0.10 mg/kg wet |
| Carbon tetrachloride | < 0.05 | 0.05 mg/kg wet |
| Chlorobenzene        | < 0.05 | 0.05 mg/kg wet |
| Chloroform           | < 0.07 | 0.07 mg/kg wet |
| Dibromochloromethane | < 0.10 | 0.10 mg/kg wet |
| 1,2-Dibromoethane    | < 0.10 | 0.10 mg/kg wet |
| Dibromomethane       | < 0.10 | 0.10 mg/kg wet |



REPORTED TO Columbia Environmental Consulting Ltd

14-0493 **PROJECT** 

**WORK ORDER** REPORTED

4030403 Mar-19-14

| Analyte Result MRL Units Le | Spike Source<br>Level Result | % REC REC Limit | RPD RPD Notes<br>Limit |
|-----------------------------|------------------------------|-----------------|------------------------|
|-----------------------------|------------------------------|-----------------|------------------------|

| Analyte                             | Result           | MRL Units      | Spike<br>Level | Source<br>Result | % REC      | REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-------------------------------------|------------------|----------------|----------------|------------------|------------|--------------|-----|--------------|-------|
| olatile Organic Compounds (VOC), Ba | tch B4C0349, Cor | ntinued        |                |                  |            |              |     |              |       |
| Blank (B4C0349-BLK1), Continued     |                  |                | Prepared       | d: Mar-11-1      | 4, Analyze | d: Mar-17-   | -14 |              |       |
| 1,2-Dichlorobenzene                 | < 0.05           | 0.05 mg/kg wet |                |                  | <u> </u>   |              |     |              |       |
| 1,3-Dichlorobenzene                 | < 0.05           | 0.05 mg/kg wet |                |                  |            |              |     |              |       |
| 1,4-Dichlorobenzene                 | < 0.05           | 0.05 mg/kg wet |                |                  |            |              |     |              |       |
| 1,1-Dichloroethane                  | < 0.05           | 0.05 mg/kg wet |                |                  |            |              |     |              |       |
| 1,2-Dichloroethane                  | < 0.05           | 0.05 mg/kg wet |                |                  |            |              |     |              |       |
| 1,1-Dichloroethene                  | < 0.05           | 0.05 mg/kg wet |                |                  |            |              |     |              |       |
| cis-1,2-Dichloroethene              | < 0.10           | 0.10 mg/kg wet |                |                  |            |              |     |              |       |
| rans-1,2-Dichloroethene             | < 0.05           | 0.05 mg/kg wet |                |                  |            |              |     |              |       |
| 1,2-Dichloropropane                 | < 0.05           | 0.05 mg/kg wet |                |                  |            |              |     |              |       |
| cis-1,3-Dichloropropene             | < 0.05           | 0.05 mg/kg wet |                |                  |            |              |     |              |       |
| trans-1,3-Dichloropropene           | < 0.05           | 0.05 mg/kg wet |                |                  |            |              |     |              |       |
| Ethylbenzene                        | < 0.05           | 0.05 mg/kg wet |                |                  |            |              |     |              |       |
| Methyl tert-butyl ether             | < 0.04           | 0.04 mg/kg wet |                |                  |            |              |     |              |       |
| Methylene chloride                  | < 0.50           | 0.50 mg/kg wet |                |                  |            |              |     |              |       |
| Styrene                             | < 0.05           | 0.05 mg/kg wet |                |                  |            |              |     |              |       |
| 1,1,2,2-Tetrachloroethane           | < 0.05           | 0.05 mg/kg wet |                |                  |            |              |     |              |       |
| Tetrachloroethene                   | < 0.05           | 0.05 mg/kg wet |                |                  |            |              |     |              |       |
| Toluene                             | < 0.20           | 0.20 mg/kg wet |                |                  |            |              |     |              |       |
| 1,1,1-Trichloroethane               | < 0.05           | 0.05 mg/kg wet |                |                  |            |              |     |              |       |
| 1,1,2-Trichloroethane               | < 0.07           | 0.07 mg/kg wet |                |                  |            |              |     |              |       |
| Trichloroethene                     | < 0.01           | 0.01 mg/kg wet |                |                  |            |              |     |              |       |
| Trichlorofluoromethane              | < 0.10           | 0.10 mg/kg wet |                |                  |            |              |     |              |       |
| Vinyl chloride                      | < 0.10           | 0.10 mg/kg wet |                |                  |            |              |     |              |       |
| Xylenes (total)                     | < 0.10           | 0.10 mg/kg wet |                |                  |            |              |     |              |       |
| Surrogate: Toluene-d8               | 7.73             | mg/kg wet      | 8.33           |                  | 93         | 63-121       |     |              |       |
| Surrogate: 4-Bromofluorobenzene     | 7.78             | mg/kg wet      | 8.33           |                  | 93         | 49-108       |     |              |       |
| Surrogate: 1,4-Dichlorobenzene-d4   | 7.96             | mg/kg wet      | 8.33           |                  | 96         | 50-107       |     |              |       |
| LCS (B4C0349-BS1)                   |                  |                | Prepared       | d: Mar-11-1      | 4, Analyze | d: Mar-17-   | -14 |              |       |
| Benzene                             | 1.66             | 0.02 mg/kg wet | 1.67           |                  | 99         | 67-133       |     |              |       |
| Bromodichloromethane                | 1.42             | 0.10 mg/kg wet | 1.67           |                  | 85         | 66-120       |     |              |       |
| Bromoform                           | 1.21             | 0.10 mg/kg wet | 1.67           |                  | 73         | 60-107       |     |              |       |
| Carbon tetrachloride                | 1.49             | 0.05 mg/kg wet | 1.67           |                  | 89         | 55-127       |     |              |       |
| Chlorobenzene                       | 1.60             | 0.05 mg/kg wet | 1.67           |                  | 96         | 75-121       |     |              |       |
| Chloroform                          | 1.57             | 0.07 mg/kg wet | 1.67           |                  | 94         | 74-127       |     |              |       |
| Dibromochloromethane                | 1.26             | 0.10 mg/kg wet | 1.67           |                  | 75         | 56-117       |     |              |       |
| 1,2-Dibromoethane                   | 1.50             | 0.10 mg/kg wet | 1.67           |                  | 90         | 60-121       |     |              |       |
| Dibromomethane                      | 1.54             | 0.10 mg/kg wet | 1.67           |                  | 92         | 69-130       |     |              |       |
| 1,2-Dichlorobenzene                 | 1.64             | 0.05 mg/kg wet | 1.67           |                  | 98         | 71-127       |     |              |       |
| 1,3-Dichlorobenzene                 | 1.59             | 0.05 mg/kg wet | 1.67           |                  | 95         | 72-128       |     |              |       |
| 1,4-Dichlorobenzene                 | 1.58             | 0.05 mg/kg wet | 1.67           |                  | 94         | 72-128       |     |              |       |
| 1,1-Dichloroethane                  | 1.61             | 0.05 mg/kg wet | 1.67           |                  | 96         | 72-131       |     |              |       |
| 1,2-Dichloroethane                  | 1.64             | 0.05 mg/kg wet | 1.67           |                  | 98         | 70-132       |     |              |       |
| 1,1-Dichloroethene                  | 1.00             | 0.05 mg/kg wet | 1.67           |                  | 60         | 59-138       |     |              |       |
| cis-1,2-Dichloroethene              | 1.53             | 0.10 mg/kg wet | 1.67           |                  | 92         | 71-126       |     |              |       |
| trans-1,2-Dichloroethene            | 1.56             | 0.05 mg/kg wet | 1.67           |                  | 93         | 65-137       |     |              |       |
| 1,2-Dichloropropane                 | 1.58             | 0.05 mg/kg wet | 1.67           |                  | 95         | 69-126       |     |              |       |
| cis-1,3-Dichloropropene             | 1.18             | 0.05 mg/kg wet | 1.67           |                  | 71         | 60-109       |     |              |       |
| rans-1,3-Dichloropropene            | 1.16             | 0.05 mg/kg wet | 1.67           |                  | 70         | 52-113       |     |              |       |
| Ethylbenzene                        | 1.60             | 0.05 mg/kg wet | 1.67           |                  | 96         | 69-123       |     |              |       |
| Methyl tert-butyl ether             | 1.60             | 0.04 mg/kg wet | 1.67           |                  | 96         | 63-137       |     |              |       |
| Methylene chloride                  | 1.56             | 0.50 mg/kg wet | 1.67           |                  | 94         | 68-144       |     |              |       |
| Styrene                             | 1.53             | 0.05 mg/kg wet | 1.67           |                  | 92         | 65-120       |     |              |       |
| 1,1,2,2-Tetrachloroethane           | 1.55             | 0.05 mg/kg wet | 1.67           |                  | 93         | 55-123       |     |              |       |
| Tetrachloroethene                   | 2.60             | 0.05 mg/kg wet | 1.67           |                  | 156        | 47-173       |     |              |       |
| Toluene                             | 1.78             | 0.20 mg/kg wet | 1.67           |                  | 107        | 71-130       |     |              |       |
| 1,1,1-Trichloroethane               | 1.58             | 0.05 mg/kg wet | 1.67           |                  | 95         | 69-126       |     |              |       |



Columbia Environmental Consulting Ltd REPORTED TO

**PROJECT** 

**WORK ORDER** REPORTED

4030403 Mar-19-14

| Analyte                             | Result           | MRL Units       | Spike<br>Level | Source<br>Result | % REC        | REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-------------------------------------|------------------|-----------------|----------------|------------------|--------------|--------------|-----|--------------|-------|
| olatile Organic Compounds (VOC), Ba | atch B4C0349, Co | ntinued         |                |                  |              |              |     |              |       |
| LCS (B4C0349-BS1), Continued        |                  |                 | Prepared       | d: Mar-11-1      | 4, Analyze   | ed: Mar-17   | -14 |              |       |
| 1,1,2-Trichloroethane               | 1.64             | 0.07 mg/kg wet  | 1.67           |                  | 99           | 65-128       |     |              |       |
| Trichloroethene                     | 1.82             | 0.01 mg/kg wet  | 1.67           |                  | 110          | 72-139       |     |              |       |
| Trichlorofluoromethane              | 1.56             | 0.10 mg/kg wet  | 1.67           |                  | 94           | 45-125       |     |              |       |
| Vinyl chloride                      | 1.20             | 0.10 mg/kg wet  | 1.67           |                  | 72           | 62-150       |     |              |       |
| Xylenes (total)                     | 5.06             | 0.10 mg/kg wet  | 5.00           |                  | 101          | 71-127       |     |              |       |
| Surrogate: Toluene-d8               | 8.02             | mg/kg wet       | 8.33           |                  | 96           | 63-121       |     |              |       |
| Surrogate: 4-Bromofluorobenzene     | 7.97             | mg/kg wet       | 8.33           |                  | 96           | 49-108       |     |              |       |
| Surrogate: 1,4-Dichlorobenzene-d4   | 8.45             | mg/kg wet       | 8.33           |                  | 101          | 50-107       |     |              |       |
| Duplicate (B4C0349-DUP1)            |                  | rce: 4030403-20 |                | d: Mar-11-1      |              |              | -14 |              |       |
| Benzene                             | < 0.02           | 0.02 mg/kg dry  | · roparoc      | < 0.02           | 1,7 thaiy 20 | 74. W.G. 17  |     | 40           |       |
| Bromodichloromethane                | < 0.10           | 0.10 mg/kg dry  |                | < 0.10           |              |              |     | 40           |       |
| Bromoform                           | < 0.10           | 0.10 mg/kg dry  |                | < 0.10           |              |              |     | 40           |       |
| Carbon tetrachloride                | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| Chlorobenzene                       | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| Chloroform                          | < 0.07           | 0.07 mg/kg dry  |                | < 0.07           |              |              |     | 40           |       |
| Dibromochloromethane                | < 0.10           | 0.10 mg/kg dry  |                | < 0.10           |              |              |     | 40           |       |
| 1,2-Dibromoethane                   | < 0.10           | 0.10 mg/kg dry  |                | < 0.10           |              |              |     | 40           |       |
| Dibromomethane                      | < 0.10           | 0.10 mg/kg dry  |                | < 0.10           |              |              |     | 40           |       |
| 1,2-Dichlorobenzene                 | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| 1,3-Dichlorobenzene                 | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| 1,4-Dichlorobenzene                 | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| 1,1-Dichloroethane                  | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| 1,2-Dichloroethane                  | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| 1,1-Dichloroethene                  | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| cis-1,2-Dichloroethene              | < 0.10           | 0.10 mg/kg dry  |                | < 0.10           |              |              |     | 40           |       |
| trans-1,2-Dichloroethene            | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| 1,2-Dichloropropane                 | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| cis-1,3-Dichloropropene             | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| trans-1,3-Dichloropropene           | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| Ethylbenzene                        | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| Methyl tert-butyl ether             | < 0.04           | 0.04 mg/kg dry  |                | < 0.04           |              |              |     | 40           |       |
| Methylene chloride                  | < 0.50           | 0.50 mg/kg dry  |                | < 0.50           |              |              |     | 40           |       |
| Styrene                             | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| 1,1,2,2-Tetrachloroethane           | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| Tetrachloroethene                   | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| Toluene                             | < 0.20           | 0.20 mg/kg dry  |                | < 0.20           |              |              |     | 40           |       |
| 1,1,1-Trichloroethane               | < 0.05           | 0.05 mg/kg dry  |                | < 0.05           |              |              |     | 40           |       |
| 1,1,2-Trichloroethane               | < 0.07           | 0.07 mg/kg dry  |                | < 0.07           |              |              |     | 40           |       |
| Trichloroethene                     | < 0.01           | 0.01 mg/kg dry  |                | < 0.01           |              |              |     | 40           |       |
| Trichlorofluoromethane              | < 0.10           | 0.10 mg/kg dry  |                | < 0.10           |              |              |     | 40           |       |
| Vinyl chloride                      | < 0.10           | 0.10 mg/kg dry  |                | < 0.10           |              |              |     | 40           |       |
| Xylenes (total)                     | < 0.10           | 0.10 mg/kg dry  |                | < 0.10           |              |              |     | 40           |       |
| Surrogate: Toluene-d8               | 8.58             | mg/kg dry       | 8.22           |                  | 104          | 63-121       |     |              |       |
| Surrogate: 4-Bromofluorobenzene     | 8.40             | mg/kg dry       | 8.22           |                  | 102          | 49-108       |     |              |       |
| Surrogate: 1,4-Dichlorobenzene-d4   | 8.54             | mg/kg dry       | 8.22           |                  | 104          | 50-107       |     |              |       |



REPORTED TO Columbia Environmental Consulting Ltd WORK ORDER 4030403
PROJECT 14-0493 REPORTED Mar-19-14

#### QC Qualifiers:

A-01 Surrogate recoveries for duplicate sample outside established control limits due to presence of water in extract and re-filtration.

RPD Relative percent difference (RPD) of duplicate analysis are outside of control limits for unknown reason(s).

Surrogate recovery outside of control limits. Data accepted based on acceptable recovery of other surrogates.

SRM Recovery of one or more analytes on Standard Reference Material (SRM) analysis are outside of control

limits.



#### CERTIFICATE OF ANALYSIS

**REPORTED TO** Columbia Environmental Consulting Ltd

> RR #2, Site 55, Compartment 10 (778) 476-5656 TEL Penticton, BC V2A 6J7 **FAX** (778) 476-5655

**ATTENTION** Summer Zawacky **WORK ORDER** 4051659

**PO NUMBER** May-27-14 10:30 / 9°C **RECEIVED / TEMP** 

**PROJECT** 14-0493 **REPORTED** Jun-16-14 B07252 PROJECT INFO LNIB PII ESA **COC NUMBER** 

#### **General Comments:**

CARO Analytical Services employs methods which are conducted according to procedures accepted by appropriate regulatory agencies, and/or are conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts, except where otherwise agreed to by the client.

The results in this report apply to the samples analyzed in accordance with the Chain of Custody or Sample Requisition document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

#### **Work Order Comments:**

June 11/14- This is an amended report from the original issued June 3/14. The RDL for Naphthalene has been lowered, as per client's request.

June 16/14- This is an amended report, please note that PAH has been added to both samples.

Issued By: Jennifer Shanko, AScT For Brent Coates, BSc

Business Manager, Richmond

Shanlo

Please contact CARO if more information is needed or to provide feedback on our services.

Locations:

#110 4011 Viking Way #102 3677 Highway 97N 17225 109 Avenue Richmond, BC V6V 2K9 Kelowna, BC V1X 5C3 Edmonton, AB T5S 1H7

Tel: 780-489-9100 Fax: 780-489-9700 Tel: 604-279-1499 Fax: 604-279-1599 Tel: 250-765-9646 Fax: 250-765-3893

www.caro.ca



#### **ANALYSIS INFORMATION**

REPORTED TO Columbia Environmental Consulting Ltd WORK ORDER 4051659
PROJECT 14-0493 REPORTED Jun-16-14

| Analysis Description     | Method Reference (* = Preparation | Method Reference (* = modified from) Preparation Analysis |          |  |  |  |
|--------------------------|-----------------------------------|-----------------------------------------------------------|----------|--|--|--|
| Dissolved Metals         | APHA 3030 B                       | APHA 3125 B                                               | Richmond |  |  |  |
| Hardness as CaCO3 (CALC) | N/A                               | APHA 2340 B                                               | Richmond |  |  |  |
| PAH in Water (low)       | EPA 3510C                         | EPA 8270D (2007)                                          | Richmond |  |  |  |
| VH in Water              | EPA 5030B / 5021A                 | BCMOE                                                     | Richmond |  |  |  |
| VOC in Water             | EPA 5030B / 5021A                 | EPA 8260B (1996)                                          | Richmond |  |  |  |
| VOC/VH/VPH in Water Pkg  | N/A                               | BCMOE                                                     | Richmond |  |  |  |

Note: The numbers in brackets represent the year that the method was published/approved

**Method Reference Descriptions:** 

BCMOE British Columbia Environmental Laboratory Manual, 2009, British Columbia Ministry of

Environment

APHA Standard Methods for the Examination of Water and Wastewater, American Public Health

Association

EPA United States Environmental Protection Agency Test Methods

**Glossary of Terms:** 

MRL Method Reporting Limit

< Less than the Reported Detection Limit (RDL) - the RDL may be higher than the MRL due to

various factors such as dilutions, limited sample volume, high moisture, or interferences

mg/L Milligrams per litre ug/L Micrograms per litre



| Analyte                                   | Result /<br>Recovery                 | MRL /<br>Limit | Units  | Prepared   | Analyzed               | Notes |
|-------------------------------------------|--------------------------------------|----------------|--------|------------|------------------------|-------|
| Calculated Parameters                     |                                      |                |        |            |                        |       |
| Sample ID: MW14-1 (4051659-               | 01) [Water] Sampled: May-26-14 11:30 |                |        |            |                        |       |
| VPHw                                      | < 100                                | 100            | ug/L   | N/A        | N/A                    |       |
| Hardness, Total (Diss. as CaCO3)          |                                      |                | mg/L   | N/A        | N/A                    |       |
| ,                                         |                                      |                |        |            |                        |       |
| Sample ID: MW14-3 (4051659-               | 02) [Water] Sampled: May-26-14 13:30 |                |        |            |                        |       |
| VPHw                                      | < 100                                |                | ug/L   | N/A        | N/A                    |       |
| Hardness, Total (Diss. as CaCO3)          | 260                                  | 0.50           | mg/L   | N/A        | N/A                    |       |
| Dissolved Metals                          |                                      |                |        |            |                        |       |
| Sample ID: MW14-1 (4051659-               | 01) [Water] Sampled: May-26-14 11:30 |                |        |            |                        |       |
| Aluminum, dissolved                       | < 0.005                              | 0.005          |        | N/A        | May-30-14              |       |
| Antimony, dissolved                       | 0.0002                               | 0.0001         |        | N/A        | May-30-14              |       |
| Arsenic, dissolved                        | 0.0010                               | 0.0005         |        | N/A        | May-30-14              |       |
| Barium, dissolved                         | 0.021                                | 0.005          |        | N/A        | May-30-14              |       |
| Boron, dissolved                          | 0.037                                | 0.004          |        | N/A        | May-30-14              |       |
| Cadmium, dissolved                        | 0.00001                              | 0.00001        |        | N/A        | May-30-14              |       |
| Calcium, dissolved                        | 68.1                                 |                | mg/L   | N/A        | May-30-14              |       |
| Chromium, dissolved                       | 0.0033                               | 0.0005         |        | N/A        | May-30-14              |       |
| Copper, dissolved                         | 0.0031                               | 0.0002         |        | N/A        | May-30-14              |       |
| Iron, dissolved                           | 0.015                                | 0.010          |        | N/A        | May-30-14              |       |
| Lead, dissolved                           | < 0.0001                             | 0.0001         |        | N/A        | May-30-14              |       |
| Magnesium, dissolved                      | 26.8                                 |                | mg/L   | N/A        | May-30-14              |       |
| Manganese, dissolved                      | 0.0017                               | 0.0002         |        | N/A        | May-30-14              |       |
| Mercury, dissolved                        | < 0.00002                            | 0.0002         |        | N/A        | May-30-14              |       |
| Nickel, dissolved                         | <b>0.0013</b> < 0.0005               | 0.0002         |        | N/A<br>N/A | May-30-14              |       |
| Selenium, dissolved Silver, dissolved     | < 0.0005                             | 0.0005         |        | N/A<br>N/A | May-30-14              |       |
| Uranium, dissolved                        | 0.00003                              | 0.00003        |        | N/A        | May-30-14<br>May-30-14 |       |
| Zinc, dissolved                           | 0.004                                | 0.00002        |        | N/A        | May-30-14              |       |
| <u> </u>                                  |                                      | 0.004          | IIIg/L | IW/A       | May-50-14              |       |
|                                           | 02) [Water] Sampled: May-26-14 13:30 | 0.005          |        | N1/A       | 14 00 44               |       |
| Aluminum, dissolved                       | < 0.005                              | 0.005          |        | N/A        | May-30-14              |       |
| Antimony, dissolved                       | 0.0002                               | 0.0001         |        | N/A        | May-30-14              |       |
| Arsenic, dissolved                        | 0.0009                               | 0.0005         |        | N/A        | May-30-14              |       |
| Barium, dissolved                         | 0.047                                | 0.005          |        | N/A        | May-30-14              |       |
| Boron, dissolved                          | 0.018                                | 0.004          |        | N/A        | May-30-14              |       |
| Calaium, dissolved                        | < 0.00001                            | 0.00001        |        | N/A        | May-30-14              |       |
| Calcium, dissolved                        | 66.9                                 |                | mg/L   | N/A        | May-30-14              |       |
| Chromium, dissolved Copper, dissolved     | 0.0007<br>0.0023                     | 0.0005         |        | N/A<br>N/A | May-30-14              |       |
| Iron, dissolved                           | < 0.010                              | 0.0002         |        | N/A<br>N/A | May-30-14              |       |
|                                           |                                      | 0.010          |        | N/A<br>N/A | May-30-14              |       |
| Lead, dissolved                           | < 0.0001                             | 0.0001         |        |            | May-30-14              |       |
| Magnesium, dissolved Manganese, dissolved | 22.7                                 |                | mg/L   | N/A        | May-30-14              |       |
| ivianualiese UISSOIVEO                    | 0.0010                               | 0.0002         |        | N/A        | May-30-14              |       |
| Mercury, dissolved                        | < 0.00002                            | 0.0002         | ma/l   | N/A        | May-30-14              |       |



REPORTED TO Columbia Environmental Consulting Ltd **WORK ORDER** 4051659 **PROJECT** 14-0493 **REPORTED** Jun-16-14 Result / MRL/ Units **Analyte Prepared Analyzed Notes** Recovery Limit Dissolved Metals, Continued Sample ID: MW14-3 (4051659-02) [Water] Sampled: May-26-14 13:30, Continued < 0.0005 N/A May-30-14 Selenium, dissolved 0.0005 mg/L Silver, dissolved < 0.00005 0.00005 mg/L N/A May-30-14 N/A Uranium, dissolved 0.00002 mg/L May-30-14 0.00117 Zinc, dissolved < 0.004 0.004 mg/L N/A May-30-14 Aggregate Organic Parameters Sample ID: MW14-1 (4051659-01) [Water] Sampled: May-26-14 11:30 VHw (6-10) < 100 100 ug/L N/A Jun-02-14 Sample ID: MW14-3 (4051659-02) [Water] Sampled: May-26-14 13:30 VHw (6-10) < 100 100 ug/L N/A Jun-02-14 Polycyclic Aromatic Hydrocarbons (PAH) HT Sample ID: MW14-1 (4051659-01) [Water] Sampled: May-26-14 11:30 0.05 ug/L Naphthalene Jun-11-14 Jun-12-14 0.11 Surrogate: Naphthalene-d8 78 % 40-96 Jun-11-14 Jun-12-14 Surrogate: Acenaphthene-d10 78 % 45-92 Jun-11-14 Jun-12-14 Surrogate: Phenanthrene-d10 71 % 48-90 Jun-11-14 Jun-12-14 Surrogate: Chrysene-d12 79 % 41-96 Jun-11-14 Jun-12-14 Surrogate: Perylene-d12 82 % 47-104 Jun-11-14 Jun-12-14 Sample ID: MW14-3 (4051659-02) [Water] Sampled: May-26-14 13:30 Jun-11-14 Jun-12-14 Naphthalene 0.09 0.05 ug/L Surrogate: Naphthalene-d8 40-96 Jun-11-14 86 % Jun-12-14 Surrogate: Acenaphthene-d10 72 % 45-92 Jun-11-14 Jun-12-14 Surrogate: Phenanthrene-d10 48-90 Jun-11-14 Jun-12-14 65 % 41-96 Jun-11-14 Surrogate: Chrysene-d12 57 % Jun-12-14 Surrogate: Perylene-d12 59 % 47-104 Jun-11-14 Jun-12-14 Volatile Organic Compounds (VOC) Sample ID: MW14-1 (4051659-01) [Water] Sampled: May-26-14 11:30 < 0.5 N/A Jun-02-14 Benzene 0.5 ug/L Ethylbenzene < 1.0 1.0 ug/L N/A Jun-02-14 Naphthalene < 1.0 5.0 ug/L N/A Jun-02-14 A-01 Toluene < 1.0 1.0 ug/L N/A Jun-02-14 N/A Xylenes (total) < 2.0 2.0 ug/L Jun-02-14 Surrogate: Toluene-d8 89 % 70-130 N/A Jun-02-14 85 % 70-130 Surrogate: 4-Bromofluorobenzene N/A Jun-02-14 78 % 70-130 Surrogate: 1,4-Dichlorobenzene-d4 N/A Jun-02-14 Sample ID: MW14-3 (4051659-02) [Water] Sampled: May-26-14 13:30 N/A Jun-02-14 Benzene < 0.5 0.5 ug/L



# **SAMPLE ANALYTICAL DATA**

REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4051659 Jun-16-14

| Analyte | Result / | MRL/        | Droporod | Analyzad | Notos |
|---------|----------|-------------|----------|----------|-------|
| Analyte | Recovery | Limit Units | Prepared | Analyzed | Notes |

# Volatile Organic Compounds (VOC), Continued

# Sample ID: MW14-3 (4051659-02) [Water] Sampled: May-26-14 13:30, Continued

| Ethylbenzene                      | < 1.0 | 1.0 ug/L | N/A | Jun-02-14 |      |
|-----------------------------------|-------|----------|-----|-----------|------|
| Naphthalene                       | < 1.0 | 5.0 ug/L | N/A | Jun-02-14 | A-01 |
| Toluene                           | < 1.0 | 1.0 ug/L | N/A | Jun-02-14 |      |
| Xylenes (total)                   | < 2.0 | 2.0 ug/L | N/A | Jun-02-14 |      |
| Surrogate: Toluene-d8             | 100 % | 70-130   | N/A | Jun-02-14 |      |
| Surrogate: 4-Bromofluorobenzene   | 95 %  | 70-130   | N/A | Jun-02-14 |      |
| Surrogate: 1,4-Dichlorobenzene-d4 | 86 %  | 70-130   | N/A | Jun-02-14 |      |
|                                   |       |          |     |           |      |

# Sample / Analysis Qualifiers:

A-01 Reported Detection Limit for this analyte lowered as per client request.

HT The sample was prepared / analyzed past the recommended holding time.



# **QUALITY CONTROL DATA**

REPORTED TO PROJECT

Columbia Environmental Consulting Ltd

14-0493

WORK ORDER
REPORTED

4051659 Jun-16-14

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): Laboratory reagent water is carried through sample preparation and analysis steps. Method Blanks indicate
  that results are free from contamination, i.e. not biased high from sources such as the sample container or the laboratory
  environment
- **Duplicate (Dup)**: Preparation and analysis of a replicate aliquot of a sample. Duplicates provide a measure of the analytical method's precision, i.e. how reproducible a result is. Duplicates are only reported if they are associated with your sample data.
- Blank Spike (BS): A known amount of standard is carried through sample preparation and analysis steps. Blank Spikes, also known as laboratory control samples (LCS), are prepared from a different source of standard than used for the calibration. They ensure that the calibration is acceptable (i.e. not biased high or low) and also provide a measure of the analytical method's accuracy (i.e. closeness of the result to a target value).
- Standard Reference Material (SRM): A material of similar matrix to the samples, externally certified for the parameter(s) listed. Standard Reference Materials ensure that the preparation steps in the method are adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

| Analyte                             | Result    | MRL Units    | Spike<br>Level | Source<br>Result | % REC      | REC<br>Limit | RPD  | RPD<br>Limit | Notes |
|-------------------------------------|-----------|--------------|----------------|------------------|------------|--------------|------|--------------|-------|
| Aggregate Organic Parameters, Batch | n B4E1240 |              |                |                  |            |              |      |              |       |
| Blank (B4E1240-BLK1)                |           |              | Prepared       | d: Jun-01-1      | 4, Analyze | ed: Jun-01   | -14  |              |       |
| VHw (6-10)                          | < 100     | 100 ug/L     |                |                  | -          |              |      |              |       |
| LCS (B4E1240-BS2)                   |           |              | Prenareo       | d: Jun-02-1      | 4 Analyze  | ed: .lun-02  | -14  |              |       |
| VHw (6-10)                          | 2320      | 100 ug/L     | 2770           |                  | 84         | 57-107       |      |              |       |
| VIIII (0 10)                        | 2020      | 100 49/2     | 2,,,0          |                  |            | 07 107       |      |              |       |
| Dissolved Metals, Batch B4E1130     |           |              |                |                  |            |              |      |              |       |
| Blank (B4E1130-BLK1)                |           |              | Prepared       | d: May-30-       | 14, Analyz | ed: May-3    | 0-14 |              |       |
| Aluminum, dissolved                 | < 0.005   | 0.005 mg/L   |                |                  |            |              |      |              |       |
| Antimony, dissolved                 | < 0.0001  | 0.0001 mg/L  |                |                  |            |              |      |              |       |
| Arsenic, dissolved                  | < 0.0005  | 0.0005 mg/L  |                |                  |            |              |      |              |       |
| Barium, dissolved                   | < 0.005   | 0.005 mg/L   |                |                  |            |              |      |              |       |
| Boron, dissolved                    | < 0.004   | 0.004 mg/L   |                |                  |            |              |      |              |       |
| Cadmium, dissolved                  | < 0.00001 | 0.00001 mg/L |                |                  |            |              |      |              |       |
| Calcium, dissolved                  | < 0.2     | 0.2 mg/L     |                |                  |            |              |      |              |       |
| Chromium, dissolved                 | < 0.0005  | 0.0005 mg/L  |                |                  |            |              |      |              |       |
| Copper, dissolved                   | < 0.0002  | 0.0002 mg/L  |                |                  |            |              |      |              |       |
| Iron, dissolved                     | < 0.010   | 0.010 mg/L   |                |                  |            |              |      |              |       |
| Lead, dissolved                     | < 0.0001  | 0.0001 mg/L  |                |                  |            |              |      |              |       |
| Magnesium, dissolved                | < 0.01    | 0.01 mg/L    |                |                  |            |              |      |              |       |
| Manganese, dissolved                | < 0.0002  | 0.0002 mg/L  |                |                  |            |              |      |              |       |
| Mercury, dissolved                  | < 0.00002 | 0.0002 mg/L  |                |                  |            |              |      |              |       |
| Nickel, dissolved                   | < 0.0002  | 0.0002 mg/L  |                |                  |            |              |      |              |       |
| Selenium, dissolved                 | < 0.0005  | 0.0005 mg/L  |                |                  |            |              |      |              |       |
| Silver, dissolved                   | < 0.00005 | 0.00005 mg/L |                |                  |            |              |      |              |       |
| Uranium, dissolved                  | < 0.00002 | 0.00002 mg/L |                |                  |            |              |      |              |       |
| Zinc, dissolved                     | < 0.004   | 0.004 mg/L   |                |                  |            |              |      |              |       |
| Reference (B4E1130-SRM1)            |           |              | Prepared       | d: May-30-       | 14, Analyz | ed: May-3    | 0-14 |              |       |
| Aluminum, dissolved                 | 0.232     | 0.005 mg/L   | 0.233          |                  | 99         | 81-129       |      |              |       |
| Antimony, dissolved                 | 0.0477    | 0.0001 mg/L  | 0.0430         |                  | 111        | 75-125       |      |              |       |
| Arsenic, dissolved                  | 0.426     | 0.0005 mg/L  | 0.438          |                  | 97         | 88-114       |      |              |       |
| Barium, dissolved                   | 3.41      | 0.005 mg/L   | 3.35           |                  | 102        | 72-104       |      |              |       |
| Boron, dissolved                    | 1.93      | 0.004 mg/L   | 1.74           |                  | 111        | 74-117       |      |              |       |



# **QUALITY CONTROL DATA**

REPORTED TOColumbia Environmental Consulting LtdWORK ORDER4051659PROJECT14-0493REPORTEDJun-16-14

| 14-0433                                                                                |                 |              |                |                  |               | NEP          | OKIED | J            | uii- 10- |
|----------------------------------------------------------------------------------------|-----------------|--------------|----------------|------------------|---------------|--------------|-------|--------------|----------|
| Analyte                                                                                | Result          | MRL Units    | Spike<br>Level | Source<br>Result | % REC         | REC<br>Limit | RPD   | RPD<br>Limit | Notes    |
| issolved Metals, Batch B4E1130, Con                                                    | tinued          |              |                |                  |               |              |       |              |          |
| Reference (B4E1130-SRM1), Continued                                                    |                 |              | Prepared       | d: May-30-1      | 14, Analyz    | ed: May-3    | 0-14  |              |          |
| Cadmium, dissolved                                                                     | 0.220           | 0.00001 mg/L | 0.224          |                  | 98            | 89-111       |       |              |          |
| Calcium, dissolved                                                                     | 8.3             | 0.2 mg/L     | 7.69           |                  | 108           | 86-121       |       |              |          |
| Chromium, dissolved                                                                    | 0.447           | 0.0005 mg/L  | 0.437          |                  | 102           | 89-114       |       |              |          |
| Copper, dissolved                                                                      | 0.876           | 0.0002 mg/L  | 0.844          |                  | 104           | 91-115       |       |              |          |
| Iron, dissolved                                                                        | 1.32            | 0.010 mg/L   | 1.29           |                  | 102           | 77-124       |       |              |          |
| Lead, dissolved                                                                        | 0.113           | 0.0001 mg/L  | 0.112          |                  | 101           | 92-113       |       |              |          |
| Magnesium, dissolved                                                                   | 7.14            | 0.01 mg/L    | 6.92           |                  | 103           | 78-120       |       |              |          |
| Manganese, dissolved                                                                   | 0.342           | 0.0002 mg/L  | 0.345          |                  | 99            | 90-114       |       |              |          |
| Nickel, dissolved                                                                      | 0.859           | 0.0002 mg/L  | 0.840          |                  | 102           | 90-111       |       |              |          |
| Selenium, dissolved                                                                    | 0.0328          | 0.0005 mg/L  | 0.0331         |                  | 99            | 85-115       |       |              |          |
| Uranium, dissolved                                                                     | 0.270           | 0.00002 mg/L | 0.266          |                  | 102           | 85-120       |       |              |          |
| Zinc, dissolved                                                                        | 0.866           | 0.004 mg/L   | 0.881          |                  | 98            | 85-111       |       |              |          |
| Polycyclic Aromatic Hydrocarbons (PAI<br>Blank (B4F0433-BLK1)                          | H), Batch B4F04 | 33           | Prenareo       | d: Jun-11-1      | 4 Analyze     | d: .lun-11-  | .14   |              |          |
| · · · · · · · · · · · · · · · · · · ·                                                  | < 0.05          | 0.05 ug/L    | Tropared       | 2. Out 11 1      | +, / triary20 | a. ouii ii   |       |              |          |
| Naphthalene                                                                            | < 0.05          |              | 1.00           |                  | 77            | 40.06        |       |              |          |
| Surrogate: Naphthalene-d8                                                              | 0.774           | ug/L         | 1.00           |                  | 77            | 40-96        |       |              |          |
| Surrogate: Acenaphthene-d10                                                            | 0.816           | ug/L         | 1.00           |                  | 82            | 45-92        |       |              |          |
| Surrogate: Phenanthrene-d10                                                            | 0.750           | ug/L         | 1.00           |                  | 75            | 48-90        |       |              |          |
| Surrogate: Chrysene-d12                                                                | 0.741           | ug/L         | 1.00           |                  | 74            | 41-96        |       |              |          |
| Surrogate: Perylene-d12                                                                | 0.867           | ug/L         | 1.00           |                  | 87            | 47-104       |       |              |          |
| LCS (B4F0433-BS1)                                                                      |                 |              | Prepared       | d: Jun-11-1      | 4, Analyze    | d: Jun-11-   | 14    |              |          |
| Naphthalene                                                                            | 0.82            | 0.05 ug/L    | 1.00           |                  | 82            | 51-91        |       |              |          |
| Surrogate: Naphthalene-d8                                                              | 0.878           | ug/L         | 1.00           |                  | 88            | 40-96        |       |              |          |
| Surrogate: Acenaphthene-d10                                                            | 0.798           | ug/L         | 1.00           |                  | 80            | 45-92        |       |              |          |
| Surrogate: Phenanthrene-d10                                                            | 0.735           | ug/L         | 1.00           |                  | 74            | 48-90        |       |              |          |
| Surrogate: Chrysene-d12                                                                | 0.679           | ug/L         | 1.00           |                  | 68            | 41-96        |       |              |          |
| Surrogate: Perylene-d12                                                                | 0.871           | ug/L         | 1.00           |                  | 87            | 47-104       |       |              |          |
| Ourrogate. 1 Crysene u12                                                               | 0.077           | ug/L         |                |                  |               |              |       |              |          |
| LCS Dup (B4F0433-BSD1)                                                                 |                 |              | Prepared       | d: Jun-11-1      | 4, Analyze    | d: Jun-12-   | -14   |              |          |
| Naphthalene                                                                            | 0.72            | 0.05 ug/L    | 1.00           |                  | 72            | 51-91        | 12    | 20           |          |
| Surrogate: Naphthalene-d8                                                              | 0.754           | ug/L         | 1.00           |                  | 75            | 40-96        |       |              |          |
| Surrogate: Acenaphthene-d10                                                            | 0.726           | ug/L         | 1.00           |                  | 73            | 45-92        |       |              |          |
| Surrogate: Phenanthrene-d10                                                            | 0.713           | ug/L         | 1.00           |                  | 71            | 48-90        |       |              |          |
| Surrogate: Chrysene-d12                                                                | 0.748           | ug/L         | 1.00           |                  | 75            | 41-96        |       |              |          |
| Surrogate: Perylene-d12                                                                | 0.794           | ug/L         | 1.00           |                  | 79            | 47-104       |       |              |          |
| olatile Organic Compounds (VOC), Ba                                                    | ntch B4E1240    |              | Prepared       | d: Jun-01-1      | 4. Analyze    | ed: Jun-01   | -14   |              |          |
| Benzene                                                                                | < 0.5           | 0.5 ug/L     |                |                  | ,,            |              |       |              |          |
| Ethylbenzene                                                                           | < 1.0           | 1.0 ug/L     |                |                  |               |              |       |              |          |
| Naphthalene                                                                            | < 5.0           | 5.0 ug/L     |                |                  |               |              |       |              |          |
| Toluene                                                                                | < 1.0           | 1.0 ug/L     |                |                  |               |              |       |              |          |
| Xylenes (total)                                                                        | < 2.0           | 2.0 ug/L     |                |                  |               |              |       |              |          |
| Surrogate: Toluene-d8                                                                  | 27.6            | ug/L         | 25.0           |                  | 110           | 70-130       |       |              |          |
| Surrogate: 10luene-do Surrogate: 4-Bromofluorobenzene                                  | 28.2            |              | 25.0<br>25.0   |                  | 113           | 70-130       |       |              |          |
| Surrouale, 4-Diviliolluvivivitelle                                                     |                 | ug/L<br>ug/L |                |                  |               |              |       |              |          |
|                                                                                        |                 | 110/1        | 26.2           |                  | 103           | 70-130       |       |              |          |
| Surrogate: 1,4-Dichlorobenzene-d4                                                      | 26.9            | <u> </u>     | Prenared       | H∙.lun_Ω11       | 4 Analyze     | d: Jun-01    | -14   |              |          |
| Surrogate: 1,4-Dichlorobenzene-d4<br>LCS (B4E1240-BS1)                                 |                 | •            |                | d: Jun-01-1      |               |              | -14   |              |          |
| Surrogate: 1,4-Dichlorobenzene-d4  LCS (B4E1240-BS1)  Benzene                          | 21.0            | 0.5 ug/L     | 20.0           | d: Jun-01-1      | 105           | 70-130       | -14   |              |          |
| Surrogate: 1,4-Dichlorobenzene-d4  LCS (B4E1240-BS1)  Benzene Ethylbenzene Naphthalene |                 | •            |                | d: Jun-01-1      |               |              | -14   |              |          |



# **QUALITY CONTROL DATA**

REPORTED TO Columbia Environmental Consulting Ltd

**PROJECT** 14-0493

WORK ORDER REPORTED 4051659 Jun-16-14

| Analyte | Result | MRL Units | Spike | Source | % REC | REC   | RPD | RPD   | Notes |
|---------|--------|-----------|-------|--------|-------|-------|-----|-------|-------|
| ,       |        |           | Level | Result | 70    | Limit |     | Limit |       |

# Volatile Organic Compounds (VOC), Batch B4E1240, Continued

| LCS (B4E1240-BS1), Continued      |      | Prepared: Jun-01-14, Analyzed: Jun-01-14 |      |     |        |  |
|-----------------------------------|------|------------------------------------------|------|-----|--------|--|
| Xylenes (total)                   | 60.3 | 2.0 ug/L                                 | 60.0 | 101 | 70-130 |  |
| Surrogate: Toluene-d8             | 29.4 | ug/L                                     | 25.0 | 118 | 70-130 |  |
| Surrogate: 4-Bromofluorobenzene   | 30.0 | ug/L                                     | 25.0 | 120 | 70-130 |  |
| Surrogate: 1,4-Dichlorobenzene-d4 | 30.5 | ug/L                                     | 26.2 | 116 | 70-130 |  |

# APPENDIX F CCME NCSCS SPREADSHEETS



# CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) Pre-Screening Checklist

|    | Question                                                                                                                                                                                                                                                                                                                                                                                                                                             | Response<br>(yes / no) | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Are Radioactive material, Bacterial contamination or                                                                                                                                                                                                                                                                                                                                                                                                 | No                     | If yes, do not proceed through the NCSCS. Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | <b>Biological hazards</b> likely to be present at the site?                                                                                                                                                                                                                                                                                                                                                                                          |                        | applicable regulatory agency immediately.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | Are there <b>no contamination exceedances</b> (known or suspected)?  Determination of exceedances may be based on: 1)  CCME environmental quality guidelines; 2) equivalent provincial guidelines/standards if no CCME guideline exists for a specific chemical in a relevant medium; or 3) toxicity benchmarks derived from the literature for chemicals not covered by CCME or provincial guidelines/standards.                                    | No                     | If yes (i.e., there are no exceedances), do not proceed through the NCSCS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | Have partial/incompleted or no environmental site investigations been conducted for the Site?                                                                                                                                                                                                                                                                                                                                                        | No                     | If yes, do not proceed through the NCSCS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | Is there direct and signficant evidence of <b>impacts to humans</b> at the site, or off-site due to migration of contaminants from the site?                                                                                                                                                                                                                                                                                                         | No                     | If yes, automatically rate the site as Class 1, a priority for remediation or risk management, regardless of the total score obtained should one be calculated (e.g., for comparison with other Class 1 sites).                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | Is there direct and significant evidence of <b>impacts to ecological receptors</b> at the site, or off-site due to migration of contaminants from the site?                                                                                                                                                                                                                                                                                          | No                     | Some low levels of impact to ecological receptors are considered acceptable, particularly on commercial and industrial land uses. However, if ecological effects are considered to be severe, the site may be categorized as Class 1, regardless of the numerical total NCSCS score. For the purpose of application of the NCSCS, effects that would be considered severe include observed effects on survival, growth or reproduction which could threaten the viability of a population of ecological receptors at the site. Other evidence that qualifies as severe adverse effects may be determined based on professional judgement and in consultation with the relevant jurisdiction. |
|    | Are there indicators of significant adverse effects in the exposure zone (i.e., the zone in which receptors may come into contact with contaminants)? Some examples are as follows:  -Hydrocarbon sheen or NAPL in the exposure zone -Severely stressed biota or devoid of biota; -Presence of material at ground surface or sediment with suspected high concentration of contaminants such as ore tailings, sandblasting grit, slag, and coal tar. | No                     | If yes, automatically rate the site as Class 1, a priority for remediation or risk management, regardless of the total score obtained should one be calculated (e.g., for comparison with other Class 1 sites).                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | Do measured concentrations of volatiles or unexploded ordnances represent an <b>explosion hazard</b> ?                                                                                                                                                                                                                                                                                                                                               | No                     | If yes, automatically rate the site as Class 1, a priority for remediation or risk management, and do not continue until the safety risks have been addressed. Consult your jurisdiction's occupational health and safety guidance or legislation on exposive hazards and measurement of lower explosive limits.                                                                                                                                                                                                                                                                                                                                                                             |

| If none of the above applies, proceed with the NCSCS scoring. |  |
|---------------------------------------------------------------|--|
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |
|                                                               |  |

# CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) Summary of Site Conditions

| Subject Site:                                                                 | Test Site               |                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Civic Address:<br>(or other description of location)                          |                         | Mamit Lake Road, Pipseul IR#3                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| Site Common Name : (if applicable)                                            |                         | n/a                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Site Owner or Custodian:<br>(Organization and Contact<br>Person)              |                         | AANDC                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Legal description <i>or</i> metes and bounds:                                 |                         | n/a                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Approximate Site area:                                                        |                         | 20 m2                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| PID(s):<br>(or Parcel Identification Numbers<br>[PIN] if untitled Crown land) |                         | n/a                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Centre of site:<br>(provide latitude/longitude or<br>UTM coordinates)         | Latitude:<br>Longitude: | 50 degrees28 min16 secs<br>120 degrees49 min11 secs                                                                                                                                                                                     |  |  |  |  |  |  |  |
| o nii coordinates)                                                            | UTM<br>Coordinate:      | Northing Easting                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Site Land Use:                                                                | Current:                | Vacant IL                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|                                                                               | Proposed:               | none                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Site Plan                                                                     | indicating th           | the bounds of the Site a site plan MUST be attached. The plan must be drawn to scale boundaries in relation to well-defined reference points and/or legal descriptions. of the contamination should also be indicated on the site plan. |  |  |  |  |  |  |  |
| Provide a brief description of the Site:                                      | The site is             | a former concrete plant with outstanding housekeeping issues comprised of variious minor solid waste at surface.                                                                                                                        |  |  |  |  |  |  |  |
|                                                                               |                         |                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |

# CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) Summary of Site Conditions

| Affected media and<br>Contaminants of Potential<br>Concern (COPC): | Soil with PAHs (Phenthanrene and Benzo(b&j)fluroanthene) > CCME IL |
|--------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                    |                                                                    |
|                                                                    |                                                                    |
|                                                                    |                                                                    |
|                                                                    |                                                                    |

Please fill in the "letter" that best describes the level of information available for the site being assessed:

Site Letter Grade

If letter grade is F, do not continue, you must have a minimum of a Phase I Environmental Site Assessment or equivalent.

| Scoring Completed By:   | Dave Diplock, Peng |
|-------------------------|--------------------|
| Date Scoring Completed: | 6/16/2014          |

# CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) **User's Guide - Instructions**

1) Please review the following overview of contents. The revised CCME National Classification System for Contaminated Sites (NCSCS) consists of a pre-screening checklist, summary of site conditions, summary score sheet, and three instruction/worksheet pages for the user to fill out: Contaminant Characteristics, Migration Potential and Exposure. For ease of printing, the method of evaluation for scoring each section of the worksheet is provided in a separate Instructions tab. Reference material is also provided to assist with the evaluation. A brief description of each sheet is as follows:

Pre-Screening Checklist - Used to determine if the Site can either be considered a Class 1 site (to be remediated immediately) or more information must be collected before the Site can be ranked, or other hazards exist at the Site that must be addressed first before the Site can be ranked using the revised NCSCS.

Site Description Sheet - Summarizes Site information. It also indicates the level of information available (Site Letter Grade) for the site to conduct the NCSCS scoring evaluation. The known/potential contaminants of concern and affected media will also be summarized here.

Contaminant Characteristics Instructions & Worksheet - Prompts the user for information related to the contaminants of potential concern (COPC) found at the site.

Migration Potential Instructions & Worksheet - Prompts the user for information related to physical transport processes which may move contamination to neighboring sites or re-distribute contamination within a site. Migration potential includes many of the exposure pathways, but is not limited to exposure pathways. Migration potential does not require clearly defined receptors.

Exposure Instructions & Worksheet - Prompts the user for information related to exposure pathways and receptors which may be located on the site.

Summary Score Sheet - Generates a total site score by adding up the scores generated on each of the three worksheets and provides the corresponding Site Classification. It also provides an estimate of certainty in the score provided (Certainty Percentage).

Reference Material - Additional information which may be useful to refer to when conducting the evaluation.

Contaminant Hazard Ranking

Examples of Persistent Substances

Examples of Substances in the Various Chemical Classes

Chemical-specific Properties

Range of Values of Hydraulic Conductivity and Permeability

The worksheet titles and sub headings are as follows.

# I. Contaminant Characteristics

- 1. Residency Media
- 2. Chemical Hazard
- 3. Contaminant Exceedance Factor
- 4. Contaminant Quantity
- 5. Modifying Factors

### **II. Migration Potential**

- 1. Groundwater Movement
- 2. Surface water Movement
- 3. Soil
- 4. Vapour
- 5. Sediment Movement
- 6. Modifying Factors

# III. Exposure

- 1. Human Receptors
  - A. Known Impact
  - B Potential
    - a. Land Use
    - b. Accessibility
    - c. Exposure Route
- 2. Human Modifying Factors 3. Ecological Receptors
- A. Known Impact
- B. Potential
- - a. Terrestrial b. Aquatic
- 4. Ecological Modifying Factors
  - a. Species at Risk
  - b. Aesthetics
- 5. Other Receptors
  - a. Permafrost

# CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) User's Guide - Instructions

- 2) This is an electronic form which will prompt the user for information. Based on the answers provided, a score is calculated for the contaminated site in question. In most cases, the user will be asked to select amongst two or more choices in a drop down checklist. To access the drop down checklist, move the mouse towards the right side of the "action box". If a drop down is available, an arrow will appear, which must be selected to access the drop down choices.

  An "action box" requires input from the user. All action boxes have an amber background.
- 3) When assigning scores for each factor, it is highly recommended to give a rationale (a column has been provided for this purpose in Worksheets I, II and III). Information that would be useful in justifying the scores assigned may include: a statement of any assumptions, a description of site-specific information, and references for any data sources (e.g., site visit, personal interview, site assessment reports, or other documents consulted).
- 4) The Site Letter Grade is related to the level of information available for the Site (as defined by the User) and provides an indication of completeness of information based on the level of investigation and remediation work that has been carried out at the site. More detailed descriptions of the various categories are provided below.

# Site Letter Detailed Descriptions:

Grade:

- **Pre Phase I ESA** No environmental investigations have been conducted or there are only partial or incomplete Phase I ESA for the Site. It is not recommended to continue through the NCSCS when insufficient data are available. In these cases, it will generally be necessary to conduct a Phase I ESA or other site investigation tasks in order to complete the NCSCS scoring.
- Phase I ESA A preliminary desk-top type study has been conducted, involving non-intrusive data collection to determine whether there is a potential for the Site to be contaminated and to provide information to direct any intrusive investigations. Data collected may include a review of available information on current site conditions and history of the property, a site inspection and interviews with personnel familiar with the Site. [Note: This stage is similar to "Phase I: Site Information Assessment" as described in Guidance Document on the Management of Contaminated Sites in Canada (CCME 1997).]
- D Limited Phase II ESA An initial intrusive investigation and assessment of the property has been conducted, generally focusing on potential sources of contamination, to determine whether there is contamination present above the relevant screening guidelines or criteria, and to broadly define soil and groundwater conditions; samples have been collected and analyzed to identify, characterize and quantify contamination that may be present in air, soil, groundwater, surface water or building materials. [Note: This stage is similar to "Phase II: Reconnaissance Testing Program" as described in Guidance Document on the Management of Contaminated Sites in Canada (CCME 1997).]
- C Detailed Phase II ESA Further intrusive investigations have been conducted to characterize and delineate the contamination, to obtain detailed information on the soil and groundwater conditions, to identify the contaminant pathways, and to provide other information required to develop a remediation plan. [Note: This stage is similar to "Phase III: Detailed Testing Program" as described in Guidance Document on the Management of Contaminated Sites in Canada (CCME 1997).]
- B Risk Assessment with or without Remedial Plan or Risk Management Strategy A risk assessment has been completed, and if the risk was found to be unacceptable, a site-specific remedial action plan has been designed to mitigate environmental and health concerns associated with the Site, or a risk management strategy has been developed.
- A **Confirmation Sampling** Remedial work, monitoring, and/or compliance testing have been conducted and confirmatory sampling demonstrates whether contamination has been removed or stabilized effectively and whether cleanup or risk management objectives have been attained.
- 5) A few terms are used throughout which require definition, they are as follows:
  - $\textbf{\textit{Known}} \ \ \text{-} \ \text{refers to scores that are assigned based on documented scientific and/or technical observations}$
  - Potential refers to scores that are assigned when something is not known, though it may be suspected

**Allowed Potential** - If, in a given category, known and potential scores are provided by the user, the checklist will typically default to the "known" score. If a "known" score is provided, the "allowed potential" score will equal zero. Exceptions can be found within the Modifying Factors categories in each worksheet where there are often several independent questions. Therefore, "known" and "potential" scores are allowed to contribute to the total modifying factor score.

**Raw** - refers to score totals which have not been adjusted down to the total maximum score for the given category. In most cases the possible total raw score is greater than the maximum allowed

# CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) User's Guide - Instructions

Note: For some questions in the worksheets, the option selected will determine whether a "known" or "potential" score is assigned. In these cases, if "Do Not Know" is selected, a score will automatically be listed as "potential", whereas all of the other options in the list will provide a "known" score.

- 6) Certainty Percentage: The ratio of "Known" to "Potential" responses reflects the relative certainty, or confidence, of the resulting final score and the classification. The NCSCS system defines this ratio as the "Certainty Percentage". The Certainty Percentage is generated from the number of sections assigned scores based on "known" information divided by the total number of sections. A high percentage indicates that more is known about the Site, and therefore there is more confidence in the ranking, whereas a low percentage suggests that the ranking should be treated with caution.
- 7) Site Classification Categories: Sites should not be ranked relative to one another. Sites must be classified on their individual characteristics in order to determine the appropriate classification (Class 1, 2, 3, or N) according to their priority for action, or Class INS (Insufficient Information) for sites that require further information before they can be classified. The classification groupings are as follows:

Class 1 - High Priority for Action (Total NCSCS Score greater than 70)

The available information indicates that action (e.g., futher site characterization, risk management, remediation, etc.) is required to address existing concerns. Typically, Class 1 sites indicate high concern for several factors, and measured or observed impacts have been documented.

Class 2 - Medium Priority for Action (Total NCSCS Score between 50 and 69.9)

The available information indicates that there is high potential for adverse impacts, although the threat to human health and the environment is generally not imminent. There will tend not to be indication of off-site contamination, however, the potential for this was rated high and therefore some action is likely required.

Class 3 - Low Priority for Action (Total NCSCS Score between 37 and 49.9)

The available information indicates that this site is currently not a high concern. However, additional investigation may be carried out to confirm the site classification, and some degree of action may be required.

Class N - Not a Priority for Action (Total NCSCS Score less than 37)

The available information indicates there is probably no significant environmental impact or human health threats. There is likely no need for action unless new information becomes available indicating greater concerns, in which case the site should be re-examined.

Class INS - Insufficient Information (>15% of Responses are "Do Not Know")

There is insufficient information to classify the site. In this event, additional information is required to address data gaps.

8) Additional Complementary Tools to the NCSCS

The <u>CCME Soil Quality Index (SoQI)</u> is a complementary tool that focuses more on evaluating the relative hazard, by comparing contaminant concentrations with their respective soil quality guidelines. The SoQI uses three factors for its calculations, namely: 1) scope (% of contaminants that do not meet their respective guidelines), 2) frequency (% of individual tests of contaminants that do not meet their respective guidelines), and 3) amplitude (the amount by which the contaminants do not meet their respective guidelines). The soil quality index can be used to compare different contaminated sites with similar types of contamination as well as to see if the jurisdictional requirements have been met after remediation of a particular site.

The NCSCS was not developed for and is not readily applicable for the assessment of sites with a significant marine or aquatic component. Environmental conditions at marine and aquatic sites are best measured in the bed sediments as they act as long-term reservoirs of chemicals to the aquatic environment and to organisms living in or having direct contact with sediments. The <a href="CCME Sediment Quality Index (SeQI)">CCME Sediment Quality Index (SeQI)</a> provides a convenient means of summarizing sediment quality data and can complement the NCSCS. The SeQI provides a mathematical framework for assessing sediment quality conditions by comparing contaminant concentrations with their respective sediment quality guidelines.

# CCME National Classification System (2008, 2010 v 1.2) (I) Contaminant Characteristics Test Site

| rest site                                                                                                                                                                                                                                                                                          |                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definition                                                                                                                                                                                                                                                                                         | Score          | Rationale for Score<br>(document any assumptions, reports, or site-specific<br>information; provide references) | Method of Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Notes                                                                                                                                                                                                                                                                                                                                |
| Residency Media (replaces physical state)                                                                                                                                                                                                                                                          |                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| Which of the following residency media are known (or strongly suspected) to have one or more exceedances of the applicable CCME guidelines?  yes = has an exceedance or strongly suspected to have an exceedance  no = does not have an exceedance or strongly suspected not to have an exceedance |                | Phenthanrene and Benzo(b&j)fluroanthene<br>Sample TP1-1 [page 22 Phase 2 ESA, Columbia 2014]                    | The overall score is calculated by adding the individual scores from each residency media (having one or more exceedance of the most conservative media specific and land-use appropriate CCME guideline).  Summary tables of the Canadian Environmental Quality Guidelines for soil, water (aquatic life, non-potable groundwater environments, and agricultural water uses) and sediment are available on the CCME website at http://www.ccme.ca/publications/ceqq rcqe.html?cateqory_id=124. | An increasing number of residency media containing chemical exceedances often equates to a greater potential risk due to an increase in the number of potential exposure pathways.                                                                                                                                                   |
| A. Soil                                                                                                                                                                                                                                                                                            | Yes            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| Yes<br>No<br>Do Not Know                                                                                                                                                                                                                                                                           |                |                                                                                                                 | For potable groundwater environments, guidelines for Canadian Drinking Water Quality (for comparison with groundwater monitoring data) are available on the Health Canada website at http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/doc_sup-appui/sum_guideres recom/index_e.html.                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                      |
| B. Groundwater                                                                                                                                                                                                                                                                                     | No             |                                                                                                                 | res_reconvindex_e.num.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                      |
| Yes<br>No<br>Do Not Know                                                                                                                                                                                                                                                                           |                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| C. Surface water                                                                                                                                                                                                                                                                                   | No             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| Yes<br>No<br>Do Not Know                                                                                                                                                                                                                                                                           |                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| D. Sediment                                                                                                                                                                                                                                                                                        | Do Not Know    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| Yes<br>No                                                                                                                                                                                                                                                                                          |                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| Do Not Know                                                                                                                                                                                                                                                                                        |                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| "Known" -score "Potential" - score                                                                                                                                                                                                                                                                 | 2              |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| 2. Chemical Hazard                                                                                                                                                                                                                                                                                 | '              |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                      |
| What is the relative degree of chemical hazard of the contaminant in the list of hazard rankings proposed by the Federal Contaminated Sites Action Plan (FCSAP)?                                                                                                                                   | High           | Phenthanrene and Benzo(b&j)fluroanthene                                                                         | The relative degree of chemical hazard should be selected based on the most hazardous contaminant known or suspected to be present at the site.                                                                                                                                                                                                                                                                                                                                                 | physical properties of a chemical which can cause harm.<br>Properties can include toxic potency, propensity to                                                                                                                                                                                                                       |
| High<br>Medium<br>Low<br>Do Not Know                                                                                                                                                                                                                                                               |                |                                                                                                                 | The degree of hazard has been defined by the Federal Contaminated Sites Action Plan (FCSAP) and a list of substances with their associated hazard (Low, Medium and High) has been provided as a separate sheet in this file.                                                                                                                                                                                                                                                                    | biomagnify, persistence in the environment, etc. Although<br>there is some overlap between hazard and contaminant<br>exceedance factor below, it will not be possible to derive<br>contaminant exceedance factors for many substances                                                                                                |
| "Known" -score                                                                                                                                                                                                                                                                                     | 8              |                                                                                                                 | See Attached Reference Material for Contaminant Hazard Rankings.                                                                                                                                                                                                                                                                                                                                                                                                                                | which have a designated chemical hazard designation, but don't have a CCME guideline. The purpose of this category is to avoid missing a measure of toxic potential.                                                                                                                                                                 |
| "Potential" - score 3. Contaminant Exceedence Factor                                                                                                                                                                                                                                               |                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | category is to avoid missing a measure of toxic potential.                                                                                                                                                                                                                                                                           |
| What is the ratio between the measured contaminant                                                                                                                                                                                                                                                 |                | approximatley 2 x guideline                                                                                     | Ranking of contaminant "exceedance" is determined by comparing contaminant                                                                                                                                                                                                                                                                                                                                                                                                                      | In the event that elevated levels of a material with no                                                                                                                                                                                                                                                                              |
| concentration and the applicable CCME guidelines (or other "standards")?  Mobile NAPL                                                                                                                                                                                                              | Low (1x to 10x |                                                                                                                 | concentrations with the most conservative media-specific and land-use appropriate CCME environmental quality guidelines. Ranking should be based on contaminant with greatest exceedance of CCME guidelines.                                                                                                                                                                                                                                                                                    | associated CCME guidelines are present, check provincial and USEPA environmental criteria.                                                                                                                                                                                                                                           |
| High (>100x) Medium (10x to 100x) Low (1x to 10x) Low (1x to 10x) Do Not Know "Known" -score "Potential" - score                                                                                                                                                                                   | 2              |                                                                                                                 | Ranking of contaminant hazard as high, medium and low is as follows: High = One or more measured contaminant concentration is greater than 100 X appropriate CCME guidelines Medium = One or more measured contaminant concentration is 10 - 99.99 X appropriate CCME guidelines Low = One or more measured contaminant concentration is 1 - 9.99 X appropriate CCME                                                                                                                            | Hazard Quotients (sometimes referred to as a screening quotient in risk assessments) refer to the ratio of measured concentration to the concentration believed to be the threshold for toxicity. A similar calculation is used here to determine the contaminant exceedance factor (CEF). Concentrations greater than one times the |
|                                                                                                                                                                                                                                                                                                    |                |                                                                                                                 | guidelines  Mobile NAPL = Contaminant is a non-aqueous phase liquid (i.e., due to its low solubility, it does not dissolve in water, but remains as a separate liquid) and is present at a sufficiently high saturation (i.e., greater than residual NAPL saturation) such that there is significant potential for mobility either downwards or laterally.  Other standards may include local background concentration or published toxicity benchmarks.                                        | applicable CCME guideline (i.e., CEF=>1) indicate that risks are possible. Mobile NAPL has the highest associated score (8) because of its highly concentrated nature and potential for increase in the size of the impacted zone.                                                                                                   |
|                                                                                                                                                                                                                                                                                                    |                |                                                                                                                 | Results of toxicity testing with site samples can be used as an alternative.  This approach is only relevant for contaminants that do not biomagnify in the food web, since toxicity tests would not indicate potential effects at higher trophic levels. High = lethality observed.  Medium = no lethality, but sub lethal effects observed.  Low = neither lethal nor sub lethal effects observed.                                                                                            |                                                                                                                                                                                                                                                                                                                                      |

# CCME National Classification System (2008, 2010 v 1.2) (I) Contaminant Characteristics <u>Test Site</u>

| Test Site                                                                                                                                                                     |                     | Rationale for Score                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definition                                                                                                                                                                    | Score               | (document any assumptions, reports, or site-specific information; provide references) | Method of Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Notes                                                                                                                                                                                   |
| 4. Contaminant Quantity (known or strongly suspected)                                                                                                                         |                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                         |
| What is the known or strongly suspected quantity of all contaminants?  >10 hectare (ha) or 5000 m³ 2 to 10 ha or 1000 to 5000 m³ <2 ha or 1000 m³ Do Not Know  "Known" -score | <2 ha or<br>1000 m3 | Area of impact is approximately 20m2 with limited sufacial impacts highly suspect.    | Measure or estimate the area or quantity of total contamination (i.e, all contaminants known or strongly suspected to be present on the site). The "Area of Contamination" is defined as the area or volume of contaminated media (soil, sediment, groundwater, surface water) exceeding appropriate environmental criteria.                                                                                                                                                                                                                                             |                                                                                                                                                                                         |
| "Potential" - score                                                                                                                                                           |                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                         |
| 5. Modifying Factors                                                                                                                                                          |                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                         |
| Does the chemical fall in the class of persistent chemicals based on its behavior in the environment?  Yes No                                                                 | No                  |                                                                                       | Persistent chemicals, e.g., PCBs, chlorinated pesticides etc. either do not degrade or take longer to degrade, and therefore may be available to cause effects for a longer period of time. Canadian Environmental Protection Act (CEPA) classifies a chemical as persistent when it has at least one of the following characteristics:  (a) in air,                                                                                                                                                                                                                     |                                                                                                                                                                                         |
| Do Not Know                                                                                                                                                                   |                     |                                                                                       | (ii) its half-life is equal to or greater than 2 days, or (iii) it is subject to atmospheric transport from its source to a remote area; (b) in water, its half-life is equal to or greater than 182 days; (c) in sediments, its half-life is equal to or greater than 365 days; or (d) in soil, its half-life is equal to or greater than 182 days.  This list does not include metals or metalloids, which in their elemental form do not degrade. However metals and metalloids form chemical species in the environment, many of which are not readily bioavailable. | Examples of Persistent Substances are provided in attached Reference Materials                                                                                                          |
| Are there contaminants present that could cause damage to utilities and infrastructure, either now or in the future, given their location?  Yes                               | No                  |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Some contaminants may react or absorb into underground utilities and infrastructure. For example, organic solvents may degrade some plastics, and salts could cause corrosion of metal. |
| No<br>Do Not Know                                                                                                                                                             |                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                         |
| How many different contaminant classes have representative CCME guideline exceedances?                                                                                        | one                 | PAH                                                                                   | For the purposes of the revised NCS ranking system, the following chemicals represent distinct chemical "classes": inorganic substances (including metals), volatile petroleum hydrocarbons, light extractable petroleum hydrocarbons, heavy extractable petroleum                                                                                                                                                                                                                                                                                                       | Refer to the Reference Material sheet for a list of example substances that fall under the various chemical classes.                                                                    |
| one<br>two to four<br>five or more<br>Do Not Know                                                                                                                             |                     |                                                                                       | hydrocarbons, PAHs, phenolic substances, chlorinated hydrocarbons, halogenated methanes, phthalate esters, pesticides.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         |
| "Known" - Score<br>"Potential" - Score                                                                                                                                        | 0                   |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                         |

## Contaminant Characteristic Total

| Raw Total Scores- "Known"            | 14   |
|--------------------------------------|------|
| Raw Total Scores- "Potential"        | 1    |
| Raw Combined Total Scores            | 15   |
| Total Score (Raw Combined / 40 * 33) | 12.4 |

(II) Migration Potential (Evaluation of contaminant migration pathways)
Test Site

| Test Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Score              | Rationale for Score (document any assumptions, reports, or site-specific information; provide references) | Method Of Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Groundwater Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A. Known COPC exceedances and an operable groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| pathway within and/or beyond the property boundary.  i) For potable groundwater environments, 1) groundwater concentrations exceed background concentrations and 1X the Guideline for Canadian Drinking Water Quality (GCDWQ) or 2) there is known contact of contamination. For non-potable environments (typically urban environments with municipal services), 1) groundwater concentrations exceed 1X the applicable non potable guidelines or modified generic guidelines (which exclude ingestion of drinking water pathway) or 2) there is known contact of contaminants with groundwater, based on physical evidence of groundwater impacts.  ii) Same as (i) except the information is not known but strongly suspected based on indirect observations.  my mode of the production of production of drinking water pathway) for non-potable environments or | 12                 | Groundwater meets CCME DW [Appendix D, Phase 2 ESA, Columbia 2014]                                        | Review chemical data and evaluate groundwater quality.  The evaluation method concentrates on 1) a potable or non-potable groundwater environment; 2) the groundwater flow system and its potential to be an exposure pathway to known or potential receptors  An aquifer is defined as a geologic unit that yields groundwater in usable quantities and drinking water quality. The aquifer can currently be used as a potable water supply or could have the potential for use in the future. Non-potable groundwater environments are defined as areas that are serviced with a reliable alternative water supply (nost commonly provided in urban areas). The evaluation of a non-potable environment till be based on a site specific basis.  Physical evidence includes significant sheens, liquid phase contamination, or contaminant saturated soils.  Seeps and springs are considered part of the groundwater pathway.  In Arctic environments, the potability and evaluation of the seasonal active layer (above the permafrost) as a groundwater exposure pathway will be considered on a site-specific basis.                                      | The 1992 NCS rationale evaluated the off-site migration as a regulatory issue. The exposure assessment and classification of hazards should be evaluated regardless of the property boundaries.  Someone experienced must provide a thorough description of the sources researched to determine the presence/absence of a groundwater supply source in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resources such as internet links.  Note that for potable groundwater that also daylights into a nearby surface water body, the more stringent guidelines for both drinking water and protection of aquatic life should be considered.  Selected References  Potable Environments  Guidelines for Canadian Drinking Water Quality: <a href="https://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/doc_sup-appu/sum_guide-res_recom/index_e.html">www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/doc_sup-appu/sum_guide-res_recom/index_e.html</a> Non-Potable Environments |
| Absence of groundwater exposure pathway (i.e., there is no aquifer (see definition at right) at the site or there is an adequate isolating layer between the aquifer and the contamination, and within 5 km of the site there are no aquatic receiving environments and the groundwater does not daylight).  Score  NOTE: If a score is assigned here for Known COPC Exceedances,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Canadian Water Quality Guidelines for Protection of Aquatic Life. CCME. 1999 <u>www.ccme.ca</u> Compilation and Review of Canadian Remediation Guidelines, Standards and  Regulations. Science Applications International Corporation (SAIC Canada), report to Environment Canada, January 4, 2002.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| skip Part B (Potential for groundwater pathway) and go to Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 (Surface Wate    | r Pathway)                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| B. Potential for groundwater pathway.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a. Relative Mobility Hich Moderate Low Insignificant Do Not Know                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Do Not Know        |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reference: US EPA Soil Screening Guidance (Part 5 - Table 39)  If a score of zero is assigned for relative mobility, it 5 - Table 39)  If a score of zero is assigned for relative mobility, it 5 - Table 39)  Rections on potential for groundwater pathway be evaluated and scored. Although the Koc of an individual contaminant may suggest that it will be relatively immobile, it is possible that, with complex misures, there could be enhanced mobility due to co-solvent effects. Therefore, the Koc cannot be relied on solely as a measure of mobility. An evaluation of other factors such as contaminment, this-ness of contining layer, hydraulic conductivities and precipitation infiltration rate are still useful in predicting potential for groundwater migration, even if a contaminant is expected to have insignificant mobility based on its chemistry alone.                                                                                                                                                                                                                                                        |
| b. Presence of engineered sub-surface containment? No containment Partial containment Full containment Do Not Know                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Do Not Know<br>1.5 |                                                                                                           | Review the existing engineered systems or natural attenuation processes for the site and determine if full or partial containment is achieved. Full containment is defined as an engineered system or natural attenuation processes, monitored as being effective, which provide for full capture and/or treatment of contaminants. All chemicals of concern must be contained for "Full Containment" scoring. Natural attenuation must have sufficient data, and reports cited with monitoring data to support steady state conditions and the attenuation processes. If there is no containment or insufficient natural attenuation processes, this category is evaluated as high. If there is less than full containment or if uncertain, then evaluate as medium. In Articc environments, permafrost will be evaluated, as appropriate, based on detailed evaluations, effectiveness and reliability to contain/control contaminant migration.                                                                                                                                                                                                              | Someone experienced must provide a thorough description of the sources researched to determine the containment of the source at the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mila correspondence and/or reference maps, geotechnical reports or natural attenuation studies and other resources such as internet links.  Selected Resources: United States Environmental Protection Agency (USEPA) 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater. EPA/600/R-98/128.  Environment Canada — Ontario Region — Natural Attenuation Technical Assistance Bulletins (TABS) Number 19 –21.                                                                                                                                                                                                                                                                                                                                                                                                     |
| c. Thickness of confining layer over aquifer of concern or groundwater exposure pathway 3 m or less including no confining layer or discontinuous confining layer 3 to 10 m > 10 m Do Not Know  Score  d. Hydraulic conductivity of confining layer > 10 <sup>-4</sup> cm/s or no confining layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Do Not Know<br>0.5 |                                                                                                           | The term "confining layer" refers to geologic material with little or no permeability or hydraulic conductivity (such as unfractured clay); water does not pass through this layer or the rate of movement is extremely slow.  Measure the thickness and extent of materials that will impede the migration of contaminants to the groundwater exposure pathway.  The evaluation of this category is based on:  1) The presence and thickness of saturated subsurface materials that impede the vertical migration of contaminants to tower aquifer units which can or are used as drinking water sources or  2) The presence and thickness of unsaturated subsurface materials that impede the vertical migration of contaminants from the source location to the saturated zone (e.g., water table aquifer, first hydrostratigraphic unit or other groundwater pathway).  Determine the nature of geologic materials and estimate hydraulic conductivity from published material (or use "Range of Values of Hydraulic Conductivity and Permeability" figure in the Reference Material sheet). Unfractured clays should be scored low. Sitts should be scored |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 <sup>-4</sup> to 10 <sup>-6</sup> cm/s<br><10 <sup>-6</sup> cm/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                                                                                           | retirence material sneet). Untractured cays snown be scored low. Sits should be scored medium. Sand, gravel should be scored high. The evaluation of this category is based on:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

(II) Migration Potential (Evaluation of contaminant migration pathways)
Test Site

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                                       | Method Of Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Notes                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Score                                               | Rationale for Score                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     | (document any assumptions, reports, or site-specific information; provide references) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| Do Not Know                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                   |                                                                                       | 11) The presence and hydraulic conductivity ( K. ) or saturated subsurface materials that impede                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      |
| DO NOT KNOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                                                       | the vertical migration of contaminants to lower aquifer units which can or are used as a drinking                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                                       | water source, groundwater exposure pathway or                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Do Not Know                                         |                                                                                       | <ol> <li>The presence and permeability ("k") of unsaturated subsurface materials that impede the<br/>vertical migration of contaminants from the source location to the saturated water table aquifer,</li> </ol>                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                                                       | first hydrostratigraphic unit or other groundwater pathway.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                      |
| Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                 |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| B. Potential for groundwater pathway.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| e. Precipitation infiltration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                   |                                                                                       | Precipitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      |
| · '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                                                                       | Refer to Environment Canada precipitation records for relevant areas. Divide annual precipitation                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |
| (Annual precipitation factor x surface soil relative<br>permeability factor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |                                                                                       | by 1000 and round to nearest tenth (e.g., 667 mm = 0.7 score).                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                                       | <u>Permeability</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                      |
| High<br>Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                                                                                       | For surface soil relative permeability (i.e., infiltration) assume: gravel (1), sand (0.6), loam (0.3) and                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |
| Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                                                                       | pavement or clay (0).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                      |
| Very Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                                                                                       | Multiply the surface soil relative permeability factor with precipitation factor to obtain the score for                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |
| None<br>Do Not Know                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                                                                       | precipitation infiltration rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      |
| DO NOT KNOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Do Not Know                                         |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4                                                 |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| f. Hydraulic conductivity of aquifer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                   |                                                                                       | Determine the nature of geologic materials and estimate hydraulic conductivity of all aquifers of                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |
| >10°2 cm/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |                                                                                       | concern from published material (refer to "Range of Values of Hydraulic Conductivity and                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |
| >10 - cm/s<br>10 - 2 to 10 - 4 cm/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                                                                       | Permeability" in the Reference Material sheet).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| <10 <sup>-4</sup> cm/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| Do Not Know                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Do Not Know                                         |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                   |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| Potential groundwater pathway total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.9                                                 |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| Allowed Potential score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.9                                                 | Note: If a "known" score is provided, the "potential" score is disallowed.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| Groundwater pathway total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                   | ,                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| Surface Water Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| A. Demonstrated migration of COPC in surface water above<br>background conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| background conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                   | Surface water meets CCME AW                                                           | Collect all available information on quality of surface water near to site. Evaluate available data                                                                                                                                                                                                                                                                                                                                                                                                         | General Notes:                                                                                                                                                       |
| Known concentrations of surface water:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | [Appendix D, Phase 2 ESA, Columbia 2014]                                              | against Canadian Water Quality Guidelines (select appropriate guidelines based on local water                                                                                                                                                                                                                                                                                                                                                                                                               | Someone experienced must provide a thorough description of the sources researched to                                                                                 |
| 3 Occupations and the desired |                                                     |                                                                                       | use, e.g., recreation, irrigation, aquatic life, livestock watering, etc.). The evaluation method                                                                                                                                                                                                                                                                                                                                                                                                           | classify the surface water body in the vicinity of the contaminated site. This information                                                                           |
| <ul> <li>i) Concentrations exceed background concentrations and exceed<br/>CCME CWQG for protection of aquatic life, irrigation, livestock</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                                                                                       | concentrates on the surface water flow system and its potential to be an exposure pathway.  Contamination is present on the surface (above ground) and has the potential to impact surface                                                                                                                                                                                                                                                                                                                  | must be documented in the NCS Site Classification Worksheet including contact names,<br>phone numbers, e-mail correspondence and/or reference maps/reports and other |
| water, and/or recreation (whichever uses are applicable at the site)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |                                                                                       | water bodies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | resource such as internet links.                                                                                                                                     |
| by >1 X;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                                                                                       | Surface water is defined as a water body that supports one of the following uses: recreation,                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      |
| or There is known contact of contaminants with surface water based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                  |                                                                                       | irrigation, livestock watering, aquatic life.                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Selected References:                                                                                                                                                 |
| on site observations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life                                                                                     |
| 1, 111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |
| OI .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca                                                                                                                                                          |
| In the absence of CWQG, chemicals have been proven to be toxic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca                                                                                                                                                          |
| based on site specific testing (e.g. toxicity testing; or other indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water                                                                   |
| In the absence of CWQG, chemicals have been proven to be toxic<br>based on site specific testing (e.g. toxicity testing; or other indicator<br>testing of exposure).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca                                                                                                                                                          |
| based on site specific testing (e.g. toxicity testing; or other indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)                            |
| based on site specific testing (e.g. toxicity testing; or other indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                   |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                   |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                   |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water)  www.ccme.ca                |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                   |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water)  www.ccme.ca                |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0                                                 |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water)  www.ccme.ca                |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0                                         | nen you can<br>(Surface Soils)                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score  NOTE: If a score is assigned here for Demonstrated Migration in skip Part B (Potential for migration of COPCs in surface water) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>0                                         | nen you can<br>(Surface Soils)                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score  NOTE: If a score is assigned here for Demonstrated Migration in skip Part B (Potential for migration of COPCs in surface water) an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0                                         | nen you can<br>(Surface Soils)                                                        | Review the existing engineered systems and relate these structures to site conditions and                                                                                                                                                                                                                                                                                                                                                                                                                   | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score  NOTE: If a score is assigned here for Demonstrated Migration in skip Part B (Potential for migration of COPCs in surface water) an B. Potential for migration of COPCs in surface water a. Presence of containment No containment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0                                         | nen you can<br>(Surface Soils)                                                        | Review the existing engineered systems and relate these structures to site conditions and proximity to surface water and determine if full containment is achieved: score low if there is full                                                                                                                                                                                                                                                                                                              | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score  NOTE: If a score is assigned here for Demonstrated Migration in skip Part B (Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water) and Potential for migration of COPCs in surface water.  A Presence of containment No containment Partial containment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0                                         | nen you can<br>(Surface Soils)                                                        | proximity to surface water and determine if full containment is achieved: score low if there is full containment such as capping, berms, dikes; score medium if there is partial containment such as                                                                                                                                                                                                                                                                                                        | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score  NOTE: If a score is assigned here for Demonstrated Migration in skip Part B (Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water  a. Presence of containment No containment Partial containment Full containment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>0<br>0                                         | nen you can<br>(Surface Soils)                                                        | proximity to surface water and determine if full containment is achieved; score low if there is full containment such as capping, berms, dikes; score medium if there is partial containment such as natural barriers, trees, ditches, sedimentation ponds; score high if there are no intervening barriers                                                                                                                                                                                                 | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score  NOTE: If a score is assigned here for Demonstrated Migration in skip Part B (Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water) and Potential for migration of COPCs in surface water.  A Presence of containment No containment Partial containment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>Surface Water, the                   | nen you can<br>(Surface Soils)                                                        | proximity to surface water and determine if full containment is achieved: score low if there is full containment such as capping, berms, dikes; score medium if there is partial containment such as                                                                                                                                                                                                                                                                                                        | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water)  www.ccme.ca                |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score  NOTE: If a score is assigned here for Demonstrated Migration in skip Part B (Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water  a. Presence of containment No containment Partial containment Full containment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>0<br>0                                         | nen you can<br>(Surface Soils)                                                        | proximity to surface water and determine if full containment is achieved: score low if there is full containment such as capping, berms, dikes; score medium if there is partial containment such as natural barriers, trees, ditches, sedimentation ponds; score high if there are no intervening barriers between the site and nearby surface water. Full containment must include containment of all                                                                                                     | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water)  www.ccme.ca                |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score  NOTE: If a score is assigned here for Demonstrated Migration in skip Part B (Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water a resence of containment No containment Partial containment Ful containment Ful containment Do Not Know                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0<br>0<br>Surface Water, the                   | nen you can<br>(Surface Soils)                                                        | proximity to surface water and determine if full containment is achieved: score low if there is full containment such as capping, berms, dikes; score medium if there is partial containment such as natural barriers, trees, ditches, sedimentation ponds; score high if there are no intervening barriers between the site and nearby surface water. Full containment must include containment of all chemicals.  Review available mapping and survey data to determine distance to nearest surface water | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score  NOTE: If a score is assigned here for Demonstrated Migration in skip Part B (Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water a. Presence of containment No containment Partial containment Partial containment Do Not Know  Score  b. Distance to Surface Water 0 to <100 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>0<br>Surface Water, the                   | nen you can<br>(Surface Soils)                                                        | proximity to surface water and determine if full containment is achieved: score low if there is full containment such as capping, berms, dikes; score medium if there is partial containment such as natural barriers, trees, ditches, sedimentation ponds; score high if there are no intervening barriers between the site and nearby surface water. Full containment must include containment of all chemicals.                                                                                          | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score  NOTE: If a score is assigned here for Demonstrated Migration in skip Part B (Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water  a. Presence of containment No containment Partial containment Partial containment Do Not Know  Score  b. Distance to Surface Water 0 to <100 m 100 - 300 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>Surface Water, the                   | nen you can<br>(Surface Soils)                                                        | proximity to surface water and determine if full containment is achieved: score low if there is full containment such as capping, berms, dikes; score medium if there is partial containment such as natural barriers, trees, ditches, sedimentation ponds; score high if there are no intervening barriers between the site and nearby surface water. Full containment must include containment of all chemicals.  Review available mapping and survey data to determine distance to nearest surface water | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score  NOTE: If a score is assigned here for Demonstrated Migration in skip Part B (Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water  a. Presence of containment     Partial containment     Partial containment     Full containment     Full containment     Do Not Know  Score  b. Distance to Surface Water     0 to <100 m     100 - 300 m     > 300 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>Surface Water, the                   | nen you can<br>(Surface Soils)                                                        | proximity to surface water and determine if full containment is achieved: score low if there is full containment such as capping, berms, dikes; score medium if there is partial containment such as natural barriers, trees, ditches, sedimentation ponds; score high if there are no intervening barriers between the site and nearby surface water. Full containment must include containment of all chemicals.  Review available mapping and survey data to determine distance to nearest surface water | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water)  www.ccme.ca                |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but <u>strongly suspected</u> based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score  NOTE: If a score is assigned here for Demonstrated Migration in skip Part B (Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water  a. Presence of containment No containment Partial containment Partial containment Do Not Know  Score  b. Distance to Surface Water 0 to <100 m 100 - 300 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>Surface Water, the digo to Section 3 | nen you can (Surface Soils)                                                           | proximity to surface water and determine if full containment is achieved: score low if there is full containment such as capping, berms, dikes; score medium if there is partial containment such as natural barriers, trees, ditches, sedimentation ponds; score high if there are no intervening barriers between the site and nearby surface water. Full containment must include containment of all chemicals.  Review available mapping and survey data to determine distance to nearest surface water | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (trigation and Livestock Water)  www.ccme.ca                |
| based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).  ii) Same as (i) except the information is not known but strongly suspected based on indirect observations.  iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)  Score  NOTE: If a score is assigned here for Demonstrated Migration in skip Part B (Potential for migration of COPCs in surface water) and B. Potential for migration of COPCs in surface water  a. Presence of containment No containment Partial containment Partial containment Do Not Know  Score  b. Distance to Surface Water 0 to <100 m 100 - 300 m > 300 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>Surface Water, the                   | nen you can<br>(Surface Soils)                                                        | proximity to surface water and determine if full containment is achieved: score low if there is full containment such as capping, berms, dikes; score medium if there is partial containment such as natural barriers, trees, ditches, sedimentation ponds; score high if there are no intervening barriers between the site and nearby surface water. Full containment must include containment of all chemicals.  Review available mapping and survey data to determine distance to nearest surface water | www.ccme.ca  CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses (Irrigation and Livestock Water)  www.ccme.ca               |

(II) Migration Potential (Evaluation of contaminant migration pathways)

| Test Site                                                                   |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
|-----------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|                                                                             |                 |                                                                                       | Method Of Evaluation                                                                                                                                                                           | Notes                                                                                             |
| Definition                                                                  | Score           | Rationale for Score                                                                   |                                                                                                                                                                                                |                                                                                                   |
|                                                                             |                 | (document any assumptions, reports, or site-specific information; provide references) |                                                                                                                                                                                                |                                                                                                   |
| c. Topography                                                               |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| Contaminants above ground level and slope is steep                          |                 |                                                                                       | Review engineering documents on the topography of the site and the slope of surrounding                                                                                                        |                                                                                                   |
| Contaminants at or below ground level and slope is steep                    |                 |                                                                                       | terrain.                                                                                                                                                                                       |                                                                                                   |
| Contaminants above ground level and slope is intermediate                   |                 |                                                                                       | Steep slope = >50%                                                                                                                                                                             |                                                                                                   |
| Contaminants at or below ground level and slope is                          |                 |                                                                                       | Intermediate slope = between 5 and 50%                                                                                                                                                         |                                                                                                   |
| Contaminants above ground level and slope is flat                           |                 |                                                                                       | Flat slope = < 5%                                                                                                                                                                              |                                                                                                   |
| Contaminants at or below ground level and slope is flat                     |                 |                                                                                       | Note: Type of fill placement (e.g., trench, above ground, etc.).                                                                                                                               |                                                                                                   |
| Do Not Know                                                                 |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| _                                                                           | Do Not Know     |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| d. Run-off potential                                                        | 1               |                                                                                       | Deletal.                                                                                                                                                                                       | Out-start Oursess                                                                                 |
| High (rainfall run-off score > 0.6)                                         |                 |                                                                                       | Rainfall Refer to Environment Canada precipitation records for relevant areas. Divide rainfall by 1000 and                                                                                     | Selected Sources: Environment Canada web page link: www.msc.ec.gc.ca                              |
| Moderate (0.4 < rainfall run-off score <0.6)                                |                 |                                                                                       | round to nearest tenth (e.g., 667 mm = 0.7 score).                                                                                                                                             | Snow to rainfall conversion apply ratio of 15 (snow):1(water)                                     |
| Low (0.2 < rainfall run-off score <0.4)                                     |                 |                                                                                       | The former definition of "annual rainfall" did not include the precipitation as snow. This minor                                                                                               | crion to raminal correspondence of to (crion). (water)                                            |
| Very Low (0 < rainfall run-off score < 0.2)                                 |                 |                                                                                       | adjustment has been made. The second modification was the inclusion of permeability of                                                                                                         |                                                                                                   |
| None (rainfall run-off score = 0)                                           |                 |                                                                                       | surface materials as an evaluation factor.                                                                                                                                                     |                                                                                                   |
| Do Not Know                                                                 |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
|                                                                             | Do Not Know     |                                                                                       | Permeability                                                                                                                                                                                   |                                                                                                   |
| Score                                                                       | 0.4             |                                                                                       | For infiltration assume: gravel (0), sand (0.3), loam (0.6) and pavement or clay (1).                                                                                                          |                                                                                                   |
|                                                                             |                 |                                                                                       | Multiply the infiltration factor with precipitation factor to obtain rainfall run off score.                                                                                                   |                                                                                                   |
|                                                                             |                 |                                                                                       | montpy the minutation ration with precipitation ration to obtain rainfail for on Scote.                                                                                                        |                                                                                                   |
| e. Flood potential                                                          |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| 1 in 2 years                                                                |                 |                                                                                       | Review published data such as flood plain mapping or flood potential (e.g., spring or mountain run-                                                                                            |                                                                                                   |
| 1 in 10 years                                                               |                 |                                                                                       | off) and Conservation Authority records to evaluate flood potential of nearby water courses both                                                                                               |                                                                                                   |
| 1 in 50 years                                                               |                 |                                                                                       | up and down gradient. Rate zero if site not in flood plain.                                                                                                                                    |                                                                                                   |
| Not in floodplain                                                           |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| Do Not Know                                                                 | Do Not Know     |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| Score                                                                       | 0.5             |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| Potential surface water pathway total<br>Allowed Potential score            | 6.9             | Note: If a "Improve" access is presided, the "extential" access is discillated        |                                                                                                                                                                                                |                                                                                                   |
| Surface water pathway total                                                 | 0               | Note: If a "known" score is provided, the "potential" score is disallowed.            |                                                                                                                                                                                                |                                                                                                   |
|                                                                             | ·               |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| Surface Soils (potential for dust, dermal and ingestion exposure)           |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
|                                                                             |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| A. Demonstrated concentrations of COPC in surface soils (top 1.5 m)         |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
|                                                                             |                 | YES [Sample TP1-1, Appendix D, Phase 2 ESA, Columbia 2014]                            |                                                                                                                                                                                                |                                                                                                   |
| COPCs measured in surface soils exceed the CCME soil quality                |                 |                                                                                       | Collect all available information on quality of surface soils (i.e., top 1.5 metres) at the site. Evaluate                                                                                     | Selected References:                                                                              |
| guideline.                                                                  | 12              |                                                                                       | available data against Canadian Soil Quality Guidelines. Select appropriate guidelines based on current (or proposed future) land use (i.e, agricultural, residential/parkland, commercial, or | CCME. 1999. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health |
|                                                                             | 12              |                                                                                       | industrial), and soil texture if applicable (i.e., coarse or fine).                                                                                                                            | www.ccme.ca                                                                                       |
| Strongly suspected that soils exceed guidelines                             | 9               |                                                                                       | industrially, and controlled in applicable (i.e., course of fillo).                                                                                                                            | THW-SOMO-SG                                                                                       |
| COPCs in surface soils does not exceed the CCME soil quality guideline      | -               |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| or is not present (i.e., bedrock).                                          | 0               |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
|                                                                             |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
|                                                                             | 12              |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| Score                                                                       | 12              |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| NOTE: If a score is assigned here for Demonstrated Concentration            | s in Surface So | ils, then you can                                                                     |                                                                                                                                                                                                |                                                                                                   |
| skip Part B (Potential for a surface soils migration pathway) and go        |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
|                                                                             |                 | •                                                                                     |                                                                                                                                                                                                |                                                                                                   |
| B. Potential for a surface soils (top 1.5 m) migration pathway              |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
|                                                                             |                 |                                                                                       | Consult engineering or risk assessment reports for the site. Alternatively, review photographs or                                                                                              | The possibility of contaminants in blowing snow have not been included in the revised             |
| a. Are the soils in question covered?                                       |                 |                                                                                       | perform a site visit.                                                                                                                                                                          | NCS as it is difficult to assess what constitutes an unacceptable concentration and               |
| Exposed                                                                     |                 |                                                                                       | Landscaped surface soils must include a minimum of 0.5 m of topsoil.                                                                                                                           | secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.  |
| Vegetated                                                                   |                 |                                                                                       |                                                                                                                                                                                                | ICIIIaii.                                                                                         |
| Landscaped<br>Paved                                                         |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| Do Not Know                                                                 |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| 501101101011                                                                | D. N. K.        |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
|                                                                             | Do Not Know     |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| Score                                                                       | 4               |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| b. For what proportion of the year does the site remain covered<br>by snow? |                 |                                                                                       | Consult climatic information for the site. The increments represent the full span from soils which                                                                                             |                                                                                                   |
| by snow?<br>0 to 10% of the year                                            |                 |                                                                                       | are always wet or covered with snow (and therefore less likely to generate dust) to those soils which are predominantly dry and not covered by snow (and therefore are more likely to generate |                                                                                                   |
| 10 to 30% of the year                                                       |                 |                                                                                       | dust).                                                                                                                                                                                         |                                                                                                   |
| More than 30% of the year                                                   |                 |                                                                                       | adoly.                                                                                                                                                                                         |                                                                                                   |
| Do Not Know                                                                 |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
|                                                                             |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
|                                                                             | Do Not Know     |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| Score                                                                       | 3               |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| Potential surface soil pathway total                                        | 7               |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
| Allowed Potential score                                                     |                 | Note: If a "known" score is provided, the "potential" score is disallowed.            |                                                                                                                                                                                                |                                                                                                   |
| Soil pathway total                                                          | 12              |                                                                                       |                                                                                                                                                                                                |                                                                                                   |
|                                                                             |                 |                                                                                       |                                                                                                                                                                                                |                                                                                                   |

(II) Migration Potential (Evaluation of contaminant migration pathways)

| Test Site                                                                                                                                        |                                     |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definition                                                                                                                                       | Score                               | Rationale for Score (document any assumptions, reports, or site-specific information; provide references)                                 | Method Of Evaluation                                                                                                                                                                  | Notes                                                                                                                                                                                                                                                                                                                                                                   |
| 4. Vapour                                                                                                                                        |                                     |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| A. Demonstrated COPCs in vapour.                                                                                                                 |                                     |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                  |                                     | No voaltile COCs [Appendix D, Phase 2 ESA, Columbia 2014]                                                                                 |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| Vapour has been measured (indoor or outdoor) in concentrations exceeding risk based concentrations.                                              | 12                                  |                                                                                                                                           | Consult previous investigations, including human health risk assessments, for reports of vapours detected.                                                                            |                                                                                                                                                                                                                                                                                                                                                                         |
| Strongly suspected (based on observations and/or modelling)                                                                                      | 9                                   |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| Vapour has not been measured and volatile hydrocarbons have not been found in site soils or groundwater.                                         | 0                                   |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| Score                                                                                                                                            | 0                                   |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| NOTE: If a score is assigned here for Demonstrated COPCs in Valskip Part B (Potential for COPCs in vapour) and go to Section 5 (St               |                                     | an                                                                                                                                        |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| B. Potential for COPCs in vapour                                                                                                                 | ,                                   |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| a. Relative Volatility based on Henry's Law Constant, H' (dimensionless)     High (H' > 1.0E-1)                                                  |                                     |                                                                                                                                           | Reference: US EPA Soil Screening Guidance (Part 5 - Table 36)                                                                                                                         | If the Henry's Law Constant for a substance indicates that it is not volatile, and a score of<br>zero is assigned here for relative volatility, then the other three questions in this section on<br>Potential for COPCs will be automatically assigned scores of zero and you can skip to                                                                              |
| Moderate (H' = 1.0E-1 to 1.0E-3)<br>Low (H' < 1.0E-3)                                                                                            |                                     |                                                                                                                                           | Provided in Attached Reference Materials                                                                                                                                              | Potential for COPCs will be automatically assigned scores or zero and you can skip to section 5.                                                                                                                                                                                                                                                                        |
| Not Volatile<br>Do Not Know                                                                                                                      | D. N.                               |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| Score                                                                                                                                            | Do Not Know<br>2.5                  |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| b. What is the soil grain size?<br>Fine                                                                                                          | 2.5                                 |                                                                                                                                           | Review soil permeability data in engineering reports. The greater the permeability of soils, the greater the possible movement of vapours.                                            |                                                                                                                                                                                                                                                                                                                                                                         |
| Coarse<br>Do Not Know                                                                                                                            | 5 11 . 17                           |                                                                                                                                           | Fine-grained soils are defined as those which contain greater than 50% by mass particles less than 75 µm mean diameter (D50 < 75 µm). Coarse-grained soils are defined as those which |                                                                                                                                                                                                                                                                                                                                                                         |
| Score                                                                                                                                            | Do Not Know                         |                                                                                                                                           | contain greater than 50% by mass particles greater than 75 μm mean diameter (D50 > 75 μm).                                                                                            |                                                                                                                                                                                                                                                                                                                                                                         |
| c. Is the depth to the source less than 10m? Yes No                                                                                              |                                     |                                                                                                                                           | Review groundwater depths below grade for the site.                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                         |
| Do Not Know                                                                                                                                      | Do Not Know                         |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| Score                                                                                                                                            | 1                                   |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| d. Are there any preferential pathways?  Yes  No                                                                                                 |                                     |                                                                                                                                           | Visit the site during dry summer conditions and/or review available photographs.  Where bedrock is present, fractures would likely act as preferential pathyways.                     | Preferential pathways refer to areas where vapour migration is more likely to occur<br>because there is lower resistance to flow than in the surrounding materials. For example<br>underground conduits such as sewer and utility lines, drains, or septic systems may serve<br>as preferential pathways. Features of the building itself that may also be preferential |
| Do Not Know                                                                                                                                      | Do Not Know                         |                                                                                                                                           |                                                                                                                                                                                       | pathways include earthen floors, expansion joints, wall cracks, or foundation perforations for subsurface features such as utility pipes, sumps, and drains.                                                                                                                                                                                                            |
| Score Potential vapour pathway total                                                                                                             | 7.5                                 |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| Allowed Potential score                                                                                                                          |                                     | Note: If a "known" score is provided, the "potential" score is disallowed.                                                                |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| Vapour pathway total  5. Sediment Movement                                                                                                       | 0                                   |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| A. Demonstrated migration of sediments containing COPCs                                                                                          |                                     |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| There is evidence to suggest that sediments originally deposited to the site (exceeding the CCME sediment quality guidelines) have migrated.     | 12                                  | No groundwater or surface water contamination therefore incomplete exposure pathway to sediment. [Appendix D, Phase 2 ESA, Columbia 2014] | Review sediment assessment reports. Evidence of migration of contaminants in sediments must be reported by someone experienced in this area.                                          | Usually not considered a significant concern in lakes/marine environments, but could be<br>very important in rivers where transport downstream could be significant.                                                                                                                                                                                                    |
| Strongly suspected (based on observations and/or modelling)                                                                                      | 9                                   |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| Sediments have been contained and there is no indication that sediments will migrate in future.                                                  | 0                                   |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| or Absence of sediment exposure pathway (i.e., within 5 km of the site there are no aquatic receiving environments, and therefore no sediments). |                                     |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| Score                                                                                                                                            | 0                                   |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
| NOTE: If a score is assigned here for Demonstrated Migration of Skip Part B (Potential for Sediment Migration) and go to Section 6               | Sediments, then<br>(Modifying Facto | you can<br>ors)                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                  |                                     |                                                                                                                                           |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |

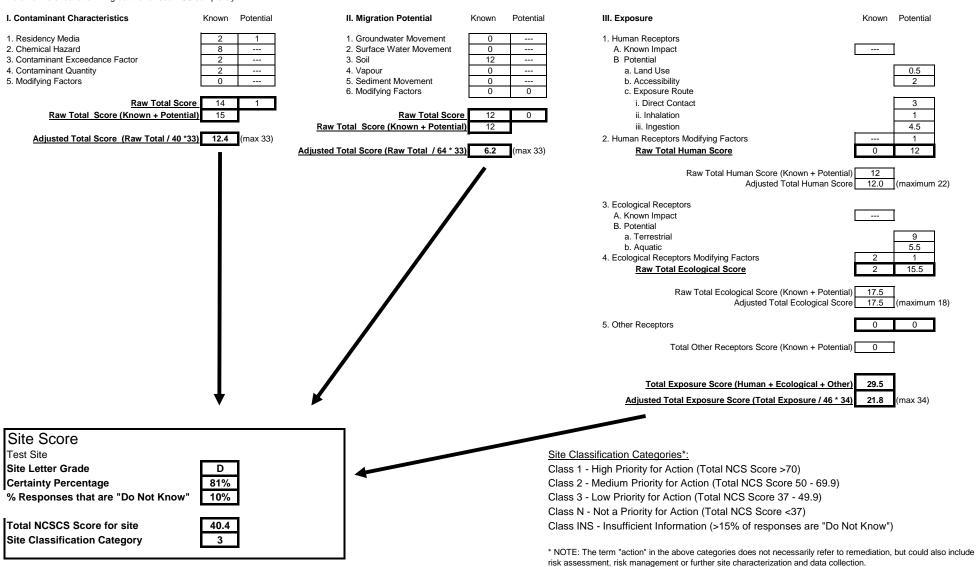
CCME National Classification System (2008, 2010 v 1.2)
(II) Migration Potential (Evaluation of contaminant migration pathways)
Test Site

| Test Site                                                                                                                                                             |             |                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Definition                                                                                                                                                            | Score       | Rationale for Score (document any assumptions, reports, or site-specific information; provide references) | Method Of Evaluation                                                                                                                                                                                                                                                                                                                  | Notes |
| B. Potential for sediment migration                                                                                                                                   |             |                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |       |
| a. Are the sediments having COPC exceedances capped with sediments having no exceedances ("clean sediments")?     Yes     No     Do Not Know                          | Do Not Know |                                                                                                           | Review existing sediment assessments. If sediment coring has been completed, it may indicate that historically contaminated sediments have been covered over by newer 'cleam' sediments. This assessment will require that cores collected demonstrate a low concentration near the top and higher concentration with sediment depth. |       |
| b. For lakes and marine habitats, are the contaminated sediments in shallow water and therefore likely to be affected by tidal action, wave action or propeller wash? |             |                                                                                                           | Review existing sediment assessments. If the sediments present at the site are in a river, select<br>'no' for this question.                                                                                                                                                                                                          |       |
| Yes<br>No<br>Do Not Know                                                                                                                                              | Do Not Know |                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |       |
| C. For rivers, are the contaminated sediments in an area prone to sediment scouring?     Yes     No                                                                   | Do Not Know |                                                                                                           | Review existing sediment assessments. It is important that the assessment is made under worst case flows (high yearly flows). Under high yearly flows, areas which are commonly depositional                                                                                                                                          |       |
| Do Not Know                                                                                                                                                           | 2           |                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |       |
| Potential sediment pathway total Allowed Potential score Sediment pathway total                                                                                       | 6           | Note: If a "known" score is provided, the "potential" score is disallowed.                                |                                                                                                                                                                                                                                                                                                                                       |       |
| 6. Modifying Factors                                                                                                                                                  |             |                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |       |
| Are there subsurface utility conduits in the area affected by contamination? Yes No Do Not Know                                                                       | No          |                                                                                                           | Consult existing engineering reports. Subsurface utilities can act as conduits for contaminant migration.                                                                                                                                                                                                                             |       |
| Known<br>Potential                                                                                                                                                    | 0           |                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |       |

| Migration | Potential | Total |
|-----------|-----------|-------|
|           |           |       |

| ı | Raw "known" total     | 12   |                                                                                               |
|---|-----------------------|------|-----------------------------------------------------------------------------------------------|
| ı | Raw "potential" total | 0.0  |                                                                                               |
| ı | Raw combined total    | 12.0 | Note: If "Known" and "Potential" scores are provided, the checklist defaults to known. Theref |
| ı | Total (max 33)        | 6.2  | the total "Potential" Score may not reflect the sum of the individual "Potential" scores.     |

| Definition                                                                                                                                                                                                                                                                                                                                                                                                                         | Rationale for Score  (document any assumptions, reports, or site-specific information; provide references) | Method Of Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Human                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Known exposure                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ocumented adverse impact or high quantified exposure which has or<br>ill result in an adverse effect, injury or harm or impairment of the<br>afety to humans as a result of the contaminated site. (Class 1 Site*)                                                                                                                                                                                                                 | 22                                                                                                         | Class 1 site (i.e., action required). There is no need to proceed through the NCS in this case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Known adverse impact includes domestic and traditional food sources. Adverse effects based on food chain transfer to<br>humans and/or animals can be scored in this category. However, the weight of evidence must show a direct link of a<br>contaminated food source/supply and subsequent ingestion/transfer to humans. Any associated adverse effects to the<br>environment are scored separately later in this worksheet.<br>Someone experienced must provide a through description of the sources researched to evaluate and determine the                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ame as above, but "Strongly Suspected" based on observations or direct evidence.                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | quantified exposure/impact (adverse effect) in the vicinity of the contaminated site.  Selected References:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| quantified or suspected exposures/impacts in humans.                                                                                                                                                                                                                                                                                                                                                                               | O<br>Go to Potential                                                                                       | typically either >10 <sup>-5</sup> or >10 <sup>-6</sup> ). Known impacts can also be evaluated based on blood testing (e.g. blood lead >10 ug/dL) or other health based testing.  This category can be based on the outcomes of risk assessments and applies to studies which have reported Hazard Quotients of less than 0.2 for non-carcinogenic chemicals and incremental lifetime cancer risks for carcinogenic chemicals that are within acceptable levels as defined by the jurisdiction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Health Canada – Federal Contaminated Site Risk Assessment in Canada Parts 1 and 2 Guidance on Human Health<br>Screening Level Risk Assessments (www.hc-sc.gc.ca/ewh-semt/pubs/contamsite/index_e.html)<br>United States Environmental Protection Agency, Integrated Risk Information System (IRIS) – <a href="http://toxnet.nml.nih.gov">http://toxnet.nml.nih.gov</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OTE: If a score is assigned here for Known Exposure, then you can                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                            | (for most jurisdictions this is less than either 10 <sup>-6</sup> or 10 <sup>-5</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ip Part B (Potential for Human Exposure) and go to Section 2 (Huma                                                                                                                                                                                                                                                                                                                                                                 | n Exposure Modifying Factors)                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Potential for human exposure                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a) Land use (provides an indication of potential human exposure scenarios)     Agricultural Residential / Parkland Commercial Industrial Do Not Know                                                                                                                                                                                                                                                                               | Industrial 0.5                                                                                             | Review zoning and land use maps over the distances indicated. If the proposed future land use is more "sensitive" than the current land use, evaluate this factor assuming the proposed future use is in place. Agricultural land use is defined as uses of land where the activities are related to the productive capability of the land or facility (e.g., greenhouse) and are agricultural in nature, or activities related to the teeding and housing of animals as livestock. Residential/Parkland land uses are defined as uses of land on which the activities are recreational in nature and require the natural or human designed capability of the land to sustain that activity (parkland). Commercial/Industrial land uses are defined as land on which the activities are related to the buying, selling, or trading of merchandise or services (commercial), as well as land uses which are related to the production, manufacture, or storage of materials (industrial) | This is the main "receptor" factor used in site scoring. A higher score implies a greater exposure and/or exposure of more sensitive human receptors (e.g., children).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Indicate the level of accessibility to the contaminated portion of the site (e.g., the potential for coming in contact with contamination)     Limited barriers to prevent site access; contamination not covered Moderate access or no intervening barriers, contaminants are covered. Remote locations in which contaminaris not covered. Controlled access or remote location and contaminants are covered.  Do Not Know  Score | Access, not covered                                                                                        | Review location and structures and contaminants at the site and determine if there are intervening barriers between the site and humans. A low rating should be assigned to a (covered) site surrounded by a fence or in a remote location, whereas a high score should be assigned to a site that has no cover, fence, natural barriers or buffer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Potential for human exposure                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Potential for human exposure     Potential for intake of contaminated soil, water, sediment or foods for operable or potentially operable pathways, as identified in Worksheet II (Migration Potential).     i) direct contact         is derect contact         is derect contact with contaminated surface water, groundwater, sediments or soils anticipated?                                                                   | contamianted soil present at surface.  Yes 3                                                               | It soils or potable groundwater are present exceeding their respective CCME guidelines, dermal contact is assumed. Exposure to surface water, non-potable groundwater or sediments exceeding their respective CCME guidelines will depend on the sits. Select "Yes" if dermal exposure to surface water, non-potable groundwater or sediments is expected. For instance, dermal contact with sediments would not be expected in an active port. Only soils in the top 1.5 m are defined by CCME (2003) as surface soils. If contaminated soils are only located deeper than 1.5 m, direct contact with soils is not anticipated to be an operable contaminant exposure pathway.                                                                                                                                                                                                                                                                                                         | Exposure via the skin is generally believed to be a minor exposure route. However for some organic contaminants, skin exposure can play a very important component of overall exposure. Dermal exposure can occur while swimming in contaminated waters, bathing with contaminated surface water/groundwater and digging in contaminated dirt, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ii) inhalation (i.e., inhalation of dust, vapour)  Vapour - Are there inhabitable buildings on the site within 30 m of soils or groundwater with volatile contamination as determined in Worksheet II (Migration Potential)?  Yes No Do Not Know  Score Dust - If there is contaminated surface soil (e.g. top 1.5 m),                                                                                                             | No 0                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exposure via the lungs (inhalation) can be a very important exposure pathway, Inhalation can be via both particulates (dust) and gas (yaquors). Vaquors can be a problem where buildings have been built on former industrial sites or where volatile contaminants have migrated below buildings resulting in the potential for vapour intrusion.  Assesses the potential for humans to be exposed to vapours originating from site soils. The closer the receptor is to a source of vokatile chemicals in soil, the greater the potential of exposure. Also, coarser-grained soil will convey vapour much more efficiently in the soil than finer grained material so gust as clays and sits.  General Notes;  Someone experienced must provide a thorough description of the sources researched to determine the presence/absence of a vapour migration and/or dust generation in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact |
| Dos: - it mere is contaminated solated soil (e.g., by 1.3 m), indicate whether the soil is fine or coarse textured. If it is known that surface soil is not contaminated, enter a score of zero.  Fine Coarse Surface soil is not contaminated or absent Do Not Know Texture  Score inhalation total                                                                                                                               | Coarse 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | names, phone numbers, e-mail correspondence and/or reference<br>maps/reports and other resource such as internet links.  Selected References;  Canadian Council of Ministers of the Environment (CCME), 2006. Protocol for the Derivation of Environmental<br>and Human Health Soil Qualify Guidelines. PN 1332. www.ccme.ca<br>Golder, 2004. Soil Vapour Intrusion Guidance for Health Canada Screening Level Risk Assessment (SLRA)<br>Submitted to Health Canada, Burnaby, BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |


| Part      | Test Site                                                                                                                                                                                                                                                                           |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recompany of the content of the cont | Definition                                                                                                                                                                                                                                                                          | Score                  | (document any assumptions, reports, or site-specific information; | Method Of Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| State of the control  | B. Potential for human exposure                                                                                                                                                                                                                                                     |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Suppose Seat Seat Seat Seat Seat Seat Seat Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | children[], including traditional foods.  Drinking Water: Choose a score based on the proximity to a drinking water supply, to indicate the potential for contamination (present or future).  0 to 100 m 100 to 300 m 300 m to 1 km 1 to 5 km No drinking water present Do Not Know | No drinking under pro- |                                                                   | commercial or municipal supply) is known or suspected to be contaminated above Guidelines for<br>Canadian Drinking Water Quality. If drinking water supply is known to be contaminated, some<br>immediate action (e.g., provision of alternate drinking water supply) should be initiated to reduce or<br>eliminate exposure.  The evaluation of significant potential for exceedances of the water supply in the future may be based<br>on the capture zones of the drinking water wells; contaminant travel times; computer modelling of flow                                                                                                                                                                                                                                                                                                                                                                                           | Guidelines for Canadian Drinking Water Quality: <a href="https://www.hc-sc.gc.ca/hecs-sesc/water/publications/drinking_water_quality_quidelines/toc.htm">water_quality_quidelines/toc.htm</a> Drinking water can be an extremely important exposure pathway to humans. If site groundwater or surface water is not used for drinking, then this pathway is considered to be incperable.  Consider both wild foods such as salmon, venison, caribou, as well as agricultural sources of food items if the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| The Control of Control | Score                                                                                                                                                                                                                                                                               |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Act is all and securated by produce when you will be secured by produce when you will be secured by the secured by produce when you will be secured by the   | Yes<br>No<br>Do Not Know<br>Score                                                                                                                                                                                                                                                   |                        |                                                                   | If contaminated soils are located within the top 1.5 m, it is assumed that ingestion of soils is an exercise exercise archives. Exercise to coils dense than 1.5 m is possible, but less likely, and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| According diseased and control from the  | Yes<br>No<br>Do Not Know                                                                                                                                                                                                                                                            |                        |                                                                   | duration is shorter. Refer to human health risk assessment reports for the site in question.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Section 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | domestic animals or wildlife harvested from the contaminated<br>land and its surroundings?  Yes  No                                                                                                                                                                                 |                        |                                                                   | traditional food sources associated with the site. Is the food item in question going to spend a large proportion of its time at the site (e.g., large mammals may spend a very small amount of time at a small contaminated site)? Human health risk assessment reports for the site in question will also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| About "Factors" force    This Subpose Modifying Factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Score                                                                                                                                                                                                                                                                               | 0.5                    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2 Human Exposure Modifying Factors  10 Story relevant of fixed proper or network relative state of the proper or network relative state or net |                                                                                                                                                                                                                                                                                     | 11                     |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| a) Storag relations of biodic people in notice recursors for scales. (B., foot, storts storbur, etc.)  No. 1  Per Production of Comment of Comm |                                                                                                                                                                                                                                                                                     | 11                     |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (i.e., foot, vast, sheler, dt.)  Yes No No Potential  Real Human Exposure Total Score  Real Potential  Real Human Exposure Total Score  Real Foot on Human Research Total Institute of the Score of Human Research Total Institute of Human Research |                                                                                                                                                                                                                                                                                     |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Position (Part Report Format Control Food Part Report Format (Part Report Format Control Food Part Report Food Part Re | (i.e., food, water, shelter, etc.) Yes                                                                                                                                                                                                                                              | Do Not Know            |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Raw Human Stroom 1 10 2 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Do Not Know                                                                                                                                                                                                                                                                         |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Raw Human Pleasth Total (max 2)  3. Ecological  Norward Score Report Committed adverse impact or high quantified opposite which has or will take in a subset eight. Light or pasted on a constituent and some effects in many to edisposite on the contaminated site.  This category can be based on the outcomes of risk assessments and apples to studied switch have reported from the contaminated or suspected exposures impacts in terrestrial or aquatic or pasterns. Score Resources in the contaminated or suspected exposures impacts in terrestrial or aquatic or pasterns. Here is no more to proceed through the NDS Since. From the purpose of application of the NDS store. From the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For the purpose of application of the NDS store. For th |                                                                                                                                                                                                                                                                                     | 1                      | -                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Raw Human Replace Total (max 22) 13.9  3. Ecological  A Known exposure  Some to levels of inspace to ecological recognition and countered acceptable, perficulsity or commercial and ecological recognition and countered acceptable, perficulsity or commercial effects are deferred to the Society of the Protection of Agentic Life, seaso commercial and ecological recognition as a considered acceptable, perficulsity or commercial effects are deferred to the NCS, decrease the recognition of risk managements, regardless of the Protection of Agentic Life, seaso commercial and ecological recognition as a consistent acceptable, perficulsity or commercial effects are deferred to the NCS, decrease the relative and ecological recognition as a consistent acceptable, perficulsity or commercial effects are deferred to the NCS, decrease the relative and ecological recognition as an econsistent acceptable, perficulsity or commercial effects are deferred to the NCS, decrease the relative and ecological recognition as an econsistent acceptable, perficulsity or commercial effects are deferred to the NCS, decrease the relative and ecological recognition as an econsistent acceptable, perficulsity or commercial ecological recognition as an econsistent acceptable, perficulsity or commercial ecological recognition as an econsistent acceptable, perficulsity or commercial ecological recognition as an econsistent acceptable, perficulsity or commercial ecological recognition as an econsistent acceptable, perficulsity or commercial ecological recognition as an econsistent acceptable, perficulsity or expectation and ecological recognition as an econsistent acceptable, perficulsity or econsistent or acceptable acceptable acceptable and economic acceptable acceptabl |                                                                                                                                                                                                                                                                                     |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Human Health Total (max 22) 12.0  A Known exposure  Some low levels of impact to ecological receptors are considered acceptable, particularly on commercial and industrial lead dues. However, if ecological fields are deemed to be severe. The cological fields are deemed to be severe. An analysis of the cological fields are deemed to be severe. The cological fields are deemed to be severe and an advanced fields are deemed to be severe and an advanced fields are deemed to be severe and an advanced field and an advanced fields are deemed to be severe and an advanced field and an adv |                                                                                                                                                                                                                                                                                     |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A Known exposure  Some low levels of impact to ecological receptors are considered acceptable, particularly on commercial and industrial land uses. However, if ending facilities that would be related to the character of high quantified exposure which has or will result in an adverse effect, injury or harm or impairment of the safety to interest in or aquatic organisme as a result of the containment of the safety to interest in organism grant or individually and population of the NSC. Specifically and population of the OSC specifical mode in the Containment of the safety to interest in organism grant and population of the NSC. Specifically and population of the OSC specifical mode in the containment of the safety to interest in organism grant and population of the NSC specifical mode in the containment of the safety to interest in organism grant and population of the NSC specifical mode in the containment of the safety to interest in organism grant and population of the NSC specifical mode in the containment of the safety to interest in organism grant and population of the containment of the safety to interest in organism grant and population of the NSC specifical mode in the containment of the safety or population of the safety of population of the organism grant in the safety of population of the organism grant in the safety of population of the safet |                                                                                                                                                                                                                                                                                     |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Some to week of impact to ecological receptors are considered acceptable, particularly on commercial and industrial lead uses. In whome, it a ecological refetors are demand effects are deemen of the Nose, effects that would be considered severe include observed effects on substrained fetors are demand of the Nose, effects that would be considered severe include observed effects on substrained in Nose, effects that would be considered severe include observed effects on substrained in Nose, effects that would be considered severe include observed effects on survival, growth or reproduction which could infrastrate with the release of the considered severe include observed effects on survival, growth or reproduction which could infrastrate with the release of the considered severe include observed effects on survival, growth or reproduction which could infrastrate with the event of the considered severe include observed effects on survival growth or reproduction which could infrastrate with the event of the considered severe include observed effects on survival growth or reproduction which could infrastrate with the event of the considered severe include observed effects on survival growth or reproduction which could infrastrate with the release of the consideration of the  |                                                                                                                                                                                                                                                                                     |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Commercial and industrial land uses. However, if ecological effects are deemed to be severe, the sale may be categorized as class on perfect an experience of agricultural Wast routing CCME, 1999. Canadian Council on Ecological Area; www.come_cas may be categorized as class on perfect the conditions of the consideration of the NCS, effects that would be considered as the consideration of the NCS, effects that would be considered as the consideration of the NCS, effects that would be considered as the consideration of the NCS, effects that would be considered as the consideration of the NCS, effects that would be considered as the consideration of the NCS, effects that would be considered as the consideration of the NCS, effects that would be considered as the consideration of the NCS, effects that would be considered as the consideration of the NCS, effects that would be considered as the consideration of the NCS, effects that would be considered as the consideration of the NCS, effects that would be considered as the consideration of the NCS, effects that would be considered as the new of the NCS, effects that would be considered as the new of the NCS, effects that would be considered as the new of the NCS, effects that would be considered as the new of the NCS, effects that would be considered as the new of the NCS, effects and element of the NCS, effects that would be considered as the new of the NCS, effects that would be considered as the new of the NCS, effects that would be considered as the new of the NCS, effects that would be considered as the new of the NCS, effects and the effects are determined to the NCS, effects that would be considered as the new of the NCS, effects that would be considered as the new of the NCS, effects that would be considered as the new of the NCS, effects that would be considered as the new of the NCS, effects that would be considered as the new of the NCS, effects that would be considered as the new of the NCS, effects that would be considered as the new of the NCS, effects  | A. Known exposure                                                                                                                                                                                                                                                                   |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Same as above, but "Strongly Suspected" based on observations or indirect evidence.  12  This category can be based on the outcomes of risk assessments and applies to studies which have reported Hazard Quotients of leaves the completed on a combination of their lines to the fines of evidence assessment involving a combination of site observations, its use testing, toxicity testing and quantitative community assessments. Scoring of adverse effects on individual rare or endangered species will be completed on a case-by-case basis with full scientific justification.  This category can be based on the outcomes of risk assessments and applies to studies which have reported Hazard Quotients of less than 1 and no other observable or measurables got impacts. Alternatively, it can be based on a combination of other fines of evidence showing no adverse effects, such as site observations, tissue testing, toxicity testing and quantitative community assessments.  Score  NOTE: If a score is assigned here for Known Exposure, then you can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | will result in an adverse effect, injury or harm or impairment of the<br>safety to terrestrial or aquatic organisms as a result of the                                                                                                                                              |                        |                                                                   | commercial and industrial land uses. However, if ecological effects are deemed to be severe, the stemay be categorized as class one (i.e., a priority for remediation or risk management), regardless of the numerical total NCS score. For the purpose of application of the NCS, effects that would be considered severe include observed effects on survival, growth or reproduction which could threaten the viability of a population of ecological receptors at the site. Other evidence that qualifies as severe adverse effects may be determined based on professional pulgement and in consultation with the relevant jurisdiction. If ecological effects are determined to be severe and an automatic Class 1 is assigned, there is no need to proceed through the NCS. However, a scoring guideline (18) is provided in case a numerical score for the site is still desired (e.g., for comparison with other Class 1 sites). | CCME, 1999: Canadian Water Quality Guidelines for the Protection of Agricultural Water Uses. <a href="https://www.ccme.ca">www.ccme.ca</a> Sensitive receptors-review: Canadian Council on Ecological Areas; <a href="https://www.ccme.ca">www.ccme.ca</a> Sensitive receptors-review: Canadian Council on Ecological Areas; <a href="https://www.ccme.ca">www.ccme.ca</a> Sensitive receptors to at the level of individuals. For example, population-level effects could include reduced reproduction, growth or sunvival in a species. Community-level effects could include reduced species diversity or relative abundances. Further discussion of ecological assessment endpoints is provided in A Framework for Ecological Risk Assessment: General Guidance (CCME 1996).  Notes:  Someone experienced must provide a thorough description of the sources researched to classify the environmental receptors in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification |
| No quantified or suspected exposures/impacts in terrestrial or aquatic or granisms    O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Same as above, but "Strongly Suspected" based on observations or<br>indirect evidence.                                                                                                                                                                                              | 12                     |                                                                   | reported Hazard Quotients >1. Alternatively, known impacts can also be evaluated based on a weight of evidence assessment involving a combination of site observations, tissue testing, toxicity testing and quantitative community assessments. Scoring of adverse effects on individual rare or endangered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Score  NOTE: If a score is assigned here for Known Exposure, then you can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                     | 0                      |                                                                   | reported Hazard Quotients of less than 1 and no other observable or measurable sign of impacts.  Alternatively, it can be based on a combination of other lines of evidence showing no adverse effects,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NOTE: If a score is assigned here for Known Exposure, then you can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                   | Go to Potential        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NOTE: If a score is assigned here for Known Exposure, then you can skip Part B (Potential for Ecological Exposure) and go to Section 4 (Ecological Exposure Modifying Factors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| skup mart to (movember for ecological exposure) and go to section 4 (Ecological exposure Modifying Factors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NOTE: If a score is assigned here for Known Exposure, then you car                                                                                                                                                                                                                  | n<br>                  | Modificion Foston)                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Skip Part B (Potential for Ecological Exposure) and go to Section 4 (E                                                                                                                                                                                                              | cological Exposure I   | Modifying Factors)                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|                                                                                                                | ·                        | Rationale for Score                                                                          |                                                                                                                                                                                                                    |                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Definition                                                                                                     | Score                    | (document any assumptions, reports, or site-specific information; provide references)        | Method Of Evaluation                                                                                                                                                                                               | Notes                                                                                                                         |
| B. Potential for ecological exposure (for the contaminated portion of the site)                                |                          |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| a) Terrestrial                                                                                                 |                          | wild lands most appropriate to ecological exposure senario (Professional                     | Review zoning and land use maps. If the proposed future land use is more "sensitive" than the current                                                                                                              |                                                                                                                               |
| i) Land use                                                                                                    |                          | opinion)                                                                                     | land use, evaluate this factor assuming the proposed future use is in place (indicate in the worksheet that future land use is the consideration).                                                                 |                                                                                                                               |
| Agricultural (or Wild lands)                                                                                   |                          |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| Residential/Parkland<br>Commercial                                                                             |                          |                                                                                              | Agricultural land use is defined as uses of land where the activities are related to the productive capability of the land or facility (e.g., greenhouse) and are agricultural in nature, or activities related to |                                                                                                                               |
| Industrial                                                                                                     |                          |                                                                                              | the feeding and housing of animals as livestock. Wild lands are grouped with agricultural land due to                                                                                                              |                                                                                                                               |
| Do Not Know                                                                                                    |                          |                                                                                              | the similarities in receptors that would be expected to occur there (e.g., herbivorous mammals and                                                                                                                 |                                                                                                                               |
| A<br>Score                                                                                                     | gricultural (or Wild lan | 1 <mark>00</mark> 8                                                                          | birds) and the similar need for a high level of protection to ensure ecological functioning.  Residential/Parkland land uses are defined as uses of land on which dwelling on a permanent,                         |                                                                                                                               |
| Score                                                                                                          | 3                        |                                                                                              | temporary, or seasonal basis is the activity (residential), as well as uses on which the activities are                                                                                                            |                                                                                                                               |
|                                                                                                                |                          |                                                                                              | recreational in nature and require the natural or human designed capability of the land to sustain that activity (parkland). Commercial/Industrial land uses are defined as land on which the activities are       |                                                                                                                               |
|                                                                                                                |                          |                                                                                              | related to the buying, selling, or trading of merchandise or services (commercial), as well as land uses                                                                                                           |                                                                                                                               |
|                                                                                                                |                          |                                                                                              | which are related to the production, manufacture, or storage of materials (industrial).                                                                                                                            |                                                                                                                               |
| ii) Uptake potential                                                                                           |                          | surface contamiantion                                                                        |                                                                                                                                                                                                                    |                                                                                                                               |
| n) Optato potornal                                                                                             |                          | Surface of Remarkon                                                                          | If contaminated soils are located within the top 1.5 m, it is assumed that direct contact of soils with                                                                                                            |                                                                                                                               |
| Direct Contact - Are plants and/or soil invertebrates likely                                                   | Yes                      |                                                                                              | plants and soil invertebrates is an operable exposure pathway. Exposure to soils deeper than 1.5 m is possible, but less likely.                                                                                   |                                                                                                                               |
| exposed to contaminated soils at the site? Yes                                                                 |                          |                                                                                              | possible, but less likely.                                                                                                                                                                                         |                                                                                                                               |
| No                                                                                                             |                          |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| Do Not Know                                                                                                    |                          |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| Score iii) Ingestion (i.e., wildlife or domestic animals ingesting                                             | 1                        | surface contamiantion                                                                        |                                                                                                                                                                                                                    |                                                                                                                               |
| contaminated food items, soils or water)                                                                       |                          | Surface contamination                                                                        |                                                                                                                                                                                                                    |                                                                                                                               |
| Are terrestrial animals likely to be ingesting contaminated<br>water at the site?                              |                          |                                                                                              | Refer to an Ecological Risk Assessment for the site. If there is contaminated surface water at the site, assume that terrestrial organisms will ingest it.                                                         |                                                                                                                               |
| Yes                                                                                                            |                          |                                                                                              | assume that terrestrial organisms will ingest it.                                                                                                                                                                  |                                                                                                                               |
| No<br>Do Not Know                                                                                              | Yes                      |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| Score                                                                                                          | 1                        |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| Are terrestrial animals likely to be ingesting contaminated                                                    |                          | surface contamiantion                                                                        | Refer to an Ecological Risk Assessment report. Most animals will co-ingest some soil while eating plant matter or soil invertebrates.                                                                              |                                                                                                                               |
| soils at the site? Yes                                                                                         |                          |                                                                                              | plant matter of son invertebrates.                                                                                                                                                                                 |                                                                                                                               |
| No                                                                                                             |                          |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| Do Not Know<br>Score                                                                                           | Yes 1                    |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| Can the contamination identified bioaccumulate?                                                                |                          |                                                                                              | Bioaccumulation of contaminants within food items is considered possible if:                                                                                                                                       |                                                                                                                               |
| Yes<br>No                                                                                                      |                          |                                                                                              | 1) The Log(Kow) of the contaminant is greater than 4 (as per the chemical characteristics work sheet) and concentrations in soils exceed the most conservative CCME soil quality guideline for the intended        |                                                                                                                               |
| Do Not Know                                                                                                    | No                       |                                                                                              | land use, or 2) The contaminant in collected tissue samples exceeds the Canadian Tissue Residue                                                                                                                    |                                                                                                                               |
| Score Distance to sensitive terrestrial ecological area                                                        | 0                        | Guichon Cr. is 50 m                                                                          | Guidelines.  It is considered that within 300 m of a site, there is a concern for contamination. Therefore an                                                                                                      | Environmental receptors include: local, regional or provincial species of interest or significance; arctic environments (on a |
| 0 to 300 m                                                                                                     |                          |                                                                                              | environmental receptor located within this area of the site will be subject to further evaluations. It is also considered that any environmental receptor located greater than 5 km will not be a concern for      | site specific basis); nature preserves, habitats for species at risk, sensitive forests, natural parks or forests.            |
| 300 m to 1 km<br>1 to 5 km                                                                                     |                          |                                                                                              | evaluation. Review Conservation Authority mapping and literature including Canadian Council on                                                                                                                     |                                                                                                                               |
| > 5 km                                                                                                         |                          |                                                                                              | Ecological Areas link: www.ccea.org.                                                                                                                                                                               |                                                                                                                               |
| Do Not Know                                                                                                    | 0 to 300 m               |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| Score                                                                                                          | 3                        |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| Raw Terrestrial Total Potential                                                                                | 9                        | Note if a "Known" Ecological Effects score is provided, the "Potential" score is disallowed. |                                                                                                                                                                                                                    |                                                                                                                               |
| Allowed Terrestrial Total Potential  B. Potential for ecological exposure (for the contaminated portion of the | 9                        |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| site)                                                                                                          |                          |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| b) Aquatic                                                                                                     |                          |                                                                                              | "Sensitive aquatic environments" include those in or adjacent to shellfish or fish harvesting areas, marine parks, ecological reserves and fish migration paths. Also includes those areas deemed to have          |                                                                                                                               |
| Classification of aquatic environment     Sensitive                                                            |                          |                                                                                              | ecological significance such as for fish food resources, spawning areas or having rare or endangered                                                                                                               |                                                                                                                               |
| Typical                                                                                                        |                          |                                                                                              | species.                                                                                                                                                                                                           |                                                                                                                               |
| Not Applicable (no aquatic environment<br>Do Not Know                                                          |                          |                                                                                              | "Typical aquatic environments" include those in areas other than those listed above.                                                                                                                               |                                                                                                                               |
| DO NOLKHOW                                                                                                     | Do Not Know              |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| Score                                                                                                          | 2                        |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| ii) Uptake potential                                                                                           |                          |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| Does groundwater daylighting to an aquatic environment                                                         |                          |                                                                                              | Groundwater concentrations of contaminants at the point of contact with an aquatic receiving environment can be estimated in three ways:                                                                           |                                                                                                                               |
| exceed the CCME water quality guidelines for the protection<br>of aquatic life at the point of contact?        |                          |                                                                                              | 1) by comparing collected nearshore groundwater concentrations to the CCME water quality guidelines (this will be a conservative comparison, as contaminant concentrations in groundwater often decrease           |                                                                                                                               |
| Yes                                                                                                            |                          |                                                                                              | between nearshore wells and the point of discharge).                                                                                                                                                               |                                                                                                                               |
| No (or Not Applicable)<br>Do Not Know                                                                          | No                       |                                                                                              | by conducting groundwater modeling to estimate the concentration of groundwater immediately before discharge.                                                                                                      |                                                                                                                               |
| Score                                                                                                          | 0                        |                                                                                              | by installing water samplers, "peepers", in the sediments in the area of daylighting groundwater.                                                                                                                  |                                                                                                                               |
|                                                                                                                |                          |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| Distance from the contaminated site to an important surface                                                    |                          | Guichon Cr. is 50 m                                                                          |                                                                                                                                                                                                                    | Environmental receptors include: local, regional or provincial species of interest or significance, sensitive wetlands and    |
| water resource<br>0 to 300 m                                                                                   |                          |                                                                                              | It is considered that within 300 m of a site, there is a concern for contamination. Therefore an                                                                                                                   | fens and other aquatic environments.                                                                                          |
| 300 m to 1 km<br>1 to 5 km                                                                                     |                          |                                                                                              | environmental receptor or important water resource located within this area of the site will be subject to further evaluation. It is also considered that any environmental receptor located greater than 5 km     |                                                                                                                               |
| > 5 km                                                                                                         |                          |                                                                                              | away will not be a concern for evaluation. Review Conservation Authority mapping and literature                                                                                                                    |                                                                                                                               |
| Do Not Know                                                                                                    | 0 to 300 m               | -                                                                                            | including Canadian Council on Ecological Areas link: www.ccea.org.                                                                                                                                                 |                                                                                                                               |
| Score                                                                                                          | 3                        |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |
| I                                                                                                              | L                        | J                                                                                            | Bioaccumulation of food items is possible if:                                                                                                                                                                      |                                                                                                                               |
|                                                                                                                |                          |                                                                                              |                                                                                                                                                                                                                    |                                                                                                                               |

| Test Site                                                                                                             | . ,          |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definition                                                                                                            | Score        | Rationale for Score<br>(document any assumptions, reports, or site-specific information;<br>provide references)                           | Method Of Evaluation                                                                                                                                                                                                                                                                 | Notes                                                                                                                                                                                                                                                                                                                                                                                   |
| Are aquatic species (i.e., forage fish, invertebrates or plants)                                                      |              |                                                                                                                                           | The Log(Kow) of the contaminant is greater than 4 (as per the chemical characteristics work sheet)                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |
| that are consumed by predatory fish or wildlife consumers,                                                            |              |                                                                                                                                           | and concentrations in sediments exceed the CCME ISQGs.                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                         |
| such as mammals and birds, likely to accumulate                                                                       |              |                                                                                                                                           | The contaminant in collected tissue samples exceeds the CCME tissue quality guidelines.                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                         |
| contaminants in their tissues?                                                                                        |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Yes<br>No                                                                                                             |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Do Not Know                                                                                                           | Do Not Know  |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Score                                                                                                                 | 0.5          |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Raw Aquatic Total Potential<br>Allowed Aquatic Total Potential                                                        | 5.5<br>5.5   | Note if a "Known" Ecological Effects score is provided, the "Potential" score is disallowed.                                              |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| •                                                                                                                     | 5.5          | usanowed.                                                                                                                                 |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Ecological Exposure Modifying Factors                                                                                 |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| a) Known occurrence of a species at risk.                                                                             |              | Phase 1 ESA, Columbia 2010                                                                                                                | Consult any ecological risk assessment reports. If information is not present, utilize on-line databases such as Eco Explorer. Regional, Provincial (Environment Ministries), or Federal staff (Fisheries and Oceans or Environment Canada) should be able to provide some quidance. | Species at risk include those that are extirpated, endangered, threatened, or of special concern. For a list of species at risk, consult Schedule 1 of the federal Species at Risk Act ( <a href="http://www.sararegistry.gc.ca/species/schedules_e.clm?id=1">http://www.sararegistry.gc.ca/species/schedules_e.clm?id=1</a> ). Many provincial governments may also provide regionally |
| Is there a potential for a species at risk to be present at the site?                                                 |              |                                                                                                                                           | Occasis of Environment Canada) should be able to provide some quidance.                                                                                                                                                                                                              | applicable lists of species at risk. For example, in British Columbia, consult:                                                                                                                                                                                                                                                                                                         |
| Yes                                                                                                                   |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      | BCMWLAP. 2005. Endangered Species and Ecosystems in British Columbia. Provincial red and blue lists. Ministry of                                                                                                                                                                                                                                                                        |
| No<br>Do Not Know                                                                                                     | Yes          |                                                                                                                                           |                                                                                                                                                                                                                                                                                      | Sustainable Resource Management and Water, Land and Air Protection. http://srmwww.gov.bc.ca/atrisk/red-blue.htm                                                                                                                                                                                                                                                                         |
| DO NOT KNOW                                                                                                           | 2            |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Score                                                                                                                 |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| b) Potential impact of aesthetics (e.g., enrichment of a lake or tainting of                                          |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| food flavor).                                                                                                         |              |                                                                                                                                           | Documentation may consist of environmental investigation reports, press articles, petitions or other                                                                                                                                                                                 | This Item will require some level of documentation by user, including contact names, addresses, phone numbers, e-mail                                                                                                                                                                                                                                                                   |
| Is there evidence of aesthetic impact to receiving water bodies?  Yes                                                 | No           |                                                                                                                                           | records.                                                                                                                                                                                                                                                                             | addresses. Evidence of changes must be documented, please attach copy of report containing relevant information.                                                                                                                                                                                                                                                                        |
| No                                                                                                                    | 0            |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Do Not Know                                                                                                           |              | -                                                                                                                                         | Examples of olfactory change can include the smell of a COPC or an increase in the rate of decay in                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                         |
| Is there evidence of olfactory impact (i.e., unpleasant smell)?                                                       | No           |                                                                                                                                           | examples or oractory change can include the smell of a COPC of an increase in the rate of decay in an aquatic habitat.                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                         |
| Yes<br>No                                                                                                             | 0            |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Do Not Know                                                                                                           |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Is there evidence of increase in plant growth in the lake or water body?                                              | No           |                                                                                                                                           | A distinct increase of plant growth in an aquatic environment may suggest enrichment. Nutrients e.g., nitrogen or phosphorous releases to an aquatic body can act as a fertilizer.                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |
| Yes                                                                                                                   |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| No<br>Do Not Know                                                                                                     | 0            |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Is there evidence that fish or meat taken from or adjacent to the                                                     | Do Not Know  |                                                                                                                                           | Some contaminants can result in a distinctive change in the way food gathered from the site tastes or                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |
| site smells or tastes different?                                                                                      |              |                                                                                                                                           | smells.                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                         |
| Yes<br>No                                                                                                             | 1            |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Do Not Know                                                                                                           |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Ecological Modifying Factors Total - Known<br>Ecological Modifying Factors Total - Potential                          | 1            | +                                                                                                                                         |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Raw Ecological Total - Known                                                                                          | 2            |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Raw Ecological Total - Potential                                                                                      | 15.5         |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Raw Ecological Total  Ecological Total (Max 18)                                                                       | 17.5<br>17.5 |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Other Potential Contaminant Receptors                                                                                 | 11.0         |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| o. Other roterital contaminant receptors                                                                              | 1            | site not within permafrost region                                                                                                         |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| a) Exposure of permafrost (leading to erosion and structural concerns)                                                |              | one for many portrained region                                                                                                            |                                                                                                                                                                                                                                                                                      | Plants and lichens provide a natural insulating layer which will help prevent thawing of the permafrost during the summer.<br>Plants and lichens may also absorb less solar radiation. Solar radiation is turned into heat which can also cause<br>underlying permafrost to melt.                                                                                                       |
|                                                                                                                       |              | -                                                                                                                                         | Consult engineering reports, site plans or air photos of the site. When permafrost melts, the stability of                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                         |
| Are there improvements (roads, buildings) at the site dependant<br>upon the permafrost for structural integrity?      | No           |                                                                                                                                           | Consult engineering reports, site plants or an inclusion in each site. When permands ments, he stability the soil decreases, leading to erosion. Human structures, such as roads and/or buildings are often dependent on the stability that the permafrost provides.                 |                                                                                                                                                                                                                                                                                                                                                                                         |
| Yes<br>No                                                                                                             |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Do Not Know                                                                                                           |              | 1                                                                                                                                         |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                       |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                       |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Is there a physical pathway which can transport soils released by damaged permafrost to a nearby aquatic environment? | No           | -                                                                                                                                         | Melting permafrost leads to a decreased stability of underlying soils. Wind or surface run-off erosion can carry soils into nearby aquatic habitats. The increased soil loadings into a river can cause an                                                                           |                                                                                                                                                                                                                                                                                                                                                                                         |
| damaged permarrost to a nearby aquatic environment?  Yes                                                              |              |                                                                                                                                           | increase in total dissolved solids and a resulting decrease in aquatic habitat quality. In addition, the                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                         |
| No                                                                                                                    | 0            |                                                                                                                                           | erosion can bring contaminants from soils to aquatic environments.                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |
| Do Not Know                                                                                                           |              | -                                                                                                                                         |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                       |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Other Potential Receptors Total - Known                                                                               | 0            |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Other Potential Receptors Total - Potential                                                                           | 0            |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Exposure Tota                                                                                                         |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                       |              | ٦                                                                                                                                         |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Raw Human Health + Ecological Total - Known                                                                           |              | Only includes "Allowed potential" - if a "Known" score was supplied under a                                                               |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Raw Human Health + Ecological Total - Potentia                                                                        |              | given category then the "Potential" - if a "Known" score was supplied under a given category then the "Potential" score was not included. |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Raw Total                                                                                                             | 29.5         |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
| Exposure Total (max 34)                                                                                               | 21.8         |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                       |              |                                                                                                                                           |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |

# CCME National Classification System (2008, 2010 v 1.2) Score Summary

Scores from individual worksheets are tallied in this worksheet. Refer to this sheet after filling out the revised NCS completely.



# CCME National Classification System (2008, 2010 v 1.2) Contaminant Hazard Ranking

(Based on the Proposed Hazard Ranking developed for the FCSAP Contaminated Sites Classification System)

This information is used in Sheet I (Contaminant Characteristics), section 2 (Chemical Hazard).

| Chemical/Parameter                           | Hazard | CEPA | Carcinogenicity | Notes |
|----------------------------------------------|--------|------|-----------------|-------|
|                                              |        |      |                 |       |
| Acetaldehyde                                 | Н      | *    | PHC             |       |
| Acetone                                      | L      |      |                 |       |
| Acrolein                                     | Н      | *    |                 |       |
| Acrylonitrile                                | Н      | *    | PHC             |       |
| Alachlor                                     | М      |      |                 |       |
| Aldicarb                                     | Н      |      |                 |       |
| Aldrin                                       | Н      |      |                 |       |
| Allyl Alcohol                                | Н      |      |                 |       |
| Aluminum                                     | L      |      |                 |       |
| Ammonia                                      | L      | *    |                 |       |
| Antimony                                     | Н      |      |                 |       |
| Arsenic                                      | Н      | *    |                 |       |
| Atrazine                                     | М      |      |                 |       |
| Azinphos-Methyl                              | Н      |      |                 |       |
| Barium                                       | L      |      |                 |       |
| Bendiocarb                                   | Н      |      |                 |       |
| Benzene                                      | Н      | *    | CHC             | BTEX  |
| Benzidine                                    | Н      | *    | CHC             |       |
| Beryllium                                    | Н      |      | CHC             |       |
| Biphenyl, 1,1-                               | М      |      |                 |       |
| 2,3,4,5-Bis(2-Butylene)tetrahydro-2-furfural | Н      |      |                 |       |
| Bis(Chloromethyl)Ether                       | Н      | *    | CHC             |       |
| Bis(2-Chloroethyl)Ether                      | Н      |      | CHC             |       |
| Bis(2-Chloroisopropyl)Ether                  | Н      |      |                 |       |
| Bis(2-Ethylhexyl)Phthalate                   | Н      | *    |                 | PH    |
| Boron                                        | L      |      |                 |       |
| Bromacil                                     | М      |      |                 |       |
| Bromate                                      | М      |      |                 |       |
| Bromochlorodifluoromethane                   | М      | *    |                 | HM    |
| Bromochloromethane                           | Н      | *    |                 | HM    |
| Bromodichloromethane                         | Н      |      |                 | HM    |
| Bromoform (Tribromomethane)                  | Н      |      | PHC             | HM    |
| Bromomethane                                 | М      |      |                 | HM    |
| Bromotrifluoromethane                        | М      | *    |                 | HM    |
| Bromoxynil                                   | Н      |      |                 |       |
| Butadiene, 1,3-                              | Н      | *    | CHC             |       |
| Cadmium                                      | Н      | *    | CHC             |       |
| Carbofuran                                   | М      |      |                 |       |
| Carbon Tetrachloride (Tetrachloromethane)    | Н      |      | PHC             | HM    |
| Captafol                                     | М      |      |                 |       |
| Chloramines                                  | М      | *    |                 |       |
| Chloride                                     | L      |      |                 |       |

| Chemical/Parameter                               | Hazard | CEPA     | Carcinogenicity   | Notes  |
|--------------------------------------------------|--------|----------|-------------------|--------|
| Chloroaniline, P-                                | Н      | 02.71    | our our ogermenty | 110.00 |
| Chlorobenzene (mono)                             | М      |          |                   |        |
| Chlorobenzilate                                  | М      |          |                   |        |
| Chlorodimeform                                   | М      |          |                   |        |
| Chloroform                                       | Н      |          | PHC               | HM     |
| Chloromethane                                    | М      |          |                   |        |
| Chloromethyl Methyl Ether                        | М      | *        |                   |        |
| (4-Chlorophenyl)Cyclopropylmethanone, O-((4-     |        |          |                   |        |
| Nitrophenyl)Methyl)Oxime                         | Н      |          |                   |        |
| Chlorinated Benzenes                             |        |          |                   |        |
| Monochlorobenzene                                | М      |          |                   |        |
| Dichlorobenzene, 1,2- (O-DCB)                    | M      |          |                   |        |
| Dichlorobenzene, 1,3- (M-DCB)                    | M      |          |                   |        |
| Dichlorobenzene, 1,4- (P-DCB)                    | H      |          |                   |        |
| Trichlorobenzene, 1,2,3-                         | M      |          |                   |        |
| Trichlorobenzene, 1,2,4-                         | M      |          |                   |        |
| Trichlorobenzene, 1,3,5-                         | M      |          |                   |        |
| Tetrachlorobenzene, 1,2,3,4-                     | M      |          |                   |        |
| Tetrachlorobenzene, 1,2,3,5-                     | M      |          |                   |        |
| Tetrachlorobenzene, 1,2,4,5-                     | M      |          |                   |        |
| Pentachlorobenzene                               | M      |          |                   |        |
| Hexachlorobenzene                                | H      |          |                   |        |
|                                                  | ''     |          |                   |        |
| Chlorinated Ethanes                              |        |          |                   |        |
| Dichloroethane, 1,1-                             | М      |          |                   |        |
| Dichloroethane, 1,2- (Ethylene Dichloride (EDC)) | Н      |          | PHC               |        |
| Trichloroethane, 1,1,1-                          | Н      | *        |                   |        |
| Trichloroethane, 1,1,2-                          | M      |          |                   |        |
| Tetrachloroethane, 1,1,1,2-                      | M      |          |                   |        |
| Tetrachloroethane, 1,1,2,2-                      | М      |          |                   |        |
| Chlorinated Ethenes                              |        |          |                   |        |
| Monochloroethene (Vinyl Chloride)                | Н      | *        | CHC               |        |
| Dichloroeth(yl)ene, 1,1-                         | Н      |          |                   |        |
| Dichloroeth(yl)ene, 1,2- (cis or trans)          | М      |          |                   |        |
| Trichloroeth(yl)ene (TCE)                        | Н      | *        |                   |        |
| Tetrachloroeth(yl)ene (PCE)                      | Н      | *        |                   |        |
| Chlorinated Phenols                              |        | *        |                   |        |
| Monochlorophenols                                | М      |          |                   |        |
| Chlorophenol, 2-                                 | М      |          |                   |        |
| Dichlorophenols                                  |        |          |                   |        |
| Dichlorophenol, 2,4-                             | М      |          |                   |        |
| Trichlorophenols                                 |        |          |                   |        |
| Trichlorophenol, 2,4,5-                          | Н      |          |                   |        |
| Trichlorophenol, 2,4,6-                          | Н      |          | PHC               |        |
| Tetrachlorophenols                               |        |          |                   |        |
| Tetrachlorophenol, 2,3,4,6-                      | Н      |          |                   |        |
| Pentachlorophenol (PCP)                          | Н      |          |                   |        |
| Chloromethane                                    | М      |          |                   | НМ     |
| Chlorophenol, 2-                                 | M      |          |                   | CP     |
| Chlorothalonil                                   | Н      |          |                   |        |
|                                                  |        | <u> </u> |                   |        |

| Chemical/Parameter                             | Hazard | CEPA  | Carcinogenicity | Notes         |
|------------------------------------------------|--------|-------|-----------------|---------------|
| Chlorpyrifos                                   | Н      | OL: A | caromogomony    | 110100        |
| Chromium (Total)                               | M      | *     |                 |               |
| Chromium (III)                                 | L      | *     |                 |               |
| Chromium (VI)                                  | H      | *     | CHC             |               |
| Coal Tar                                       | H      |       | CHC             | Refer to PAHs |
| Cobalt                                         | L      |       | 00              |               |
| Copper                                         | L      |       |                 |               |
| Creosote                                       | M      | *     |                 | Refer to PAHs |
| Crocidolite                                    | L      |       |                 |               |
| Cyanide (Free)                                 | H      |       |                 |               |
| Cyanazine                                      | М      |       |                 |               |
|                                                |        | *     |                 | DE            |
| Dibenzofuran                                   | Н      | *     | 5110            | DF            |
| Dibromoethane, 1,2- (Ethylene Dibromide (EDB)) | H      |       | PHC             |               |
| 1,2-Dibromo-3-Chloropropane                    | Н      | *     | PHC             |               |
| Dibromochloromethane                           | М      | *     |                 | HM            |
| Dibromotetrafluoroethane                       | М      |       |                 |               |
| Dichlorobenzene, 1,2- (O-DCB)                  | M      |       |                 | CB            |
| Dichlorobenzene, 1,3- (M-DCB)                  | M      |       |                 | СВ            |
| Dichlorobenzene, 1,4- (P-DCB)                  | H      |       | 5110            | СВ            |
| Dichlorobenzidine, 3,3'-                       | Н      |       | PHC             |               |
| DDD                                            | Н      |       |                 |               |
| DDE                                            | Н      |       | 5.1.0           |               |
| DDT                                            | Н      |       | PHC             |               |
| Deltamethrin                                   | М      |       |                 |               |
| Diazinon                                       | М      |       |                 |               |
| Dicamba                                        | Н      |       |                 |               |
| Dichloroethane, 1,1-                           | Н      |       | 5.1.0           | CEA           |
| Dichloroethane, 1,2- (EDC)                     | Н      |       | PHC             | CEA           |
| Dichloroeth(yl)ene, 1,1-                       | Н      |       |                 | CEE           |
| Dichloroeth(yl)ene, Cis-1,2-                   | М      |       |                 | CEE           |
| Dichloroeth(yl)ene, Trans-1,2-                 | M      |       | 5110            | CEE           |
| Dichloromethane (Methylene Chloride)           | Н      |       | PHC             | HM            |
| Dichlorophenol, 2,4-                           | M      |       |                 | СР            |
| Dichloropropane, 1,2-                          | H      |       | DI IO           |               |
| Dichloropropene, 1,3-                          | H      |       | PHC             |               |
| Diclofop-Methyl                                | H      |       |                 |               |
| Didecyl Dimethyl Ammonium Chloride             | H      |       |                 |               |
| Dieldrin                                       | H      |       |                 |               |
| Dimethoate                                     | Н      |       |                 | DU            |
| Diethyl Phthalate                              | M      |       |                 | PH            |
| Diethylene Glycol                              | L      |       |                 | GL            |
| Dimethyl Phthalate                             | M      |       |                 | PH            |
| Dimethylphenol, 2,4-                           | L      |       |                 |               |
| Dinitrophenol, 2,4-                            | M      |       |                 |               |
| Dinitrotoluene, 2,4-                           | H      |       |                 |               |
| Dinoseb                                        | H      |       |                 |               |
| Di-n-octyl Phthalate                           | Н      |       | DLIO            |               |
| Dioxane, 1,4-                                  | H      |       | PHC             |               |
| Dioxins/Furans                                 | H      |       |                 |               |
| Diquat                                         | М      |       |                 |               |

| Endosulfan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chemical/Parameter | Hazard      | CEPA     | Carcinogenicity | Notes      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|----------|-----------------|------------|
| Editylene   H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |             |          |                 |            |
| Editylene   H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Endosulfan         |             |          |                 |            |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |             |          |                 |            |
| Ethylene Dibromide (EDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                  |             |          |                 | RTEY       |
| Ethylene Glycol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |             |          | PHC             | DILA       |
| Ethylene Oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |          | 1110            | GI         |
| Fluoroacetamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |             |          | CHC             | <u> </u>   |
| Fluorides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |             |          | OHO             |            |
| Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |             |          |                 |            |
| Ethylene Glycol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fluorides          | <del></del> |          |                 |            |
| Diethylene Glycol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Glycols            |             |          |                 |            |
| Propylene Glycol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | L           |          |                 |            |
| Bigsphosate   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Diethylene Glycol  | L           |          |                 |            |
| Halogenated Methanes   Bromochlorodifluoromethane   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Propylene Glycol   | L           |          |                 |            |
| Halogenated Methanes   Bromochlorodifluoromethane   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Glyphosate         | M           |          |                 |            |
| Bromochlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |             |          |                 |            |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | NA NA       | *        |                 |            |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |             | *        |                 |            |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |             |          | DHC             |            |
| Bromotrifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |             |          | 1110            |            |
| Chloroform         M         PHC         HM           Chloromethane         M         M         Dibromochloromethane         M         M         Dibromochloromethane (Methylene Chloride)         H         PHC         M         M         Dibromochloromethane (Methylene Chloride)         H         PHC         M         M         M         Tetrachloromethane (Carbon Tetrachloride)         H         H         H         Tetrachloromethane (Bromoform)         H         H         Tetrachloromethane (Bromoform)         H         H         H         H         Tetrachloromethane (Bromoform)         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |             | *        |                 |            |
| Chloromethane         M           Dibromochloromethane         M           Dichloromethane (Methylene Chloride)         H           Methyl Bromide         M           Tetrachloromethane (Carbon Tetrachloride)         H           Tribromomethane (Bromoform)         H           Tribalomethanes (THM)         M           Heptachlor         H           Heptachlor Epoxide         H           Hexachlorobenzene         H           Hexachlorobenzene         H           Hexachlorocyclohexane, Gamma         H           Hexachlorocyclohexane, Gamma         H           Hexachlorocyclohexane, Gamma         H           Hydrobromofluorocarbons (HBFCS)         M           Hydrochlorofluorocarbons (HCFCS)         M           3-lodo-2-propynyl Butyl Carbamate         H           Iron         L           Lead Arsenate         H           Lead Arsenate         H           Leptophos         H           Lindane         H           Linuron         H           Linuron         H           Linuron         H           Linuron         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |             |          | PHC             | нм         |
| Dibromochloromethane         M         PHC           Dichloromethane (Methylene Chloride)         H         PHC           Methyl Bromide         M         *           Tetrachloromethane (Carbon Tetrachloride)         H         Tetrachloromethane (Bromoform)           Tribalomethanes (Bromoform)         H         Tribalomethanes (THM)           Heptachlor         H         H           Heptachlor Epoxide         H         PHC           Hexachlorobenzene         H         PHC           Hexachlorobutadiene         H         PHC           Hexachlorocyclohexane, Gamma         H         PHC           Hexachlorocethane         H         PHC           Hydrobromofluorocarbons (HBFCS)         M         *           Hydrochlorofluorocarbons (HCFCS)         M         *           3-lodo-2-propynyl Butyl Carbamate         H         H           Iron         L         neurotoxins / teratogens           Lead         H         *           Lead Arsenate         H         H           Leptophos         H         H           Lindane         H         H           Linuron         H         H           Linuron         H         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             |          | 1110            | 1 IIVI     |
| Dichloromethane (Methylene Chloride) H PHC  Methyl Bromide M *  Tetrachloromethane (Carbon Tetrachloride) H Tribromomethane (Bromoform) H Trihalomethanes (THM) M  Heptachlor Heptachlor Epoxide H Hexachlorobenzene H PHC Hexachlorobutadiene H PHC Hexachlorocyclohexane, Gamma H PHC Hexachlorothane H PHC Hydrobromofluorocarbons (HBFCS) M *  Hydrochlorofluorocarbons (HCFCS) M *  3-lodo-2-propynyl Butyl Carbamate H Iron L L Lead H PHC Lead H PHC Lead H PHC  Lead H PHC  Malathion M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |             |          |                 |            |
| Methyl Bromide         M         *           Tetrachloromethane (Carbon Tetrachloride)         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             |          | PHC             |            |
| Tetrachloromethane (Carbon Tetrachloride) Tribromomethane (Bromoform) H Trihalomethanes (THM)  Heptachlor Heptachlor Heptachlor Epoxide Hexachlorobenzene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclohexane, Gamma Hexachlorocyclohexane, Gamma H PHC Heydrobromofluorocarbons (HBFCS) Hydrochlorofluorocarbons (HCFCS)  3-lodo-2-propynyl Butyl Carbamate H Iron Lead H *  Ineurotoxins / teratogens Lead Arsenate Leptophos Lindane Linuron Lithium Malathion  M  M  H  H  H  H  H  H  H  H  H  H  H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             | *        | 1110            |            |
| Tribromomethane (Bromoform)         H           Trihalomethanes (THM)         M           Heptachlor         H           Heptachlor Epoxide         H           Hexachlorobenzene         H           Hexachlorobutadiene         H           Hexachlorocyclohexane, Gamma         H           Hexachloroethane         H           Hydrobromofluorocarbons (HBFCS)         M           Hydrochlorofluorocarbons (HCFCS)         M           3-lodo-2-propynyl Butyl Carbamate         H           Iron         L           Lead         H           Lead Arsenate         H           Lead Arsenate         H           Leptophos         H           Lindane         H           Lindunon         H           Malathion         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |             |          |                 |            |
| Trihalomethanes (THM)         M           Heptachlor         H           Heptachlor Epoxide         H           Hexachlorobenzene         H           Hexachlorobutadiene         H           Hexachlorocyclohexane, Gamma         H           Hexachloroethane         H           Hydrobromofluorocarbons (HBFCS)         M           Hydrochlorofluorocarbons (HCFCS)         M           3-lodo-2-propynyl Butyl Carbamate         H           Iron         L           Lead         H           Lead Arsenate         H           Lead Arsenate         H           Leptophos         H           Lindane         H           Linuron         H           Malathion         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |             |          |                 |            |
| Heptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , ,                |             |          |                 |            |
| Heptachlor Epoxide         H         PHC           Hexachlorobenzene         H         PHC           Hexachlorobutadiene         H         PHC           Hexachlorocyclohexane, Gamma         H         PHC           Hexachloroethane         H         PHC           Hydrobromofluorocarbons (HBFCS)         M         *           Hydrochlorofluorocarbons (HCFCS)         M         *           3-lodo-2-propynyl Butyl Carbamate         H         Ineurotoxins / teratogens           Lead         H         *         teratogens           Lead Arsenate         H         Ineurotoxins / teratogens           Leathor Arsenate         H         Ineurotoxins / teratogens           Lindane         H         Ineurotoxins / teratogens           Lindane         H         Ineurotoxins / teratogens           Malathion         M         Ineurotoxins / teratogens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |          |                 |            |
| Hexachlorobenzene       H       PHC         Hexachlorobutadiene       H       PHC         Hexachlorocyclohexane, Gamma       H       PHC         Hexachloroethane       H       PHC         Hydrobromofluorocarbons (HBFCS)       M       *         Hydrochlorofluorocarbons (HCFCS)       M       *         3-lodo-2-propynyl Butyl Carbamate       H       Image: Comparison of the compariso                                                                                                                                                                                                                                                                                                                         |                    |             |          |                 |            |
| Hexachlorobutadiene Hexachlorocyclohexane, Gamma H PHC Hexachloroethane Hydrobromofluorocarbons (HBFCS) Hydrochlorofluorocarbons (HCFCS) M *  3-lodo-2-propynyl Butyl Carbamate H  Iron L   neurotoxins / teratogens Lead Arsenate Leptophos Lead H  Lindane Lindane Lindron H Lindron L Malathion M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heptachior Epoxide |             |          | DUIC            |            |
| Hexachlorocyclohexane, Gamma         H         PHC           Hexachloroethane         H         PHC           Hydrobromofluorocarbons (HBFCS)         M         *           Hydrochlorofluorocarbons (HCFCS)         M         *           3-lodo-2-propynyl Butyl Carbamate         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |             |          | PHC             |            |
| Hexachloroethane H PHC Hydrobromofluorocarbons (HBFCS) M * Hydrochlorofluorocarbons (HCFCS) M *  3-lodo-2-propynyl Butyl Carbamate H Iron L Inuron L Inuron H Inuron |                    |             |          | DHC             |            |
| Hydrobromofluorocarbons (HBFCS)         M         *           Hydrochlorofluorocarbons (HCFCS)         M         *           3-lodo-2-propynyl Butyl Carbamate         H         —           Iron         L         —           Lead         H         *         teratogens           Lead Arsenate         H         —           Leptophos         H         —           Lindane         H         —           Linuron         H         —           Lithium         L         —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |             |          |                 |            |
| Hydrochlorofluorocarbons (HCFCS)  3-lodo-2-propynyl Butyl Carbamate  Iron  Lead  Lead  H  *  neurotoxins / teratogens  Lead Arsenate  Leptophos  H  Lindane  H  Linuron  Lithium  M  Malathion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | *        | FIIC            |            |
| 3-lodo-2-propynyl Butyl Carbamate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |             | *        |                 |            |
| Iron         L         neurotoxins / teratogens           Lead         H         *         teratogens           Lead Arsenate         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |             |          |                 |            |
| Lead         H         *         neurotoxins / teratogens           Lead Arsenate         H         Eeptophos         H         Eindane         H         Einuron         H         Eithium         Eithium         Eithium         Eithium         Eithium         M         Eithium         Eithium <td< td=""><td></td><td></td><td><u> </u></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |             | <u> </u> |                 |            |
| Lead         H         *         teratogens           Lead Arsenate         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Iron               |             |          |                 |            |
| Lead Arsenate         H           Leptophos         H           Lindane         H           Linuron         H           Lithium         L           Malathion         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |             |          |                 |            |
| Leptophos         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |             | *        |                 | teratogens |
| Lindane         H           Linuron         H           Lithium         L           Malathion         M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |             |          |                 |            |
| Linuron H L Lithium L Malathion M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _ · ·              |             |          |                 |            |
| Lithium L Malathion M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |             |          |                 |            |
| Malathion M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |             |          |                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lithium            |             |          |                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Malathion          | М           |          |                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manganese          | L           |          |                 |            |

| Chemical/Parameter                                | Hazard | CEPA | Carcinogenicity | Notes                |
|---------------------------------------------------|--------|------|-----------------|----------------------|
| Mercury                                           | Н      | *    | Ouromogementy   | Notes                |
| Methamidophos                                     | H      |      |                 |                      |
| Methoxylchlor                                     | Н      |      |                 |                      |
| Methyl Bromide (Bromomethane)                     | M      | *    |                 |                      |
| 2-Methyl-4-chloro-phenoxy Acetic Acid             | M      |      |                 |                      |
| Methyl Ethyl Ketone                               | L      |      |                 |                      |
| Methyl Isobutyl Ketone                            | L      |      |                 |                      |
| Methyl Mercury                                    | H      |      |                 |                      |
| Methyl-Parathion                                  | H      |      |                 |                      |
| Methyl Tert Butyl Ether (MTBE)                    | М      |      |                 |                      |
| Metolachlor                                       | M      |      |                 |                      |
| Metribuzin                                        | Н      |      |                 |                      |
| Molybdenum                                        | L      |      |                 |                      |
| Monochloramine                                    | M      |      |                 |                      |
| Monocrotophos                                     | Н      |      |                 |                      |
| Nickel                                            | Н      | *    |                 | CEPA - inhalation    |
| Nitrilotriacetic Acid                             | H      |      | PHC             | CEFA - IIII alalioli |
| Nitrate                                           | L      |      | FIIC            |                      |
| Nitrite                                           | M      |      |                 |                      |
| Nonylphenol + Ethoxylates                         | H      | *    |                 |                      |
| •                                                 | - ''   |      |                 |                      |
| Organotins                                        |        |      |                 |                      |
| Tributyltin                                       | Н      |      |                 |                      |
| Tricyclohexyltin                                  | Н      |      |                 |                      |
| Triphenyltin                                      | Н      |      |                 |                      |
| Parathion                                         | Н      |      |                 |                      |
| Paraquat (as Dichloride)                          | Н      |      |                 |                      |
| Pentachlorobenzene                                | М      |      |                 | СВ                   |
| Pentachlorophenol (PCP)                           | Н      |      |                 | CP                   |
| Petroleum Hydrocarbons                            |        |      |                 | Ranking based        |
| Petroleum Hydrocarbons (Gasoline)                 | Н      |      |                 | upon fraction of     |
| Petroleum Hydrocarbons (Kerosene incl. Jet Fuels) | H      |      |                 | toxic and mobile     |
| Petroleum Hydrocarbons (Diesel incl Heating Oil)  | М      |      |                 | components in        |
| Petroleum Hydrocarbons (Heavy Oils)               | L      |      |                 | product. Lighter     |
| Petroleum Hydrocarbons (CCME F1)                  | Н      |      |                 | compounds such       |
| Petroleum Hydrocarbons (CCME F2)                  | М      |      |                 | as benzene are       |
| Petroleum Hydrocarbons (CCME F3)                  | L      |      |                 | more toxic and       |
| Petroleum Hydrocarbons (CCME F4)                  | L      |      |                 | mobile.              |
| Phenol                                            | L      |      |                 |                      |
| Phenoxy Herbicides                                | M      |      |                 |                      |
| Phorate                                           | H      |      |                 |                      |
| Phosphamidon                                      | H H    |      |                 |                      |
|                                                   | 11     |      |                 |                      |
| Phthalate Esters                                  |        |      |                 |                      |
| Bis(2-Ethylhexyl)Phthalate                        | Н      | *    |                 |                      |
| 1 13. attack Districted                           | H      |      |                 |                      |
| Diethyl Phthalate                                 |        |      |                 |                      |
| Dimethyl Phthalate                                | Н      |      |                 |                      |
| ·                                                 |        |      |                 |                      |
| Dimethyl Phthalate                                | Н      | *    |                 |                      |

| Chemical/Parameter                          | Hazard | CEPA | Carcinogenicity | Notes  |
|---------------------------------------------|--------|------|-----------------|--------|
| Polychlorinated Terphenyls                  | H      | *    | our enrogement  | 110100 |
|                                             |        | *    | DUIG            |        |
| Polycyclic Aromatic Hydrocarbons            | H      |      | PHC             |        |
| Acenaphthene                                | M      |      |                 |        |
| Acenaphthylene                              | M      |      |                 |        |
| Acridine                                    | Н      |      |                 |        |
| Anthracene                                  | M      |      | DUIG            |        |
| Benzo(a)anthracene                          | Н      |      | PHC             |        |
| Benzo(a)pyrene                              | Н      |      | PHC             |        |
| Benzo(b)fluoranthene                        | Н      |      | PHC             |        |
| Benzo(g,h,i)perylene                        | H      |      | 5110            |        |
| Benzo(k)fluoranthene                        | H      |      | PHC             |        |
| Chrysene                                    | M      |      |                 |        |
| Dibenzo(a,h)anthracene                      | Н      |      | PHC             |        |
| Fluoranthene                                | M      |      |                 |        |
| Fluorene                                    | M      |      |                 |        |
| Indeno(1,2,3-c,d)pyrene                     | Н      |      | PHC             |        |
| Methylnaphthalenes                          | M      |      |                 |        |
| Naphthalene                                 | М      |      |                 |        |
| Phenanthrene                                | M      |      |                 |        |
| Pyrene                                      | M      |      |                 |        |
| Quinoline                                   | Н      |      |                 |        |
| Propylene Glycol                            | L      |      |                 | GL     |
| Radium                                      | Н      |      |                 |        |
| Radon                                       | H      |      |                 |        |
|                                             |        |      |                 |        |
| Selenium                                    | M      |      |                 |        |
| Silver                                      | L      |      |                 |        |
| Simazine                                    | M      |      |                 |        |
| Sodium                                      | L      |      |                 |        |
| Strontium-90                                | Н      |      |                 |        |
| Strychnine                                  | Н      |      |                 |        |
| Styrene                                     | Н      |      |                 |        |
| Sulphate                                    | L      |      |                 |        |
| Sulphide                                    | L      |      |                 |        |
| 2,3,7,8-Tetrachlorodibenzo-p-dioxins (TCDD) | Н      | *    |                 | DF     |
| Tebuthiuron                                 | Н      |      |                 |        |
| Tetrachloroeth(yl)ene (PCE)                 | Н      | *    |                 | CEE    |
| Tetraethyl Lead                             | Н      |      |                 |        |
| Tetrachlorobenzene, 1,2,3,4-                | Н      |      |                 | СВ     |
| Tetrachlorobenzene, 1,2,3,5-                | Н      |      |                 | СВ     |
| Tetrachlorobenzene, 1,2,4,5-                | Н      |      |                 | СВ     |
| Tetrachloroethane, 1,1,1,2-                 | М      |      |                 | CEA    |
| Tetrachloroethane, 1,1,2,2-                 | M      |      |                 | CEA    |
| Tetrachlorophenol, 2,3,4,6-                 | Н      |      |                 | СР     |
| Tetramethyl Lead                            | H      | *    |                 | -      |
| Thallium                                    | M      |      |                 |        |
| Thiophene                                   | M      |      |                 |        |
| Tin                                         | L      |      |                 |        |
| Toluene                                     | M      |      |                 | BTEX   |
| Toxaphene                                   | H      |      |                 | אובא   |
| ι υλαριτοπο                                 | П      |      |                 |        |

| Chemical/Parameter                        | Hazard | CEPA | Carcinogenicity | Notes |
|-------------------------------------------|--------|------|-----------------|-------|
| Triallate                                 | М      |      |                 |       |
| Tribromomethane (Bromoform)               | Н      |      |                 | HM    |
| Tributyltetradecylphosphonium Chloride    | Н      | *    |                 |       |
| Trichlorobenzene, 1,2,3-                  | Η      |      |                 | СВ    |
| Trichlorobenzene, 1,2,4-                  | Η      |      |                 | СВ    |
| Trichlorobenzene, 1,3,5-                  | Η      |      |                 | СВ    |
| Trichloroethane, 1,1,1-                   | Η      | *    |                 | CEA   |
| Trichloroethane, 1,1,2-                   | М      |      |                 | CEA   |
| Trichloroeth(yl)ene (TCE)                 | Н      | *    |                 | CEE   |
| Tricyclohexyltin Hydroxide                | Н      |      |                 |       |
| Trichlorophenol, 2,4,5-                   | Н      |      |                 | СР    |
| Trichlorophenol, 2,4,6-                   | Н      |      | PHC             | СР    |
| Trifluralin                               | Н      |      |                 |       |
| Trihalomethanes (THM)                     | М      |      |                 |       |
| Tris(2,3-Dibromopropyl)phosphate          | Н      |      |                 |       |
| Tritium                                   | L      |      |                 |       |
| Uranium (Non-radioactive) / (Radioactive) | M/H    |      |                 |       |
| Vanadium                                  | М      |      |                 |       |
| Vinyl Chloride                            | Н      | *    | CHC             | CEE   |
| Xylenes                                   | M      |      |                 | BTEX  |
| Zinc                                      | L      |      |                 |       |

H = High Hazard

M = Medium Hazard

L = Low Hazard

Hazard ratings based on a number of factors including potential human and ecological health effects.

PHC = Potential Human Carcinogen

CHC = Confirmed Human Carcinogen

BTEX = benzene, toluene, ethylbenzene, and xylenes

CB = chlorobenzenes

CEA = chlorinated ethanes

CEE = chlorinated ethenes

CP = chlorophenols

DF = dioxins and furans

GL = glycols

HM = halomethanes

PAH = polycyclic aromatic hydrocarbons

PH = phthalate esters

# CCME National Classification System (2008, 2010 v 1.2) Reference Material (Information to assist in scoring)

# **Examples of Persistent Substances**

This information is used in Sheet I (Chemical Characteristics), section 5 (Modifying Factors).

aldrin dieldrin PCBs

benzo(a)pyrene hexachlorobenzene PCDDs/PCDFs (dioxins and furans)

chlordanemethylmercurytoxapheneDDTmirexalkylated lead

DDE octachlorostyrene

## **Examples of Substances in the Various Chemical Classes**

This information is used in Sheet I (Chemical Characteristics), section 5 (Modifying Factors).

| Chemical Class                                | Examples *                                                                                                                                                                                      |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | arsenic, barium, cadmium, hexavalent chromium, copper, cyanide, fluoride, lead, mercury,                                                                                                        |
| inorganic substances (including metals)       | nickel, selenium, sulphur, zinc; brines or salts                                                                                                                                                |
| volatile petroleum hydrocarbons               | benzene, toluene, ethylbenzene, xylenes, PHC F1                                                                                                                                                 |
| light extractable petroleum hydrocarbons      | PHC F2                                                                                                                                                                                          |
| heavy extractable petroleum hydrocarbons      | PHC F3                                                                                                                                                                                          |
| PAHs                                          | Benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenz(a,h0anthracene, indeno(1,2,3-c,d)pyrene, naphthalene, phenanthrene, pyrene                               |
| phenolic substances                           | phenol, pentachlorophenol, chlorophenols, nonchlorinated phenols (e.g., 2,4-dinitrophenol, cresol, etc.)                                                                                        |
| chlorinated hydrocarbons halogenated methanes | PCBs, tetrachloroethylene, trichloroethylene, dioxins and furans, trichlorobenzene, tetrachlorobenzene, pentachlorobenzene, hexachlorobenzene carbon tetrachloride, chloroform, dichloromethane |
| phthalate esters                              | di-isononyl phthalate (DINP), di-isodecyl phthalate (DIDP), di-2-ethylhexyl phthalate (DEHP)                                                                                                    |
| pesticides                                    | DDT, hexachlorocyclohexane                                                                                                                                                                      |

<sup>\*</sup> Note: Specific chemicals that belong to the various classes are not limited to those listed in this table. These lists are not exhaustive and are meant just to provide examples of substances that are typically encountered.

# Chemical-specific Properties (Adapted from USEPA Soil Screening Criteria)

The information on Koc is used in Sheet II (Migration Potential), section 1,B,a (Relative Mobility).

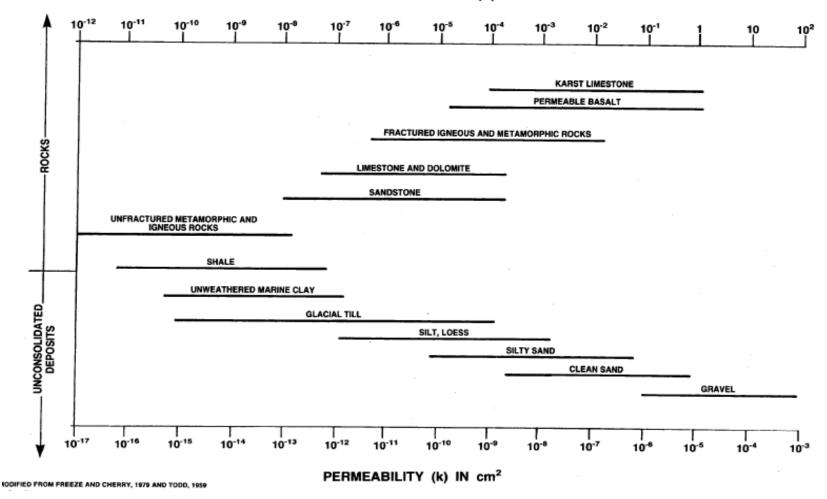
The information on the dimensionless Henry's law constant is used in Sheet II (Migration Potential), section 4,B,a (Relative Volatility).

The information on log Kow is used in Sheet III (Exposure), section 3,B,a,iii (Potential for Ecological Exposure - terrestrial ingestion), and section 3,B,b,ii (Potential for Ecological Exposure - aquatic uptake potential).

| CAS No.  | Compound                   | Solubility in Water @ 20-25°C (mg/L) | Henry's Law Constant<br>(atm-m3/mol) | Dimensionless Henry's law constant (HLC [atm-m3/mol] * 41) (25 °C). | log Kow | Log Koc<br>(L/kg) |
|----------|----------------------------|--------------------------------------|--------------------------------------|---------------------------------------------------------------------|---------|-------------------|
| 83-32-9  | Acenaphthene               | 4.24E+00                             | 1.55E-04                             | 6.36E-03                                                            | 3.92    | 3.85              |
| 67-64-1  | Acetone                    | 1.00E+06                             | 3.88E-05                             | 1.59E-03                                                            | -0.24   | -0.24             |
| 309-00-2 | Aldrin                     | 1.80E-01                             | 1.70E-04                             | 6.97E-03                                                            | 6.5     | 6.39              |
| 120-12-7 | Anthracene                 | 4.34E-02                             | 6.50E-05                             | 2.67E-03                                                            | 4.55    | 4.47              |
| 56-55-3  | Benz(a)anthracene          | 9.40E-03                             | 3.35E-06                             | 1.37E-04                                                            | 5.7     | 5.6               |
| 71-43-2  | Benzene                    | 1.75E+03                             | 5.55E-03                             | 2.28E-01                                                            | 2.13    | 1.77              |
| 205-99-2 | Benzo(b)fluoranthene       | 1.50E-03                             | 1.11E-04                             | 4.55E-03                                                            | 6.2     | 6.09              |
| 207-08-9 | Benzo(k)fluoranthene       | 8.00E-04                             | 8.29E-07                             | 3.40E-05                                                            | 6.2     | 6.09              |
| 65-85-0  | Benzoic acid               | 3.50E+03                             | 1.54E-06                             | 6.31E-05                                                            | 1.86    | _                 |
| 50-32-8  | Benzo(a)pyrene             | 1.62E-03                             | 1.13E-06                             | 4.63E-05                                                            | 6.11    | 6.01              |
| 111-44-4 | Bis(2-chloroethyl)ether    | 1.72E+04                             | 1.80E-05                             | 7.38E-04                                                            | 1.21    | 1.19              |
| 117-81-7 | Bis(2-ethylhexyl)phthalate | 3.40E-01                             | 1.02E-07                             | 4.18E-06                                                            | 7.3     | 7.18              |
| 75-27-4  | Bromodichloromethane       | 6.74E+03                             | 1.60E-03                             | 6.56E-02                                                            | 2.1     | 1.74              |
| 75-25-2  | Bromoform                  | 3.10E+03                             | 5.35E-04                             | 2.19E-02                                                            | 2.35    | 1.94              |
| 71-36-3  | Butanol                    | 7.40E+04                             | 8.81E-06                             | 3.61E-04                                                            | 0.85    | 0.84              |
| 85-68-7  | Butyl benzyl phthalate     | 2.69E+00                             | 1.26E-06                             | 5.17E-05                                                            | 4.84    | 4.76              |
| 86-74-8  | Carbazole                  | 7.48E+00                             | 1.53E-08                             | 6.26E-07                                                            | 3.59    | 3.53              |
| 75-15-0  | Carbon disulfide           | 1.19E+03                             | 3.03E-02                             | 1.24E+00                                                            | 2       | 1.66              |
| 56-23-5  | Carbon tetrachloride       | 7.93E+02                             | 3.04E-02                             | 1.25E+00                                                            | 2.73    | 2.24              |
| 57-74-9  | Chlordane                  | 5.60E-02                             | 4.86E-05                             | 1.99E-03                                                            | 6.32    | 5.08              |
| 106-47-8 | p-Chloroaniline            | 5.30E+03                             | 3.31E-07                             | 1.36E-05                                                            | 1.85    | 1.82              |
| 108-90-7 | Chlorobenzene              | 4.72E+02                             | 3.70E-03                             | 1.52E-01                                                            | 2.86    | 2.34              |
| 124-48-1 | Chlorodibromomethane       | 2.60E+03                             | 7.83E-04                             | 3.21E-02                                                            | 2.17    | 1.8               |
| 67-66-3  | Chloroform                 | 7.92E+03                             | 3.67E-03                             | 1.50E-01                                                            | 1.92    | 1.6               |
| 95-57-8  | 2-Chlorophenol             | 2.20E+04                             | 3.91E-04                             | 1.60E-02                                                            | 2.15    | _                 |
| 218-01-9 | Chrysene                   | 1.60E-03                             | 9.46E-05                             | 3.88E-03                                                            | 5.7     | 5.6               |
| 72-54-8  | DDD                        | 9.00E-02                             | 4.00E-06                             | 1.64E-04                                                            | 6.1     | 6                 |
| 72-55-9  | DDE                        | 1.20E-01                             | 2.10E-05                             | 8.61E-04                                                            | 6.76    | 6.65              |
| 50-29-3  | DDT                        | 2.50E-02                             | 8.10E-06                             | 3.32E-04                                                            | 6.53    | 6.42              |
| 53-70-3  | Dibenz(a,h)anthracene      | 2.49E-03                             | 1.47E-08                             | 6.03E-07                                                            | 6.69    | 6.58              |
| 84-74-2  | Di-n-butyl phthalate       | 1.12E+01                             | 9.38E-10                             | 3.85E-08                                                            | 4.61    | 4.53              |
| 95-50-1  | 1,2-Dichlorobenzene        | 1.56E+02                             | 1.90E-03                             | 7.79E-02                                                            | 3.43    | 2.79              |
| 106-46-7 | 1,4-Dichlorobenzene        | 7.38E+01                             | 2.43E-03                             | 9.96E-02                                                            | 3.42    | 2.79              |

|           |                            | Solubility in Water @ | Henry's Law Constant | Dimensionless Henry's law constant (HLC [atm-m3/mol] * 41) |         | Log Koc |
|-----------|----------------------------|-----------------------|----------------------|------------------------------------------------------------|---------|---------|
| CAS No.   | Compound                   | 20-25°C (mg/L)        | (atm-m3/mol)         | (25 °C).                                                   | log Kow | (L/kg)  |
| 91-94-1   | 3,3-Dichlorobenzidine      | 3.11E+00              | 4.00E-09             | 1.64E-07                                                   | 3.51    | 2.86    |
| 75-34-3   | 1.1-Dichloroethane         | 5.06E+03              | 5.62E-03             | 2.30E-01                                                   | 1.79    | 1.5     |
| 107-06-2  | 1.2-Dichloroethane         | 8.52E+03              | 9.79E-04             | 4.01E-02                                                   | 1.47    | 1.24    |
| 75-35-4   | 1.1-Dichloroethylene       | 2.25E+03              | 2.61E-02             | 1.07E+00                                                   | 2.13    | 1.77    |
| 156-59-2  | cis-1,2-Dichloroethylene   | 3.50E+03              | 4.08E-03             | 1.67E-01                                                   | 1.86    | 1.55    |
| 156-60-5  | trans-1,2-Dichloroethylene | 6.30E+03              | 9.38E-03             | 3.85E-01                                                   | 2.07    | 1.72    |
| 120-83-2  | 2,4-Dichlorophenol         | 4.50E+03              | 3.16E-06             | 1.30E-04                                                   | 3.08    |         |
| 78-87-5   | 1.2-Dichloropropane        | 2.80E+03              | 2.80E-03             | 1.15E-01                                                   | 1.97    | 1.64    |
| 542-75-6  | 1,3-Dichloropropene        | 2.80E+03              | 1.77E-02             | 7.26E-01                                                   | 2       | 1.66    |
| 60-57-1   | Dieldrin                   | 1.95E-01              | 1.51E-05             | 6.19E-04                                                   | 5.37    | 4.33    |
| 84-66-2   | Diethylphthalate           | 1.08E+03              | 4.50E-07             | 1.85E-05                                                   | 2.5     | 2.46    |
| 105-67-9  | 2,4-Dimethylphenol         | 7.87E+03              | 2.00E-06             | 8.20E-05                                                   | 2.36    | 2.32    |
| 51-28-5   | 2,4-Dinitrophenol          | 2.79E+03              | 4.43E-07             | 1.82E-05                                                   | 1.55    |         |
| 121-14-2  | 2.4-Dinitrotoluene         | 2.70E+02              | 9.26E-08             | 3.80E-06                                                   | 2.01    | 1.98    |
| 606-20-2  | 2,6-Dinitrotoluene         | 1.82E+02              | 7.47E-07             | 3.06E-05                                                   | 1.87    | 1.84    |
| 117-84-0  | Di-n-octyl phthalate       | 2.00E-02              | 6.68E-05             | 2.74E-03                                                   | 8.06    | 7.92    |
| 115-29-7  | Endosulfan                 | 5.10E-01              | 1.12E-05             | 4.59E-04                                                   | 4.1     | 3.33    |
| 72-20-8   | Endrin                     | 2.50E-01              | 7.52E-06             | 3.08E-04                                                   | 5.06    | 4.09    |
| 100-41-4  | Ethylbenzene               | 1.69E+02              | 7.88E-03             | 3.23E-01                                                   | 3.14    | 2.56    |
| 206-44-0  | Fluoranthene               | 2.06E-01              | 1.61E-05             | 6.60E-04                                                   | 5.12    | 5.03    |
| 86-73-7   | Fluorene                   | 1.98E+00              | 6.36E-05             | 2.61E-03                                                   | 4.21    | 4.14    |
| 76-44-8   | Heptachlor                 | 1.80E-01              | 1.09E-03             | 4.47E-02                                                   | 6.26    | 6.15    |
| 1024-57-3 | Heptachlor epoxide         | 2.00E-01              | 9.50E-06             | 3.90E-04                                                   | 5       | 4.92    |
| 118-74-1  | Hexachlorobenzene          | 6.20E+00              | 1.32E-03             | 5.41E-02                                                   | 5.89    | 4.74    |
| 87-68-3   | Hexachloro-1.3-butadiene   | 3.23E+00              | 8.15E-03             | 3.34E-01                                                   | 4.81    | 4.73    |
| 319-84-6  | a-HCH (a-BHC)              | 2.00E+00              | 1.06E-05             | 4.35E-04                                                   | 3.8     | 3.09    |
| 319-85-7  | b-HCH (b-BHC)              | 2.40E-01              | 7.43E-07             | 3.05E-05                                                   | 3.81    | 3.1     |
| 58-89-9   | g -HCH (Lindane)           | 6.80E+00              | 1.40E-05             | 5.74E-04                                                   | 3.73    | 3.03    |
| 77-47-4   | Hexachlorocyclopentadiene  | 1.80E+00              | 2.70E-02             | 1.11E+00                                                   | 5.39    | 5.3     |
| 67-72-1   | Hexachloroethane           | 5.00E+01              | 3.89E-03             | 1.59E-01                                                   | 4       | 3.25    |
| 193-39-5  | Indeno(1,2,3-cd)pyrene     | 2.20E-05              | 1.60E-06             | 6.56E-05                                                   | 6.65    | 6.54    |
| 78-59-1   | Isophorone                 | 1.20E+04              | 6.64E-06             | 2.72E-04                                                   | 1.7     | 1.67    |
| 7439-97-6 | Mercury                    | _                     | 1.14E-02             | 4.67E-01                                                   | _       | _       |
| 72-43-5   | Methoxychlor               | 4.50E-02              | 1.58E-05             | 6.48E-04                                                   | 5.08    | 4.99    |
| 74-83-9   | Methyl bromide             | 1.52E+04              | 6.24E-03             | 2.56E-01                                                   | 1.19    | 1.02    |
| 75-09-2   | Methylene chloride         | 1.30E+04              | 2.19E-03             | 8.98E-02                                                   | 1.25    | 1.07    |
| 95-48-7   | 2-Methylphenol             | 2.60E+04              | 1.20E-06             | 4.92E-05                                                   | 1.99    | 1.96    |
| 91-20-3   | Naphthalene                | 3.10E+01              | 4.83E-04             | 1.98E-02                                                   | 3.36    | 3.3     |
| 98-95-3   | Nitrobenzene               | 2.09E+03              | 2.40E-05             | 9.84E-04                                                   | 1.84    | 1.81    |
| 86-30-6   | N-Nitrosodiphenylamine     | 3.51E+01              | 5.00E-06             | 2.05E-04                                                   | 3.16    | 3.11    |

| CAS No.   | Compound                  | Solubility in Water @ 20-25°C (mg/L) | Henry's Law Constant<br>(atm-m3/mol) | Dimensionless Henry's law constant (HLC [atm-m3/mol] * 41) (25 °C). | log Kow | Log Koc<br>(L/kg) |
|-----------|---------------------------|--------------------------------------|--------------------------------------|---------------------------------------------------------------------|---------|-------------------|
| 621-64-7  | N-Nitrosodi-n-propylamine | 9.89E+03                             | 2.25E-06                             | 9.23E-05                                                            | 1.4     | 1.38              |
| 1336-36-3 | PCBs                      | _                                    | _                                    | _                                                                   | 5.58    | 5.49              |
| 87-86-5   | Pentachlorophenol         | 1.95E+03                             | 2.44E-08                             | 1.00E-06                                                            | 5.09    | _                 |
| 108-95-2  | Phenol                    | 8.28E+04                             | 3.97E-07                             | 1.63E-05                                                            | 1.48    | 1.46              |
| 129-00-0  | Pyrene                    | 1.35E-01                             | 1.10E-05                             | 4.51E-04                                                            | 5.11    | 5.02              |
| 100-42-5  | Styrene                   | 3.10E+02                             | 2.75E-03                             | 1.13E-01                                                            | 2.94    | 2.89              |
| 79-34-5   | 1,1,2,2-Tetrachloroethane | 2.97E+03                             | 3.45E-04                             | 1.41E-02                                                            | 2.39    | 1.97              |
| 127-18-4  | Tetrachloroethylene       | 2.00E+02                             | 1.84E-02                             | 7.54E-01                                                            | 2.67    | 2.19              |
| 108-88-3  | Toluene                   | 5.26E+02                             | 6.64E-03                             | 2.72E-01                                                            | 2.75    | 2.26              |
| 8001-35-2 | Toxaphene                 | 7.40E-01                             | 6.00E-06                             | 2.46E-04                                                            | 5.5     | 5.41              |
| 120-82-1  | 1,2,4-Trichlorobenzene    | 3.00E+02                             | 1.42E-03                             | 5.82E-02                                                            | 4.01    | 3.25              |
| 71-55-6   | 1,1,1-Trichloroethane     | 1.33E+03                             | 1.72E-02                             | 7.05E-01                                                            | 2.48    | 2.04              |
| 79-00-5   | 1,1,2-Trichloroethane     | 4.42E+03                             | 9.13E-04                             | 3.74E-02                                                            | 2.05    | 1.7               |
| 79-01-6   | Trichloroethylene         | 1.10E+03                             | 1.03E-02                             | 4.22E-01                                                            | 2.71    | 2.22              |
| 95-95-4   | 2,4,5-Trichlorophenol     | 1.20E+03                             | 4.33E-06                             | 1.78E-04                                                            | 3.9     |                   |
| 88-06-2   | 2,4,6-Trichlorophenol     | 8.00E+02                             | 7.79E-06                             | 3.19E-04                                                            | 3.7     | _                 |
| 108-05-4  | Vinyl acetate             | 2.00E+04                             | 5.11E-04                             | 2.10E-02                                                            | 0.73    | 0.72              |
| 75-01-4   | Vinyl chloride            | 2.76E+03                             | 2.70E-02                             | 1.11E+00                                                            | 1.5     | 1.27              |
| 108-38-3  | m-Xylene                  | 1.61E+02                             | 7.34E-03                             | 3.01E-01                                                            | 3.2     | 2.61              |
| 95-47-6   | o-Xylene                  | 1.78E+02                             | 5.19E-03                             | 2.13E-01                                                            | 3.13    | 2.56              |
| 106-42-3  | p-Xylene                  | 1.85E+02                             | 7.66E-03                             | 3.14E-01                                                            | 3.17    | 2.59              |


Source: United States Environmental Protection Agency. 1996. Soil Screening Guidance: Technical Background Document. EPA/540/R-95/128 (<a href="http://www.epa.gov/superfund/resources/soil/toc.htm#p5">http://www.epa.gov/superfund/resources/soil/toc.htm#p5</a>)

CAS = Chemical Abstracts Service Kow = Octanol/water partition coefficient

# RANGE OF VALUES OF HYDRAULIC CONDUCTIVITY AND PERMEABILITY

The information on Koc is used in Sheet II (Migration Potential), section 1,B,f (Hydraulic Conductivity)

HYDRAULIC CONDUCTIVITY (K) IN cm/s



# APPENDIX G

COMMENTS on MoT RESPONSE TO LNIB CONCERNS WITH GODEY PIT SALT CONTAMINANTION



The recommendations we made in our third party review report (dated March 21, 2012) are reiterated below, each followed by a summary of SLE's responses/actions as documented in their letter dated April 22, 2013. My opinions on the adequacy of SLE' responses/actions are presented in red.

# **Columbia Recommendation**

Columbia recommends that further investigation (and risk assessment if warranted) into metals impacts to surface water and groundwater be conducted. It is possible that the identified metals are representative of background; however, further justification is required to confirm the absence of risk or liability posed by these metals.

# **SLE Response/Action**

# Surface Water

SLE clarified that Diamond Vale Brook does not actually reside on the Joeyaska Reserve lands, but rather originates via upwelling groundwater on the 980 Coldwater Road property. Therefore, risks related to surface water quality in Diamond Vale Brook are not relevant to LNIB lands.

Scott's Opinion: I agree that risks to surface water bodies are not relevant to LNIB.

# Groundwater

Regarding metals in groundwater on the Joeyaska Reserve, SLE did not consider these to be related to Godey Pit salt contamination and therefore they were not addressed in the risk assessments. SLE states that they are awaiting feedback from MOE on this matter.

Scott's Opinion: Further evidence seems to be needed to support the argument that the other metals detected in groundwater on the Joeyaska Reserve are unrelated to Godey Pit.

## **Columbia Recommendation**

Columbia recommends that the additional assessment recommended by MoT's consultants (listed below) be conducted to better understand the agricultural and ecological risks. If additional risks are identified, additional remedial action may be required.

# **SLE Response/Action**

According to SLE, he additional assessments recommended have been largely carried out and are documented in SLE's addendum report dated March 2012. The recommendations and their status (in bold) are summarized below.

 Additional vegetation tissue sampling on and off-site and refinement of dietary risk estimates for wildlife and livestock. COMPLETE. RISKS SHOWN TO BE LOW (ASSUMING LIVESTOCK DO NOT OBTAIN 100% OF THEIR WATER FROM DIAMOND VALE BROOK).

- 2. More detailed risk assessment if dietary risks to wildlife and livestock cannot be ruled out with additional plant tissue data. **NOT NEEDED SINCE RISKS LOW.**
- Long term monitoring of the shrub/tree community to assess long term impacts of high salinity on the terrestrial ecosystem. NOT COMPLETED. SLE RECOMMENDED THAT THIS BE COMPLETED DOWN THE ROAD AS A MEASURE OF REMEDIATION SUCCESS.
- 4. Field assessment of amphibian presence, in particular the provincially and federally listed great basin spadefoot toad. NOT COMPLETED. SLE RECOMMENDED THAT THIS BE COMPLETED DOWN THE ROAD AS A MEASURE OF REMEDIATION SUCCESS.
- Find appropriate reference locations for water quality monitoring for comparison of apparent risks to amphibians and aquatic invertebrates on-site. PARTIALLY COMPLETE. SLE ATTEMPTED THIS BUT WERE UNSUCCESSFUL. THEY DO NOT RECOMMEND FURTHER EFFORT ON THIS.
- Scott's Opinion: Items 1-3 are most relevant to LNIB. Items 1 and 2 have been addressed. Regarding item 3, it seems reasonable to use vegetation monitoring later to assess the effectiveness of the remediation. Since impacted surface water is not present on LNIB lands (Diamond Value Brook shown to be off-site), items 4 and 5 may no longer be relevant to LNIB.

# **Columbia Recommendation**

Columbia recommends that the LNIB conduct internal stakeholder meetings with band members, particularly the affected parties of the Joeyaska Reserve to gather input into this process and confirm the land use assumptions applied to the risk assessments is valid. Traditional knowledge should be sought with respect to species potentially extirpated from the reserve due to salt impacts, particularly amphibians.

# **SLE Response/Action**

Recommendation is directed to LNIB. Not relevant to SLE.

## Columbia Recommendation

Columbia recommends ongoing monitoring of the existing drinking water well to ensure that residents are not exposed to the contaminants at levels of concern in the future. In addition, the water quality in domestic wells installed on-Site in the future should be monitored to ensure that residents are not exposed to the contaminants at concentrations of concern. If contamination within the existing or future wells is identified, the health risks associated with the use of the water should be assessed.

# **SLE Response/Action**

SLE states that ongoing monitoring of the existing drinking water well for sodium and chloride will be incorporated into the annual sampling and monitoring program carried out as part of the RAP, despite their opinion that the potential for impact is low. SLE does not explicitly

recommend risk management measures for new deep drinking water wells installed on the Joeyaska Reserve in the future but indicates that deep wells would likely not be impacted. Regarding potential future shallow wells, SLE states that they do not recommend people consume water from the shallow aquifer in areas where groundwater exceeds the drinking water guidelines.

Scott's Opinion: Risk controls may be needed to address the installation of new wells on the Joeyaska Reserve (e.g. requirement to cite outside of plume and at a minimum depth, monitoring).

# My Additional Comments

Clarification should be sought on whether the fertility of soils on the southwest portion of the Joeyaska Reserve is impaired. The original AERA indicated that this was true for the area near Diamond Vale Brook. SLE (2013) seemed to dismiss this issue for the Joeyaska Reserve given that Diamond Vale Brook is located offsite. However, the brook originates at the property boundary and so impacts could extend onto the Joeyaska Reserve.